NOTE

Data Structures, Spring 2003
PROBLEM SET 1 - School Solution.

Given on Tuesday March 4, 2003. Due: 19:00 Monday March 17, 2003.

: These solutions are sometimes more detailed than what you are requested to do.

For example, we did not expect you to prove that 6(8(g)) = 6(g) as we did in 1lc. We add
those details here so that you can check that you fully understand.

1. (The O, 2, 0,0 notation)

(a)

Let h(n) = o(f(n)) (little O), g(n) = O(f(n) + h(n)). Prove g(n) = ©(f(n)).

Solution: You may have assumed here that h, f are positive. In this case the proof
1S:

We first show that g(n) = O(f(n)). We know that g(n) = O(f(n) + h(n)), which
means that there exists a constant C and ng such that g(n) < C(f(n) + h(n)) for
n > ng. Since h(n) = o( f(n)), there exists some ny such that A(n) < f(n) for all
n > ni1. Hence, for n > max{ng,n1}, g(n) < C(f(n) + h(n)) < C(f(n)+ f(n)) =
2C f(n) which satisfies the definition of g(n) = O(f(n)).

We now show that g(n) = Q(f(n)). We know that g(n) = Q(f(n) + h(n)), which
means that there exists a constant C and ng such that g(n) > C(f(n) + h(n)) for
n > ng. But g(n) > C(f(n) + h(n)) >'Cf(n) if h is positive, so we are done.

The claim is also true for f positive and h negative.

To prove g(n) = O(f(n)): We have g(n) = O(f(n) + h(n)), which means that there
exists a constant C and ng such that g(n) < C(f(n) + h(n)) for n > ng, but if A
is negative, this implies g(n) < C(f(n) + h(n)) < Cf(n) for n > ng, which is the
definition of g(n) = O(f(n)). |

To prove g(n) = Q(f(n)): We have g(n) = Q(f(n) + h(n)), which means that
there exists a constant C and ng such that g(n) > C(f(n) + h(n)) for n > ny.
Since h(n) = o(f(n)), there exists some ny such that |h(n)| < f(n)/2 for all n > n;.
Hence, for n > max{ng,n1}, g(n) > C(f(n)+h(n)) < C(f(n)—f(n)/2) > C/2f(n)
which satisfies the definition of g(n) = Q(f(n)).

Prove that if f(n) = h(n)p(n) where p(n) = ©(g(n)) then f(n) = @(h(n)g(n))

Solution: Since p(n) = Q(g(n)) there exists C, ng such that p(n) > C(g(n)) for .
n'> ng. Then f(n) = h(n)p(n) > Ch(n)g(n) forn > ng, so f(n) = Qh(n)g(n)).
Since p(n) = O(g(n)), there exists C', ny such that p(n) <-C’'(g(n)) for n > n;.
Then f(n) = h(n)p(n) < C'h(n)g(n) for n > n; which is the definition for f(n) =
O(h(n)g(n)). - *_ |

Together f(n) = Q(h(n)g(n)), f(n) = O(h(n)g(n)) imply f(n) = O(h(n)g(n))
Prove: If ¢ > 1 is a constant, then Z?:(?)-.qi = Q(Qh(”)). (This completes the part
that was missing in class in the proof of case c of the restricted Master theorem.)

Solution: We assume h(n) is positive int‘eger? as is implicitly assumed by the fact

it appears in the sum.

Define f(n) = Z?g) ¢*. By the formula for a geometric sum, f(n) = Z?fi) i =
h(n)+1__

q q

=1~

qul— is a constant, so it is #(1). By (b), f(n) = (¢"M*! — ¢)0(1) = O(¢g"™M+! — g).




Now, if you assumed that h(n) grows to infinity, so ¢"™*! grows to infinity as well,
since ¢ > 1, and so q is negligible compared to ¢™ ™1, ¢ = o(¢g™™+1). Now by (a),
we have qh(n)—l—l — g = @(qh(n)—i—l)'

If you do not assume that h(n) diverges, it is slightly more complicated to show
qh(n)+1 —q = e(qh(n)+l): Since q¢ < éqh(”)ﬂ, we have qh(n)—l—l —q > qh(n)—l—l _

%qh(n)ﬂ = {1 — %)qh(”)ﬂ s (-)(qh(”)H) where the last equality follows from (b)

since 1 — 1/q = ©(1). ¢M™M*1 — ¢ > O(¢g"™+1) implies ¢gMM+! — g = Q(gM™+1),
but since also g™ +1 — g < MM+ we have gMM+1 — g = O(ghM+1) 50 gh(M+1 1 =
e(qh(n)+1). ]

We now want to get rid of the final 1 in the exponent. This is easy: ¢MI+1 =
q(¢"D) = ©(g"9)) again by (b), since ¢ = O(1).

