
Algorithms - Exercise 1

Due Wednesday 1/11 24:00

1. Rank the following functions by their order of growth. Prove your
answers.

log2(n), n log n, nlog log n, n1/3, n!, log(n!), 4n,

(
2n
n

)

2. Define the iterative logarithm function as log∗(n) = min{i : log(i)(n) ≤
1}, where

log(i)(n) =


n i = 0
log(log(i−1)(n)) if i > 0 and log(i−1)(n) > 0
undefined otherwise

Which function grows asymptotically faster, log(log∗(n)) or log∗(log n)?

3. Consider the algorithm 1
3 -merge-sort that is exactly the same as merge-

sort with the only difference that the recursive step sorts first the first
1/3 of the array then the last 2/3 and then merges the two.

Write a pseudo-code for 1
3 -merge-sort and analyze its running time (as

a function of the length of the array).

4. X = [x1, x2, . . . xn] is an array of different integers. Give an algorithm
that finds the second bigest number, using

(a) at most 2n comparisons.

(b) at most n + O(log n) comparisons. (Hint: put the integers on
leaves of a binary tree.)

5. X = [x1, x2, . . . xn] is a read-only array of integers, where 1 ≤ xi ≤
n− 1. Give an algorithm that returns a value appearing at least twice
in the array, subject to the following limitations:
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(a) Time O(n)

(b) Space O(1)

(c) Time O(n log n) and Space O(1)

(d) (reshut) Time O(n) and Space O(1)
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Solution to Ex 1 in Algorithms

1. • log2 n = o(n1/3)

• n1/3 = o(n log n)

• n log n = Θ(log(n!)). from Stirling’s formula.

• n log n = o(nlog log n)

• nlog log n = o(

(
2n
n

)
) because 2n ≤

(
2n
n

)

•
(

2n
n

)
= o(4n) from Stirling’s formula

• 4n = o(n!)

2. Define the iterative logarithm function as log∗(n) = min{i : log(i)(n) ≤ 1}, where

log(i)(n) =


n i = 0
log(log(i−1)(n)) if i > 0 and log(i−1)(n) > 0
undefined otherwise

Which function grows asymptotically faster, log(log∗(n)) or log∗(log n)?

From the definition, log∗(log n) = log∗(n)− 1, thus log(log∗(n)) = o(log∗(log n))

3. Analysing the running time of 1
3 -merge-sort: assume that merging of two arrays of combined

length n takes less than cn time. Denote by T (n) the running time of the 1
3 -merge-sort, we

obtain the following equation:

T (n) ≤ T (
1
3
n) + T (

2
3
n) + cn

Take any K > 3c. We shall prove by induction that T (n) ≤ Kn log n. Assume correctness
for numbers smaller than n. we have

T (n) ≤ T (
1
3
n) + T (

2
3
n) + cn ≤ 1

3
Kn log(

1
3
n) +

2
3
Kn log(

2
3
n) + cn =

=
1
3
Kn(log n− log 3)+

2
3
Kn(log n+log 2− log 3)+cn ≤ Kn log n− 1

3
Kn log 3+cn ≤ Kn log n

4. X = [x1, x2, . . . xn] is an array of different integers. Give an algorithm that finds the second
biggest number, using
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(a) at most 2n comparisons.

(b) at most n + O(log n) comparisons. (Hint: put the integers on leaves of a binary tree.)

Solution for (b). As hinted, put the integers on the leaves of a binary tree with depth log n.
We now go on all the inner verices of the tree bottom up, placing at a vertix v the maximum
between the numbers on the sons of v. Obviously, the biggest number M will end up on top.
But what about the second biggest one m? It had to ’loose’ to the biggest one. But the
biggest one, M was only compared while computing the values on the vertices on the path
from the leaf containg M to the root of the tree. The length of this path is log n, thus we
only need to find the maximum between log n numbers. Summing up, computing the values
of all the vertices takes n comparisons, and another log n to find the maximum between all
the numbers M was compared to.