Finally, we collect everything and we have proved together: f(n) = ©(gM™M+1—q) =
O(0(¢"™M*1)) = 6(6(0(¢M™))). But 8(0(k(n)) = ©(k(n)) for any function k(n)
(it follows trivially from the definition) so we get that (—)(@(@(qh(”)))) = @(qh(’”’)),
the desired result.

2. (Recurrences) Give asymptotic upper and lower bounds for the following recurrences,
or 1f possible solve exactly. You can consult the general Master theorem which appears
on the slides and in CLR’s book. Consider only n’s for which the recurrences are well
defined, and specify which are those n’s.

(a)

T(n) =2T(n/4) + n, T(1) =3

Solution:

The recurrence is only defined for powers of 4, n = 4* for 7 > 0. We use the master
equation, the case a/b° =1, sincea =2,b =4,c = 1/2 to get T = 6( /nlogn).

T(n)=3T(n/2) +nlog(n), T(1)=2

solution
This recurrence is defined for power of 2, n = 2%,¢ > 1. We use here the general
Master theorem which deals with T'(n) = aT'(n/b) + f(n). In this case f(n) =
nlog(n).
We claim that nlog(n) = O(n'?®). To see this, recall that log(m) = O(m). This

implies that for any constant ¢ > 0, log(n) = O(n¢), because just substitute m =

n¢ and get log(n®) = clog(n) = O(n®), or log(n) = 1/c0O(n¢) = O(n¢) (by 1.a).
Now set ¢ = 1/2 and we get that log(n) = O(n'/2). If we multiply by n we get
nlog(n) = n - O(n'/?) = O(n!®). |
We now see that the first case in CLR applies: f(n) = O(n®) = O(n'923)=€) for
some € > 0, because log2(3) > 1.5. |

Using the Master theorem we have 1'(n) —4‘@(711092(3)).

T(n)=4n+2+T(n-5), T(0)=2.

Solution | |
In this case the solution is defined only for multi_ples of 5, n = 5k for k£ > 0.

Here comes a nice trick (you can do without it but it is more elegant to use it):
Substitute n = 5k. We get T'(5k) = 20k + 2 + T'(5(k — 1)). Now define a new
function of k: T'(k) = T'(5k). We have the recurrence relation for T': T'(k) =
20k + 2+ T'(k — 1), T"(0) = 2.

Since this looks simple, let us just try to open this up:

'T’(k)=2+(20+2)+(2.20+2)+"(3-2‘-0+2)+...+(k-20+2)



We see that the “2” terms are just summed up k£ + 1 times, so they contribute
(k+ 1)2. The “20” terms contribute:

k
20 ) k=20(k(k +1)/2) = 10k(k + 1)

2=l

Together
T'(k) =2(k+1) + 10k(k +1) = (2 + 10k)(k + 1).

We can now substitute back in 7'(n), using n = 5k:

T(n) = T(5k) = T'(k) = (2+10k)(k+1) = (2410(n/5))(n/5+1) = (242n)(n/5+1).

(d) T(n) =T(n/2) + T(n/4) +n, T(1) =4,T(2) = 8.

Solution Done in tirgul 6

3. (Finding the missing integer) All the integers from 0 to n except one, are stored in an
array A[l..n]. We want to find the missing integer. We could easily do this in time ©(n)
by using an extra array B[l..n| to record which numbers appear in A. In this problem,
however, we cannot access an entire integer in A with a single operation. The elements
in A are represented as binary strings, and the only operation we can use to access them
is to ask for the ith bit of A[j]. Each such query takes constant time. Give a pseudocode
for an algorithm that finds the missing integer using ©(n) such queries. Prove your claim
about the running time of your suggested algorithm.

Solution Done in Tirgul 6

4. (Insertion and merge sort combined) Despite the fact that merge sort runs in ©(nlog(n))
and insertion sort in ©(n?), the constants are such that it is preferable to use insertion
sort for small inputs. Consider the modification of merge sort

modified-merge-sort[A,p,r]
If 0 <7 —p<k—1 then insertion-sort[A,p.r]
Ifr—-p>k—-1

then g = |(p + r)/2]

' modified-merge-sort(A,p,q)
modified-merge-sort(A,q+1,r)
Merge(A,p,q,r)

This corresponds to sorting n/k sublists, each of lenéth k, by insertion sort, and then
merging them using the standard recursive merge sort mechanism. k& is a value to be
determined, and you can assume for simplicity that n/k is a power of 2. .

(a) Show that the running time of modified-merge-sort is ©(nk + nlog(n/k)).

Solution

We will consider the recursion tree. Let us denote its height by h. At each node of
the tree, we perform a merge, except at the leaves. If 7 is the depth of a node, then
the size of the problem it deals with is n/27. The two edges going down from this
node lead to problems of half the size, except if the size s is s < k, we stop (and
perform insertion sort.) So n is divided by 2, h times, until it reaches a problem size
equal-to k. Hence, k = 53, or, equivalently the height of the tree is h = log(n/k).

Let us-calculate the amount of work that is being done at each node of the tree:
At an internal node of depth j, i.e. a node where mierge takes place, the amount of



work is O(n/27). At a leaf, where the size of the problem is k, we perform insertion
sort, which takes k2.

We now sum over the work in all the nodes at one level (not the bottom one).
At the jth level (counting from the top) we have 27 nodes, each performs O(n/27)
operations, altogether 2/0(n/27) = O(n) for the jth level.

There are log(n/k) levels, so we get O(nlog(n/k)) operations due to the merging in
the recursion tree.

Now we need to add to this the work done at the lowest level, i.e. at the leaves:
The work for the insertion sort. We have n/k leaves, and each one involves O(k?)
operations; Together this gives n/kO(k?) = O(nk) operations.

Adding the work from the merge and from the insertion sort together we get the
desired result.

What is the largest k (as a function of n in © notation) for which the modified
algorithm has the same asymptotic running time as standard merge sort?

Solution

If K = O(log(n)) we get that the work is ©(nk + nlog(n/k)) = ©O(nlog(n) +
nlog(n/log(n))) = O(nlog(n) — nloglog(n))) = O(nlog(n)), where the last equality
follows from (1.a) since loglog(n) = o(log(n)), (because if log(n) = m, this is
equivalent to log(m) = o(m).) |

So K = ©(log(n)) gives us performance no worse than standard merge sort.

For k which is smaller than that, we of course still get performance which is
O(nlog(n)) since nk will just be smaller, and the second term nlog(n/k) is at most

nlog(n).

What happens if k£ is asymptotically larger than log(n)? i.e. that log(n) is negligible
with respect to k7 Then nlog(n) will be negligible compared to nk, so the first term
nk, will be much larger than the running time for standard merge sort.

hence the answer is k = ©(log(n)).

How should £ be chosen in practice?

Solution

We can write the running time as: ©(nk + nlog(n/k)) = Cnk + Dnlog(n/k) For
constants C, D which depend on the performance of the specific implementations.

Opening this, we have Cnk+Dnlog(n)— D (nlogk) = Dnlog(n)+n(CK —D(log(k)).

To find the best k, We thus want to find the minimum of C'k — D(log(k). To do
this, take the derivative of Ck — D(log(k) with respect to k: it is C — D/k. To find
the minimum, we need that this derivative is 0, which gives £k = D/C. We can run

insertion sort on small inputs to find C, and run merge sort on small inputs to find °

D, and pick k£ to be D/C.



Data Structures, Spring 2003
PROBLEM SET 2

Given on Tuesday March 16, 2003. Due: 19:00 Monday April 7, 2003.
Justify every step rigorously. Please staple multiple pages and do not submit in plastic bags.

1. During the running time of the procedure Randomized-QuickSort, How many calls are
made to the random number generator in the worst case? How about in the best case?
GGive your answer in the © notation.

Solution: Solution given in Tirgul 10.

2. Describe an algorithm that, given n integers in the range 0 to k, preprocesses its input,
and then answers any query about how many of the n integers fall into range [a...b] in
O(1) time. Your algorithm should use ©(n + k) preprocessing time.

Solution

Pseudo Code for Preprocessing

For i=1 to k B(i)=0 // Allocate an array B of length k with integers, initialized by
0 everywhere. ’

For j=1 to length A,
B(A(j))++
For i=2 to k

B(i)=B(i)+B(i-1)

At the end of this code, B|j] contains the number of elements if A which are at most j.
Given a query |a,...b] we just output B[b| — Bla — 1].

This takes 6(n + k) time (and also 6(n + k) space.) |

3. Prove that there is no comparison based.sort whose running time is linear for at least
half of the n! inputs of length n. What about a fraction of 1/n of the inputs? What
about a fraction of 1/2™7 | | |

Solution

(a) A comparison based sort can be described by a decision tree. Assume by contra-
diction that there exists a comparison based sort whose running time is linear (less
than cn for some constant n) for half the inputs.

The running time in a decision tree is the depth of the node that leads to the correct
leaf. So this means that at least n!/2 leaves are of depth < cn.

We will show a contradiction: The number of nodes in any binary tree of depth at
most than cn is less than 2°"T1 so this means that

2¢ntl > nl/2. y (1)



We derive a contradiction: if we take log we get cn+ 1 > log(n!/2) = log(n!) — 1 =
(A(nlog(n)) — 1, where we have used log(n!) = Q2(nlog(n)) which we have shown in
class.

In other words we get: cn > Q(nlog(n)) — 2.

By exl we can omit the 2 since it is negligible with respect to nlog(n). We get
cn = Q(nlog(n). We prove that this is wrong. This follows from the fact that
if en = Q(nlogn), there exists a constant such that cn > dnlogn or equivalently,
c > dlogn but since log(n) — oo, this is false.