5. X = [x1, x2, . . . xn] is a read-only array of integers, where 1 ≤ xi ≤ n− 1. Give an algorithm
that returns a value appearing at least twice in the array, subject to the following limitations:

(a) Time O(n)

(b) Space O(1)

(c) Time O(n log n) and Space O(1)

(d) (reshut) Time O(n) and Space O(1)

We shall present the solution to (d), thus solving (a-d). For better intuition, think of the
directed graph G = (V,E) with V = [1..n] and (i, j) ∈ E iff xi = j. Our goal then is to
find a vertex which had two edges entering it. Start from the vertex n (which doesn’t have
edges entering it) and walk on the graph. The path has to intersect itself and continue in a
loop. We are bound to be inside the loop after n steps. Call that vertex v. We can measure
the length of the loop by starting at v and counting the number of steps k it takes to get
to v again. Now start at vertex n and walk k steps to a vertex w. We then walk at the
same times both from w and from n, till the paths meet. As the distance is between them
is the length of the loop, they are bound to meet at the vertex which has two edges entering
it.

Input= [x1, . . . , xn]
t← n {Getting into the loop}
for i = 1 to n do

t← at

end for
p← t {Computing loop’s length k}
k ← 1
while ap 6= t do

p← ap

k ← k + 1
end while
t← n {Going k steps from n}
for i = 1 to k do

t← at

end for
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p← n {Stepping together}
while p 6= t do

t← at

p← ap

end while
Output p
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Algorithms – Exercise 2 
Due Wednesday 8/11/06 24:00 

 
 

 
 

Definition: A matroid is an ordered pair M=(S,I) satisfying the following 
conditions: 

a. S is a finite nonempty set. 
b. I is a nonempty family of subsets of S, such that if B∈I and A⊆B then 

A∈I. (I is hereditary) 
c. If A∈I, B∈I, andA<B, then there is some element x∈B-A such that 

A∪{x}∈I. (M satisfies the exchange property)  
 

1. Prove that the following are matroids: 
a. (S,I) such that S is some finite set and I is the set of all subsets of S of 

size at most k, where k ≤S. 
b. (S,I) such that S is a finite set and let S1, S2, …,Sk a partition1 of S into 

nonempty disjoint subsets, and I = {A: A∩Si≤ 1 for all i=1,…,k}. 
c. (Reshut) (S,I) such that S is a finite set and                                               

I = {X1∪X2 : X1∈I1 & X2∈I2}, where M1=(S,I1), M2=(S,I2) are 
matroids.  

 
 

2. Consider the following problem:                  
Given c1,…,cn and r1,…,rn , sequences of positive integers, output a matrix A 
whose entries are either 0 or 1, such that for every 1 ≤ i ≤ n, r i is the sum of the 
i-th row and ci is the sum of the i-th column (if such A exists).  
Prove that the following greedy algorithm works: 
Go through the rows from 1 to n. For each row i, assign 1 to the ri columns 
such that cj-aj is maximal, where aj equals the number of 1s in the j-th column 
after the assignment of the first i-1 rows. Assign 0 to the other entries. 

 
 

3.  
a. Build the Huffman code for the following input. Write down all the 

intermediate stages. 
The messages: X = (a, b, c, d, e, f) 
The frequencies (correspondingly): F = (20, 75, 15, 32, 40, 7) 

b. Build the Huffman code for the following input: (Prove your answer) 
The messages: X = (a1, …, an) 
The frequencies (correspondingly): F = (1, 2, …, 12n− ) 

 
 
 

                                                 

1 S1,..,Sn is a partition of S, if 
1

k

i
i

S S
=

=∪ such and S1,..,Sn are disjoint. 



 
4. Given a binary tree T, and given a frequency function f which assigns positive 

weights to the leaves of T, we expand f recursively to give values to all the 

nodes of T by setting ∑
∈

=
)(

)()(
wSonsx

xfwf  for all w which are not leaves. 

Give an algorithm for the following problem: 
Given a list of messages X and a frequency function f, return a tree 
representing a prefix code for X (the members of X are assigned messages with 
their corresponding frequencies) such that the sum of the frequencies over all2 
the nodes of T is minimal. 
 
 

5.   
a. Let C be a prefix code with codewords of lengths l1,..,ln. Show that the 

following inequality holds:  

1

2 1i
n

l

i

−

=

≤∑  

b. (Reshut) Show that if the inequality above holds for some positive 
integers l1,..,ln , then there exists a prefix code C whose codewords' 
lengths are l1,..,ln. 