(b) Now suppose the fraction of the inputs is 1/n. The argument starts like before,
but replacing n!/2 by %(n') = (n — 1)!, until we get to equation 1, which in this
case states 2°"*! > (n — 1)!. Taking log we get that cn + 1 > log((n — 1)!) =
Q((n — 1)log(n — 1)). We get the expression cn + 1 > Q((n — 1)log(n — 1)) or
equivalently cn > Q((n—1)log(n—1)) — 1. We first want to simplify this expression,
by getting rid of the negligible 1. For this we use a little algebra (n—1)log(n—1)—1 =
nlog(n — 1) —log(n — 1) — 1 > nlog(n/2) — log(n — 1) — 1 = nllog(n) — log(2)] —
log(n —1) — 1] = nlog(n) — nlog(2) — log(n — 1) — 1 = nlog(n) —n —log(n — 1) — 1.
Since n and log(n — 1) and 1 are negligible with respect to nlog(n), it follows that
Q((n — 1)log(n — 1)) — 1 > Q(nlog(n)). So again we get cn > Q(nlog(n)) which is
a contradiction as before. So even for a fraction of 1/n of the inputs the algorithm
cannot find the solution in linear time.

(c) Finally, suppose the fraction is 1/2"™. We substitute n!/2™ instead of n!/2 in the
first case, and again we get cn+ 1 > log(n!/2") = log(n!) —log(2") = log(n!) —n =
(U(nlog(n)) — n. again, since n and 1 are negligible relative to nlog(n), we get
cn > (nlog(n)) which is a contradiction as before.

S0 no comparison based algorithm can give the right answer in linear time even for 1/2"
fraction of the input!

. Use a min-heap to give an O(nlog(k))—time algorithm to merge k sorted lists into one
sorted list, where n is the total number of elements in all the input lists.

Solution:

We use a min heap (), implemented by an array A of length &k, which will maintain a
heap data structure of the £ minimal elements in the k sorted lists. Each element z in
- the heap @ has a key (key(z)) and an index (index(x)) denoting which list it belonged
to.

Initialization: We first insert the first k£ elements to (), one by one (not in a heap
structure) by deleting from each list its first (minimal) element and storing it in the
array, together with an index of which list it is commg from. We then apply Build-Heap
which takes O(k). |

We allocate an array B of length n in which the merged lists will appear, i.e. which will
contain the sorted elements. Now we perform the following loop: For 7 = 1 to n, We
extract the minimal element in @ (by Extract — min(Q)). If its key was key and its
index was i, we put A(j) = key and insert to Q (by Heap — Insert(Q)) the first element
from the list L;, deleting it from L,;. We also update the index field of the new element
in ) to be L

correctness:

B is sorted at the end, because it contains all the elements, and each element that enters
B is the minimum of the remaining elements in the £ lists, which only increases each
step. '




Complexity: The initialization takes O(k) steps. The loop contains n iteration, each
iteration involves a constant number of Heap operations, each takes O(log(k)) time, and
one List — delete operation which takes O(1) time.

The overall complexity is thus O(k) for initialization plus n(O(log(k)) + O(1)) which all
together gives O(nlog(k)).

. Recall: the max heap property is that every node is larger or equal to all its descendents,
(sons, grandsons, etc.) Argue the correctness of Heap-Increase-Key using the following

loop invariant:

At the start of each iteration of the while loop, the array A(1,...HeapSize[A|) satisfies
the max heap property, except that there may be one violation, which occurs at
the heap that is rooted by Parent(i): that Ali] is larger than A[parentli]|.

Solution As it is written, the loop invariant is not correct exactly because even at the
beginning, Ali|] might be larger than all its ancestors, not only from its parent. We
slightly change the loop invariant to make it precise:

At the start of each iteration of the while loop, the array A(1,...HeapSize[A]) satisfies
the max heap property, except that there may be a violation when comparing ¢ to
any of its ancestors y.

When we call Heap — Increase — Key(A,1, key) the heap satisfies the heap property.
After that we substitute A[:] = key. We now enter the loop of Heap — Increase — key.

Let us now prove that Heap — Increase — Key results in a heap, using the loop invariant.

Initialization: At the start of the first iteration, 2 is the only node which violates the
heap property since we entered Heap — Increase — Key with A satistying the heap
property at all nodes, and we changed after that only node 7, to increase its key. The

comparisons between ¢ and his descendents are not violated since we only increased
the key at 7. So the only violations are between ¢ and his ancestors.

Invariance: Suppose that the loop invariant holds up to the J’th entrance to the loop.
So the only violation when we enter the loop is between ¢ and his ancestors. Let us
denote Parent[i] by z and i by y.

Inside the loop, we exchange A[Parent[i]] with Ali]. So we exchange the values at
r and y. Where can we now have violations of the heap property? We just need
to look at comparisons between nodes we have changed and their descendents and
ancestors, because the other nodes remain as before so the heap property doesn’t
change there. So we need to check the comparisons of with his descendents and
ancestors, and y with his descendents and ancestors. |

To prove the loop invariance, we need to prove that the only possible violation is
between x and his ancestors, since z (which is parent[i]) becomes the new ¢ when
we go into the next iteration of the loop. So we need to check that after the
exchange the other three types of comparisons are OK: that there is no violation
between x and his descendents, between y and his descendents, and between y and
his ancestors. . o
We start with 2 and his descendents. One of the descendents is y, and we know
there is no problem there because of the exchange we made. As for the other
descendents, they remained as they were when we entered the loop; By the loop
invariant, there was no violation between them and the node y=parent[i] when we
entered the loop, so the value at those descendents is at most A[parentli]]. Since
what sits now in node x, which is A[z], is even bigger than what was there before,

Alparent[i|], no new violation appeared. o



We now consider y and his descendents. After the exchange y contains A[parent|i]],
which might be problematic since it is smaller than what was there before, Al
BUT, we know from the loop invariant, that when we entered the loop the loop-
Invarlant was correct at all places except 7. In particular, it was correct at the
node x compared to its descendents (except for the descendent y.) This means that
Alparent|i]] is greater or equal than what sits in all the descendents of z except
y. But this means that what sits in y, A[parentli]|, is greater or equal than what
sits in all the descendents of y, since they are also descendents of x. so there is no
violation between y and his descendents.

It remains to show that there is no violation between y and his ancestors. Again, y
now contains A[parentli]].

For one ancestor, x, we know there is no problem because after the exchange it
contains A|i] which is bigger than A[parent[i]] (that’s why we entered the loop).

Now, for the other ancestors of y, which are above x. Let us call one such node z,
and we want to show that A[z] > A[parent[i]] (for all such 2z's).

This follows from the loop invariant, as we now prove. we know that when we
entered the loop, there WASN'T any problem between z, (which is an ancestor of
x), and z, because the only problem was at y. But when we entered the loop,

Alparent|i]] was the key at x, and A[z] was the key of z, so if there was no problem
we have that A[z] > Alparent]i]|.

Termination: At termination, there are two cases. Either ¢ = 1, at which case it has no
ancestors so by the loop invariant the heap property is satisfied everywhere.

The second case is that we found a place where Afi] < Alparent[i]] and so we do
not enter the loop. By the loop invariant, at this point the heap property holds for
all nodes except maybe in the comparisons between i and its ancestors. We want to
check that these comparisons are also OK. For it first ancestor, Parent[i] we know
the comparison is OK since that’s why we didn’t enter the loop.

All its other ancestors are also ancestors of parentli|, so by the loop invariant we
know that their keys are greater than A[parent[i]], and so they are also greater than

Ali].

hence at termination no heap property is violated.



Data Structures, Spring 2003
PROBLEM SET 3

Given on Friday April 11, 2003. Due: 19:00 Sunday May 4, 2003.
Justity every step rigorously. Please staple multiple pages and do not submit in plastic bags.

1. Suppose that another data structure contains a pointer to a node y in a binary search
tree, and suppose that y’s predecessor z is deleted from the tree by the procedure TREE-
DELETE. What problem can arise?” How can TREE-DELETE be rewritten to solve the

problem?

2. The black height of a Red-Black tree is the black height of its root. What is the largest
possible number of internal nodes (without the leaf NIL(T)) in a red black tree with
black-height h? What is the smallest possible number?

3. Show the red-Black trees that result when starting with an empty RB tree and inserting
the following keys in the following order: 50, 46, 40, 17, 25, 7, And then deleting them
in the following order: 7, 17, 25, 40, 46, 50.

4. Consider the following binary search tree 7. The root is a node x colored black, with
key 30. z has one son, y, colored red, with key 25. y has one son z, colored black, with
key 11. Draw the tree. Now, suppose we call Red — Black — DELETE(T, z).

(a) What will happen? Can you explain the problem?

(b) Can you write a general simple property of red black trees which tells us that the
above problem never happens when we call Red — Black — DELETE?

(c) Prove that this property holds in any RB tree.

5. For the following problem you will need a simple fact about trees: A tree with n nodes
has exactly n—1 edges. (It is simple to prove this by induction, but you are not requested
to do this.) Let T be a binary search tree with n nodes. An in-order tree walk can be
implemented by finding the minimum element of the tree using TREE-MINIMUM and
then making n — 1 calls to TREE-SUCCESSOR.

(a) How many times (at most) do we pass through each edge in the tree, in the above

in-order walk? Prove. (By “passing an edge”’, we mean this: inside algorithm

- TREE-SUCCESSOR, we move from one node to its parent or its child. We say we
pass the edge connecting the two nodes.)

(b) Prove that the above in-order walk takes O(n) steps.
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Data Structures, Spring 2003
PROBLEM SET 4

Given on Monday May 12, 2003. Due: 19:00 Monday May 26, 2003.

Justity every step rigorously. Please staple multiple pages and do not submit in plastic bags.

1.

4.

(a) What is the optimal code for the following set of frequencies: a: 1. b:1, c:2, d:3,

5, I: 8, g: 13, h:21 (the frequencies are relative: if you want to look at them as
percentage, divide by their sum.)