 
 

6. Give a dynamic programming algorithm that solves the following problem: 
Given strings u,v , find a string w of minimal length which contains u and v as 
subsequences (i.e. the characters of u,v in w need not be consecutive). 

 
 

                                                 
2
 i.e. the leaves and the non-leaves 



Algorithms – Exercise 2 (Solution) 
 

 

1.  

a. It follows directly from the definition- 

i. I is hereditary since if A k≤ , then if B A⊆ then B k≤ . 

ii. If ,A B I∈  such that A B<  then B k≤ and therefore, if we 

take an element x A∈  and add it to B then we get A' such that 

' 1A A B= + ≤ . And therefore 'A I∈ . 

b. By the definition- 

i. I is hereditary since if A∈ I = {A: A∩Si≤ 1 for all i=1,…,k}, 

and B A⊆ then for all i=1,..,k 1i iB S A S∩ ≤ ∩ ≤  and 

therefore B I∈ . 

ii. I satisfies the exchange property, since if ,A B I∈  are 

composed of one element of some of the Si let's say that A is 

composed of elements of 1 ( ),.., size Aj jS S 1 ( ),.., size AS S  and B of 

elements of 1 ( ),.., size Bi iS S  then if A B<  then there must be a set 

among 1 ( ),.., size Bi iS S  which is not among 1 ( ),.., size Aj jS S , and 

therefore we can extend A by taking an element from that set. 

c. We start with a lemma: 

Lemma: Given any matroid ( ', ')M S= I , and any function (not 

necessarily injective) : 'f S S→ ,then ( , ( '))M S f= I  is a matroid, 

where ( ') { ( ) : '}I I= ∈f f A A . 

Proof: Since f is a function, it is clear that if ( )I∈I f , then any subset 

of I is also in f(I'). Now suppose , ( ')I∈I J f , with |I| <|J|. We need to 

show that for some \ , { } 'I∈ ∈∪f J I I j . By assumption (and 

definition) I and J must be images of two independent sets I', J' of M'. 

Since f is not injective, there may be many ways to choose such sets. 

We take I', J' such that I = f(I') and 'I I= , ( ')J f J=  and 

'J J= and finally, such that ' 'I J∩  is maximal.  

Since ' 'I J<  and M' 
 
is, by assumption, a matroid, then there exists 

an element '\ 't J I∈
 
such that ' { } 'I∈∪I t . If  ( ) ( ') ( ')f t f I f J∈ ∩  

then there exists some 'u I∈  such that f(t)= f(u). Since 'J J= ,  f 

maps J' 
 
injectively onto J, and thus '\ 'u I J∈ . But then the set 

'' ' { } \{ }I I t u= ∪  is in I (because '' ' { } I= ∈∪I I t ), and then f(I'')=I, 

''I I=  and |I'' ∩J'| > |I'
 
∩J'| contradicting maximality. 

Therefore ( ) ( ') \ ( ')f t f J f I∈ , and f( ' { }I t∪ ) = ( ') { ( )} I∈∪f I f t as 

required.  

Now we prove that (S,I) where I = {X1∪X2 : X1∈I1 & X2∈I2} is a 

matroid. 

First let us assume that S1 and S2 are two disjoint copies of S. Let I1 and 

I2 be the corresponding independent sets. Then, it can be easily verified 



that 1 2,( )I∪S S  where I is defined as above (only the base sets are now 

disjoint) is a matroid. We now build a function 1 2:f S S S→∪  by 

mapping each element to its original copy. (S,f(I)) is exactly the 

structure which we want to prove a matroid. By the above lemma, we 

conclude it is a matroid. As required. 
 

 

2. Lemma: for every 0 <= k <= n, there exists a matrix A which obeys the 

constraints, who shares its first k rows with the matrix the algorithm outputs. 

 

Proof:  by induction on k. It is trivial for k=0. 

Induction step: Let A' be a matrix which obeys the constraints and 

whose k-1 first rows are shared with the outputted matrix (such exists 

by the induction hypothesis). There are m=ri 1's to distribute in the i-th 

row. Let's denote the algorithm's output matrix as B. 