(b) Suppose you want to send a message of k characters, using only the characters
a,b,c.d.ef,g.h. How many bits will you need to send on average using the standard
fixed length code? How many bits will you need to send on average using the code
you generated?

(¢) Can you generalize your answer to the first item to find the optimal code when the
frequencies are the first n frequencies of the Fibonacci numbers?

You are stuck in a square maze of n by n squares, and from each square you can go
to some or all directions: north, east, west or south. You really want to get out of the
maze, but you don’t know how! Luckily, you have many coins in your pocket. How will
you use the coins to get out of the maze? Describe your algorithm exactly. Do not use
recursion in your description; Give exact instructions that you could follow if you are
iside a Maze...

Your car has a very small gas tank: It can only drive 30 km and then you need to fill
1t again. The problem: You live in- a country were there are no gas stations on the
roads; just inside the cities... You are given a list of n cities, including your city, and the
distances from any city to any other city. Give an efficient algorithm to find a list of all
the cities you can reach from your home city. Give an upper bound on the complexity
of your algorithm (the smaller the better.)

(a) Prove, assuming the lemma we proved in class about Dijkstra, that the nodes are
put in the set S by the Dijkstra algorithm according to their distance from the
source s. In other words, if the (correct) distance of a node v from the source s is
shorter than the correct distance of the node w from s, then v will be put in S first.
Do not use induction in your proof. (Hint: Assume in contradiction that the node
w which was last inserted to S is farther from s than some other node y out of S.)

(b) Assume that the lengths of the edges in a graph G are positive integers, denoted by
c(v,w) for an edge (v,w). We build an unweighted graph H from G, by replacing
each edge (v,w) in G by a series of c¢(v,w) edges of length 1. This gives us H. (we
also add c(v,w)-1 nodes per edge- we call these new nodes “dummy” nodes., and
the old nodes are “real”.) Show that BFS on H discovers the real nodes exactly
in the same order that Dijkstra dl%covers them (i.e. puts them in S) when we run
Dijkstra on the graph G. (You may assume for &mphmty that any two different

nodes have different distances from s. You mav assume anything that is proven in
the handouts about BFS.) |
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Data Structures, Spring 2003
PROBLEM SET 5

Given on Monday May 26, 2003. Due: 19:00 Monday June 9, 2003.
Justify every step rigorously. Please staple multiple pages and do not submit in plastic bags.

You need to solve only 4 out of the 5 questions- each question is worth 25 points. (you can
get up to 125 points.)

1. Let p be a large prime, larger than the universe of keys U. Let m be a much smaller
integer. Let the function A, for a € Z, be defined by

he(k) = ((k + a)mod p)mod m).
Consider the family of hash functions
H};’m = {hq4la € Z,}

Prove that this is not a universal family of Hash functions by finding a bad input, for
which the properties of universal families of hash functions do not hold. Show what
happens with your input.

Solution: Consider the input containing the two keys k1 = 0, ks = m. The properties
of universal hash functions say that the probability for the two keys to be hashed to the
same slot are less than or equal to 1/m?. We will show that for all a € {0,.....p —m — 1}
the two keys are hashed to the same slot, so the probability for collision is very high for
these two keys.

First, for a € {0,.....,p —m — 1}
ho(k1) = he(0) = (a mod p) mod m = a mod m
where we used a mod p = a. For the second key,
ho(k2) = he(m) = ((@ +m) mod p) mod m = (a +m) mod m = a mod m

where we used the fact that for a € {0,.....p — m — 1}, (a + m) is smaller than p so
(@ +m) mod p=a+m.

- Hence for all a € {0,....,p — m — 1} the two keys are hashed to the same slot. Hence
the probability for a collision is at least (p —m)/p which is close to 1 because m is much
smaller than p, and is much larger than the desired 1/m?, which is less than a quarter.
(we can assume m > 1, since other wise there is not point in hashing.)

2. Consider Perfect Hashing,r where instead of picking m=n, choose m=cn. You get to pick .
the constant c.

(a) Can you find a constant ¢ for which the expected performaﬁce_ in terms of worst
case access to the data will be faster?

Solution: No, the access time to the da,ta_ in perfect hashing does not depend on
c. We use double hashing, and the time to access any input takes exactly the time
to calculate the first hash function and then the second.

For those of you who tried to find ¢ such that we never need to use double hashing,
so the worst case behavior is just one calculation of the hash function. First, this is
not what was meant in the question- the question referred to perfect hashing as we
learnt it, with double hashing. But even if you try to do it, this is impossible. The
average number of collisions is n/c, and however large ¢ you pick, once you fix it,
the average number of collisions goes to infinity as n becomes larger... You might
try to find a specific hash function from the family for which there are no collisions
at all, but we cannot guarantee that such a function exists in our family.



(b) Can you find c such that the average space is smaller (in terms of constants) than
the average for m=n which we saw in class?