Now the i-th row of A' is not necessarily identical to that of B. Let us 

assume that the entries in the i-th row of A' which has to be switched 

from 1 to 0 in order to receive B's i-th row are (1) ( ),..., li ir r , and that  

(1) ( ),..., lj jr r  has to be switched from 0 to 1. Now we would like to switch 

the values of (1) ( ),..., li ir r  and (1) ( ),..., lj jr r  one by one. In order to remain 

with a matrix that obeys the constraints, we must find another row j > i 

in which the entries in the corresponding columns would be the other 

way around. For instance, in order to swap ri(1) and rj(1) we must find a 

row j > i in which ri(1) is 0 and rj(1) is 1. Such a row j indeed exists. 

Since the sum of the remaining entries in ri(1) is (1) (1)i ir rc a− , and the 

same with rj(1). Due to the algorithm's choice of where to put the 1's, 

we know that (1) (1) (1) (1)i i j jr r r rc a c a− ≤ − . Therefore, there is a row j > i in 

which ri(1) is 0 and rj(1) is 1, otherwise the previous inequality would 

not have held.  

We now swap the entries of (1) ( ),..., li ir r and (1) ( ),..., li ir r  one by one, each 

time finding a row j > i in which we swap entries of 1 and 0 in the 

other direction. We receive a matrix A whose i first rows are identical 

to that of B. as required. 
This lemma, for k=n claims that the algorithm returns a matrix which obeys 

the constraints. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3. a. 

 
The frequencies: F = (20, 75, 15, 32, 40, 7) 

The ellipses are leaves corresponding to the frequencies written in 

them. The other leaves were added during the running of the algorithm, 

and are enumerated according to the order in which they were created. 

 

b. The frequencies (correspondingly): F = (1, 2, …, 12n− ). For n=5 the 

tree looks like that: 

 
In general, the Huffman code will generate a tree that branches to one 

side. This can be seen since at any given stage, the remaining 

frequencies in the queue are: (
1

0

2 2 1
k

i k

i

−

=

= −∑ , 2
k
,..,2

n-1
), and therefore, 

the two lowest frequencies are 2
k
-1,2

k
. Now by induction, it follows 

that the tree is always right (or left, depending on the way we build the 

Huffman code) branching. 

 

 

 

4. The expression we would like to minimize is the following: 

( )
x V

f x
∈
∑ . From the recursive formula, we may conclude that each leaf x 

appears in this sum once for himself, then once for his father, and so on until 

the root. So, each leaf appears exactly its depth times in the sum. We rewrite 

5  

4  

2  

1  

2  1  

4  

8  

16  

5  

4  

2  

1  

15  

3  

7  

20  32  40  

75  



the sum as: ( ) ( )
x Leaves

d x f x
∈
∑ . But this is exactly the term which the Huffman 

code minimizes, and therefore the Huffman code algorithm solves the given 

problem. 

 

 

 

5.  

a. Given the prefix code, we will build a tree T which corresponds to that 

prefix code, the leaves correspond to the code words, and their length 

is the leaves' depth. Let us extend T to a tree T' by adding the all the 

possible descendents of the leaves in T up to the maximal level of T 

(which we shall denote by lmax). This tree has at most max2l  leaves. 

(since all leaves are of depth lmax) Each leaf in T which was in the level 

il  has max2l li− descendents which are leaves in T', and the descendents 

of different leaves of T are disjoint. We conclude the equality: 

max max

1

2 2i

n
l l l

i

−

=

≤∑  

Dividing by max2l  yields the required inequality. 

b. We'll prove it by induction on n. For n=1, it is trivial. The induction 

step: let's assume that the l1,..,ln  are sorted by size, so ln is the largest. 

Now l1,..,ln-1 satisfy the induction hypothesis, so we'll get a tree T for 

the first n-1 lengths. We'll extend this tree in a similar manner to that in 

the last question, so all leaves in T will have their descendents in the ln 

level. Now since n nl l

1

2 2i

n
l

i

−

=

≤∑ , we get n n

1
l l

1

2 2i

n
l

i

−
−

=

<∑ . Therefore, T is not 

a full binary tree (otherwise we will get equality in the above 

inequality). We conclude that T has a node with only one son, we may 

attach the last leaf to it, which will be of depth ≤ ln (we'll denote it T'). 

A tree such that the depth of this leaf is exactly ln can be easily 

constructed from T'. 

 

 

6.   

This algorithm is rather similar to the "Longest Common Subsequence" 

algorithm discussed in class. 