(c) If you can find the optimal ¢, (c*) you get a factor of 1/(c*) to your grade for this
question.

Solution:

We will solve b), c) together. As was explained in class, we assume that each secondary
hash table has three extra slots, in which its parameters are written (a;,b;,m;). To
avolid complications, we ignored the fact that some slots might be empty, and said that
we assign three such spaces regardless of whether the slot is empty or not. The total
space that the perfect hashing occupies is thus m for the main table, plus 3m for these
parameters, plus )", n?, the total length of the secondary hash tables. This gives:

dm + Z nf
J=1

In class the first linear term was ignored, because the point was to prove that the average
of the total space is linear, and the first term is linear in any case, so we needed to consider
only the second term. But in this question constants are important, and we cannot ignore
the first term. We carry it along and proceed as we did in class:

—aent Y ony 42y M
gl =

m . s = ]
4cn+n+22nj(n32 )

j=1

The last sum is as we saw in class, exactly the number of collisions, and its average,
exactly as we saw in class, is n(n — 1)/2m, which is the number of pairs in n keys times
the probability for collision for each pair, which is 1/m. Substituting m = cn we get for
this average (n — 1)/2¢, and ignoring the negligible 1 we get that the average over the
sum is n/2c. Thus the over all average space is

den +n+n/e
to optimize over ¢ we take the derivative with respect to ¢, which gives
4n —n/c?

and requiring that it is equal to 0 we get cx = 1/2.

The total average space is then 3n instead of -4n= -n 4+ n = 6n, so we saved a factor of 2.

. Give an O(|V'| + |E|) algorithm that takes as input a directed acyclic (no cycles) graph
and two vertices s,t and returns the number of paths from s to t in G. Your algorithm
needs only to count the paths, not list them. Hin't_; Use topological Sort as part of your
algorithm. |

Solution We note that after a topological sort, if the nodes are put in a linked list, then
there are only edges from a node to nodes further down the list.

The idea of the algorithm is that the number of ‘ways to reach a node v from s, is the
sum over all nodes w with edges (w,v), of the number of ways to reach w from s.

If we first use Topological sort, then we can go through the nodes in topological order,
and each time we reach a node we add the number of ways to reach it, to the number
of ways to reach any of its neighbors down the sorted-list. This way when we reach




the neighbor, we have already counted all the ways to reach it because we already went
through all nodes from which we can reach that node (because all edges go forward in a
topological sort.)

What we do is we first sort the graph by topological sort, and initialize an array called
Paths of length n with 0’s, and we set Paths[s]=1. This array will eventually contain the
number of paths from s to each node. We then go through the nodes from the beginning
of the list, and each time we are at a node v, we look at all edges going out of that node,
and for an edge (v,u) we add the value of Paths[v] to the value of Paths[u].

As always, we denote n = |V|.

Here is the Pseudo code for this algorithm:

(a) Algorithm-count-paths(G = (V, E), s, t)

(b) Topological-sort(G) // The sorted graph sits now in a linked list L.

(c) //L|7] is the ith node in the list

(d) For i =1 to n do Paths[i] = 0 // Initialize an array of length n with 0.
)

|

(e) Paths[s|]=1 // Initialize Paths[s] so that we can start counting paths from s.
(f) Fori=1ton

(g)  For all edges (L[i],v) out of L[i] do

(h) Number|[v] = Number[v] + Number[L]i]].

(i) Output Paths|t]

The complexity of this algorithm is O(n + |E|):- The topological sort takes O(n + |E|)
(as we saw in the tirgul, just like DFS). The initialization takes O(n). The FOR loop
of lines (f)-(h) takes O(n + |E|) [since the loop has n steps, which contribute O(n), and
inside it we go through each edge exactly once and operate a constant amount of work
in line (h) for it, which gives O(|E|) when counting the total work over all edges.]

. Recall the doctor running the surgery room using the system of difference constraints.
Suppose that in addition to difference constraints, the doctor also has equality con-
straints of the form z; = x; +¢; ;, saying, for example, that this patient must get into the
surgery room exactly some number of hours after he entered it before. Give an algorithm
that the doctor can use to solve this mixed system of equality and inequality constraints.

- What is'its running time?

Solution

An equality z; = z; 4 ¢; ; can be replaced by two inequalities:
zj < Ti Fci

we need to write the inequalities such that they fit the format of the difference constraint
system of inequalities, which uses only less than or equal, and not greater or equal:

Tj— Ty < by

so the first inequality becomes |
Tj— T S Cig,

and the second: |

Ti —Tj S —Cij
Hence for each equality we need to add the above two inequalities to the system of
difference constraints, and solve as before, using Bellman Ford.

If |E| is the number of difference constraints and equalities, and n is the number of
variables, we get using Bellman Ford a running time of O(n|E|).