For a string u we'll denote un the prefix of first n letters in u. The symbol ^ will 

denote the concat operator. 

The following lemma justifies the dynamic programming approach: 

Lemma: Let SCS(u,v) denote a shortest common superstring of u,v. Let us   

assume that u is of length n and v of length m. Then: 

1. if u and v share a last letter c, then SCS(u,v) = SCS(un-1,vm-1)^c. 

2. if u and v don't share a last letter, but u terminates with c1 while v 

terminates with c2. Then SCS(u,v) = SCS(un-1,vm)^c1 or SCS(u,v) = 

SCS(un,vm-1)^c2. 

Proof: First let us assume that u and v share a last letter c. Then their SCS has 

to end with c otherwise we can remove the final letter, and still be left with a 

superstring of u,v. Now, we have to prove that after removing c from the SCS, 

we are left with a SCS of un-1 and vm-1. Let us assume the contrary, then there 



exists a string w which is shorter then what we are left with. Then we can 

construct a string w^c which is a superstring of u,v and is shorter then 

SCS(u,v), which contradicts the definition of SCS. As required. 

Now, we'll assume that u,v do not terminate with the same letter. First, let us 

remark that SCS(u,v) has to end with either c1 or c2, otherwise we may remove 

the last letter of SCS(u,v) and be left with a shorter superstring of u,v. 

Now, if SCS(u,v) ends with c1, then after removing it we are still left with a 

string that contains v as a subsequence (since v did not end with c1). It is also a 

superstring of un-1 , since if SCS(u,v) had u as a subsequence, then the after 

removing one letter, the first n-1 elements of that subsequence are still a part 

of SCS(u,v) without the final letter. Next, we will notice that SCS(u,v) without 

the final c1 is also the shortest superstring of un-1,vm since otherwise (as in the 

first article of this lemma), we can replace it with a shorter superstring, which 

after concatenating it with a terminal c1 will yield a superstring of u,v which is 

shorter then SCS(u,v). 

 

 Now let us denote by OPT(i,j) – the length of SCS(ui,vj). 

The lemma gives us this recursion formula:  





1+OPT(i -1, j -1)     if  u i'th letter equals v j'th
OPT(i, j)=

1+ min(OPT(i -1, j),OPT(i, j -1))         else             
 

This can also give us a dynamic programming algorithm to find SCS(u,v): 

SCS-Length(u,v) 

1. m = length(v) 

2. n = length(u) 

3. for i=1..m 

a. c[i,0]=0 

4. for j=1..n 

a. c[0,j]=0 

5. for i=1..m, j=1..n 

a. if u(i)=v(j)  

i. c[i,j]=c[i-1,j-1]+1 

ii. b[i,j]= 

b. Else if c[i-1,j]≤ c[i,j-1] 

c[i,j]=1+c[i-1,j] 

b[i,j]= 

   else 

    c[i,j]=1+c[i,j-1] 

    b[i,j]= 

6. return c,b 

 

This code creates two charts c,b. c holds OPT(i,j) for every i,j. b holds the way 

to construct SCS(ui,vj) from shorter strings. In order to find SCS(u,v) one has 

to run Print-SCS(b,u,v,n,m): 

Print-SCS(b,u,v,i,j) 

1. if (i=0 or j=0) return; 

2. if b[i,j]=      

a. Print-SCS(b,u,v,i-1,j-1) 

b. Print u(i) 

3. if b[i,j] =        



a. Print-SCS(b,u,v,i-1,j) 

b. Print u(i) 

4. if b[i,j]= 

a. Print-SCS(b,u,v,i,j-1) 

b. Print v(j) 

 

The lemma above implies the correctness of the algorithm. 

The running time of complexity of this algorithm is O(mn) for SCS-Length and 

O(m+n) for Print-SCS. 

 



Algorithms - Exercise 3

Due Wednesday 15/11 24:00

1. Definition: Given a graph G = (V,E) a set S of vertices is called independent if every v, w ∈ S
are not connected in E.

Give an algorithm for the following problem: Given a tree T with weight function w : V → R+,
find an independent set in T with maximal weight.

2. 0-1 Knapsack. We have a sack of size N and a set of k objects, each with size xi and value
wi. For every subset of objects its size is the total size of its elements and its value is the
total value of its element. Give an algorithm finding a subset of maximal value that can be
put in the sack.

3. (reshut) G = (V,E) is a complete graph with |V | = n. A path (vi1 , . . . , vin+1) in G is called
a bitonic cycle if:

• i1 = in+1 = 1

• The path goes through all the vertices

• There exists 1 < j < n + 1 such that ik < im for k < m ≤ j and ik > im for j ≤ k < m.

Let w : E → R+ be a length function on the edges. Give an algorithm that finds the shortest
bitonic path.

4. Give an algorithm finding the maximal flow in a flow network with multiple sources and sinks.

5. You are running the Mossad. You have n agents in Asia, each sitting in a different city. You
want them to be in America, again, each one in a different city. There are only flights from
Asia to Europe and from Europe to America. You have the full flight chart. To keep the
secrecy level high, you don’t want different agents to pass through the same city. Give an
algorithm which gives a solution or says that none exists.

Note: in questions 4,5 assume that there exist an efficient algorithm finding the maximal flow in a
flow network with one source and one sink.

1



Solution to Exercise 3 in Algorithms

Remark: in questions (1-3) we give an algorithm that finds the value of the optimal solution and
not the solution itself. As in all dynamic programming questions, it can be handled by remembering
the choices done while filling the table, and building the optimal solution based on them.

1. Definition: Given a graph G = (V,E) a set S of vertices is called independent if for every
v, w ∈ S we have (v, w) /∈ E.

Give an algorithm for the following problem: Given a tree T with weight function w : V → R+,
find an independent set in T with maximal weight.

Pick any vertex v0 in T and think of the tree as a rooted tree with root v0. Now every vertex
v has depth d(v); it is connected to its father which has depth d(v)− 1 and sons with depth
d(v) + 1. For any vertex v ∈ T denote by Tv the tree containing v and all its descendants.
We now define a set of subproblems, which we will use for the dynamic programming.

A(v) = max{w(S)|S ⊂ Tv, v ∈ S} B(v) = max{w(S)|S ⊂ Tv, v /∈ S} C(v) = max(A(v), B(v))

That is, A(v) is the maximal weight of an independent subset of Tv that contains v, and B(v)
is the maximal among those that don’t contain v. Obviously, the solution to the big problem
is C(v0). To get the recursion formulas, note the following: if S is an independent set in Tv

and v ∈ S then u /∈ S for every son u of v. On the other hand, any solution to the subtree
Tu when u is a grandchild of v can be in S. Thus

A(v) = w(v) +
∑

u grandson of v

C(u)

If v /∈ S then S can contain any solution for the subtrees Tu with u a child of v. We obtain:

B(v) =
∑

u child of v

C(u)

We compute the values A(v), B(v), C(v) bottom-up, starting from the leaves of the tree.
Running-time: every node participates only in two sums, as it has only one father and only
one grandfather. Thus the running time is O(|T |).

2. 0-1 Knapsack. We have a sack of size N and a set of k objects, each with size xi and value
wi. For every subset of objects its size is the total size of its elements and its value is the
total value of its element. Give an algorithm finding a subset of maximal value that can be
put in the sack.

Define the subproblems:

A(j, m) = max{
∑
i∈S

wi | S ⊂ [1..j],
∑
i∈S

xi ≤ m}

1



The solution to the big problem is clearly A(k, N). To get the recursion formula, note the
following: if subset S gives A(j, m), it either contains the j-th object or not. If it does not,
then A(j,m) = A(j − 1,m). If it does, the A(j, m) = wj + A(j − 1,m− xj). We obtain

A(j,m) = max{A(j − 1,m), wj + A(j − 1,m− xj)}

We compute the values of A(j, m) bottom up. Running time: every A(j,m) takes O(1) time,
thus the total is O(kN).

3. G = (V,E) is a complete graph with |V | = n. A path (vi1 , . . . , vin+1) in G is called a bitonic
cycle if:

• i1 = in+1 = 1

• The path goes through all the vertices

• There exists 1 < j < n + 1 such that ik < im for k < m ≤ j and ik > im for j ≤ k < m.

Let w : E → R+ be a length function on the edges. Give an algorithm that finds the shortest
bitonic cycle.