5. Suppose the government decides to completely change the telephone system in Israel,
and use a new kind of telephone wires. Suppose that you are chosen to design the net of
phone wires, which needs to connect n given locations in Israel. It suffices that there is
some path connecting any two locations to allow all people to talk with each other. You
know the distances between any two locations, and your main goal is to save the total
length of wires in the net, since implementing every meter of wire costs a lot of money.
When you start programming the algorithm, your boss tells you casually that some wise
guy had already gone and started to implement the wire between two locations in your

list, Rosh-Pina and Haifa.

(a) How would you decide, given your data, if it is OK that they have started to
implement the wire, or whether you could have designed a cheaper net in which
that wire would not appear?

(b) Suppose that you decide that it was a smart move. How would you modify Prim’s
algorithm to design the cheapest net with that Rosh-Pina-Haifa wire included?

Solution

We answer both items together. The mission of finding a net of wires of minimal
total length is actually exactly to find a MST. The question is whether there exists
a MST of the graph in which the edge (Rosh-Pina,Haifa) exists. To do this, first run
an MST algorithm, and then find the weight of a MST by running over the tree and
adding the weights of the edges in the tree one by one. Suppose the weight turns
out to be w. We then want to see if there exists a ST (spanning tree) with weight
w which contains a specific edge. There are two ways to do it: a simple easier way
which requires an observation about MST’s, and a more straight forward way.

Solution I: (more elegant)

We observe

claim if e is a unique edge of minimal weight in a graph, than any MST must
contain it. |

To prove this, suppose there is an MST T that does not contain it. As usual, add
e to T, it creates a cycle; if you remove any edge from the cycle you still have a
connected graph (same proofs as in the class for all these cases), it has n-1 edges,
so it is a spanning tree, but it is less heavy than T, in contradiction to the fact that

T is MST. This proves the claim.

What we can do is give the graph as input to Prim, but change the weight of the
edge Haifa-Rosh-Pina to 0, so that we are sure it is included in the MST of the
new graph (which is the same graph but with that weight changed.) Then we apply .
prim’s algorithm as usual, and find an MST T.-T will contain the edge e by the
claim. -

We claim that T is a spanning tree of minimum weight among all those that contain
e (we use the original weights to calculate the weight.) This is true because if there
was a lighter tree which contained e, T’, than if we reduce the weight of e from both
trees, we would have gotten a contradiction to the fact that Prim finds a MST for
the graph G with the modified weight (i.e. ‘weight of e equals 0.)

Now, we want to calculate the weight of the tree we found; We just run through
the tree we found, and calculate the sum of its weights (using the original weights.)
We finally compare the result to w to see it it is bigger or not.

If not, then there exists an MST which contains e! Otherwise there isn’t...

During the process we found a MST containing Haifa-RoshPina, if one exists: It is
the output of Prim’s algorithm when we gave it the weight of e =0.

e

Solution I1



If you missed the point of reducing the weight of w to 0, you could also simply
modify Prim’s algorithm by Brute-Force to make sure the edge Haifa-Rosh-Pina 1s
included.

Essentially, we want to start Prim’s algorithm not as we defined it, but with an
initial edge. We modify Prim’s algorithm to an algorithm that finds an MS'T which
contains one edge, (r,s), if such an MST exists. We do this by dealing with one of
the cities separately, say s, not inserting it to the queue. We start the algorithm
treating r like it was treated in the original algorithm, but s (Haifa, for example)
will not enter the queue, and we will update all the dist of its neighbors separately
before we start the main loop. We will point from s to r in the tree we form.

i. Algorithm-Modified-Prim (G,s,r)
i, Q=V-s

iii. For each v € Q dist[v] = oo

iv. dist[r]=0

v. Parent|[r|=Nil.

vi. Parent|s|=r

vii. For all neighbors v of s except r,
viii. Parent|v]=

X, dist[v]=w(s,V]

x. while Q not empty

Xi. u=ExtractMin(Q)

Xil. for each v adjacent to u,

xiii.  if (v € Q and w(u,v) < dist[v])
Xiv. parent|v]=u

XV. dist[v]=w(u,v)

We claim that if the weights are all of positive weights, then if there is an MS'T
that contains (s,r), then the above algorithm finds such an MST, and if there i1sn’t,
the algorithm finds a tree with larger weight.

This is true because after the first step of extracting r, the state is that Dist contains
the distance of the rest of the nodes from the small tree we already have (the edge
(r,s)). So if there is an MST that contains this edge, the algorithm will find it and

“this follows from the correctness of the MST property, that if the subtree is part of
an MST, adding the minimal edge connecting U and V-U will still be a subtree of
an MST.

We also note that the algorithm outputs a spanning tree, since each node except
r is connected at the end to some parert, so we have n-1 edges and there are no
cycles because each time we connect a new node. |

Once we found this MST, we can run through it and find its weight, and compare
1t to w.

If the weight is the same, the answer is that it was OK to start working on the wire
Haifa-Rosh-Pina.

During this process we already found the MST which uses this wire.