A bit of intuitive notation: order the vertices on the plane such that if i < j then vi is to the
left of vj . What we look for is a path that starts at the left end, goes to the right (possibly
skipping nodes on the way) up to vn and then goes left till it gets to v1. Note that every
bitonic path contains the edge (vn−1, vn). We can thus rephrase the problem as follows: find
a path vi1 , . . . , vin such that i1 = n, in = n − 1, the path goes through all the vertices and
there exists 1 < j ≤ n such that ik > im for k < m ≤ j and ik < im for j ≤ k < m (in other
words, it goes left from vn till v1 and then right to vn−1.

For i > j we shall call a path p from vi to vj normal if it starts at vi, ends at vj , goes through
all vertices vk for k ≤ i and first goes left and then right, as above. Our subproblems are:

A(i, j) = min{w(p) | p is a normal path from vi to vj}

with A(n, n − 1) being the solution we seek. Now to the recursion formulas: note that if
i > j +1 then a normal path p has to go through vi−1 on the way left, because that is its only
chance to do so. In this case, A(i, j) = w(i, i − 1) + A(i − 1, j). We now consider the case
i = j + 1. If we look at the path p backwards, it starts at vj , goes left, then right and finally
gets to vj+1. Call vk the last vertex before vj+1. Now this path from vj to vk is a normal
path. We obtain

A(j + 1, j) = max
1≤k<j

A(j, k) + w(k, j + 1)

Armed with the recursion formulas, we can compute the values of A(i, j) bottom up. Running
time: there are O(n2) values to compute. All but O(n) of them (those with i=j+1) require
O(1) time each and those with i = j + 1 require O(n) each. In total, the running time is
O(n2).

4. Give an algorithm finding the maximal flow in a flow network with multiple sources and sinks.

2



We are given a flow network on a graph G = (V,E) and capacities c. Let S be the set of
sources and T the set of sinks. We shall define a new flow network on graph G′ = (V ′, E′),
defined as follows:

V ′ = V ∪ {s0} ∪ {t0} E′ = E ∪ ({s0} × S) ∪ (T × {t0})

the capacities on the old edges remain the same, and all the new edges have infinite capacities.

Let f be a flow on G. We shall define a flow f ′ on f . For every edge e ∈ E, f ′(e) = f(e). If
e = (s0, s) for s a source in G, we set f ′(e) =

∑
v∈V f(s, v). If e = (t, t0) for t a sink in G, we

set f(e) =
∑

v∈V f(v, t). Clearly, f ′ is a flow in G′, as now for every vertex except s0 and t0
the incoming flow is equal to the outgoing flow. We also have |f ′| = |f |.
Let f ′ be a flow on G′. The restriction of f ′ to G gives a flow f on G which observes all the
capacities. We again have |f | = |f ′|. We obtain an 1 : 1 and onto correspondence between
flows on G and flows on G′ which preserves the value of the flow. Thus if we find the maximal
flow on G′, we will get a maximal flow on G.

5. You are running the Mossad. You have n agents in Asia, each sitting in a different city. You
want them to be in America, again, each one in a different city. There are only flights from
Asia to Europe and from Europe to America. You have the full flight chart. To keep the
secrecy level high, you don’t want different agents to pass through the same city. Give an
algorithm which gives a solution or says that none exists.

Imagine that every city in Europe has two airports, one for flights to/from Asia and another
one to/from America. Make a graph G = (V,E) with a vertex for each airport, plus a source
node s and a sink node t. s is connected to all n cities in Asia and t is connected to all n cities
in America. Two airports are connected in the graph if there is a flight connecting them or
they are in the same city. We give every edge in the graph capacity 1.

Claim: a solution to the original problem exists iff the value of maximal flow in the network
is n. Proof: Let f be an integer flow of value n in the network (we can assume it is an integer
flow, as all the capacities are integers). Look at the set of all edges between two airports with
flow= 1. This set consists of n paths of length 3 which are disjoint in their vertices: two paths
in it cannot have a joint vertex v is Asia, as the capacity of (s, v) is 1, same goes for America.
Two paths cannot have a joint airport v in Europe, as there is only one edge connecting v to
the other side of town and its capacity is 1.

On the other hand, if there exists a solution to the problem, it gives a flow of value n: put
f(e) = 1 for every edge used, and put f(e) = 1 for every edge coming from the source or
going to the sink.

3



Algorithms – Exercise 4 
Due Wednesday 22/11/06 24:00 

 

 

1.  Consider the following flow network: 

 
The capacity of each edge appears as a label next to the edge, and the numbers 

in the boxes give the amount of flow sent on each edge. (Edges without boxed 

numbers – specifically, the four edges of capacity 3 – have no flow being sent 

on them.) 

Is the given flow a maximum flow? If not, run the Ford-Fulkerson algorithm 

and give the residual networks in all intermediate steps, until a maximum flow 

is achieved. 

 

 

2.  

Given a bipartite graph G=(V,E). 

a) Is (E,I) where I is the set of matchings in G a matroid ? 

b) Prove that the following pair (S,I) is a matroid: 

S = L;  

I is the set of all subsets A of L such that there exists a matching in which 

all members of A participate. (A vertex v is said to participate in a 

matching M if there exists an edge e M∈ which is adjacent to v) 

c) Assume there is a weight function on L, :v L R
+

→ . Give an efficient 

algorithm that finds the matching in G which maximizes the sum of v over 

all vertices in L which participate in the matching. 

(Hint: To prove the exchange property notice that if you take the union of 

two matchings, the result is a graph made up of connected components that 

are either a cycle or a path. In each connected component the edges 

alternate between the two matchings.) 

 

 

3. Let G=(V,E) be a network with source s, sink t, and integer capacities. 

Suppose we are given a maximal flow in G. 

a. Suppose the capacity of a single edge ( , )u v E∈ is increased by 1. Give 

an O(E)-time algorithm to update the maximum flow. 
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b. Suppose the capacity of a single edge ( , )u v E∈ is decreased by 1. Give 

an O(E)-time algorithm to update the maximum flow. 

 

 

4. A perfect matching in a graph is a matching in which every vertex is matched. 

Let G=( L R∪ ,E) be an undirected bipartite graph with L R= . For every 

A L R⊆ ∪  we define N(A) to be the set of neighbors of vertices from A, i.e. 

( ) { : .( , ) }N A u L R v A u v E= ∈ ∪ ∃ ∈ ∈ . 

Prove Hall's matching theorem using flow networks: 

If for every , ( )A L A N A⊆ ≤  then there exists a perfect matching in G. 

 

 

5. (reshut) 

Suppose we allow a flow network to have negative (as well as positive) edge 

capacities. In such a network, a feasible flow need not exist. 

Let G=(V,E) be a flow network with negative edge capacities, and let s and t 

be the source and sink of G. Construct the ordinary flow network G'=(V',E') 

with capacity function c', source s', and sink t', where 

' { ', '}V V s t= ∪  

' {( , ) : ( , ) } {( ', ) : } {( , ') : } {( , ), ( , )}E E u v u v E s v v V u t u V s t t s= ∪ ∈ ∪ ∈ ∪ ∈ ∪  

We assign capacities to edges as follows: 

For each edge ( , )u v E∈ , we set  

'( , ) '( , ) ( ( , ) ( , )) / 2c u v c v u c u v c v u= = +  

For each vertex u V∈ , we set 

'( ', ) max(0,( ( , ) ( , )) / 2)c s u c V u c u V= −  

'( , ') max(0, ( ( , ) ( , )) / 2)c u t c u V c V u= −  

We also set '( , ) '( , )c s t c t s= = ∞ . 

a. Prove that if feasible flow exists in G, then all capacities in G' are 

nonnegative and a maximum flow exists in G' such that all edges into 

the sink t' are saturated. 

b. Prove the converse of part (b). Your proof should be constructive, that 

is, given a flow in G' that saturates all the edges into t', your proof 

should show how to obtain a feasible flow in G. 

c. Describe an algorithm that finds a maximum feasible flow in G. 



Algorithms – Exercise 4 (Solution) 
 

 

 

1. A sketch of the solution: 

We find augmenting paths, and augment the flow along them. We can see it is 

not a maximum flow since the path (s,1,t) is a path in the residual network, 

with capacity 5. Augmenting along this path will give us a residual network 

which does not contain any edges leaving s, and therefore no paths between s 

and t. This means that after augmenting along (s,1,t) the flow achieved is a 

maximal flow. 

 

2.    

a. No, consider the following bipartite graph: 

 
Then the dotted edge is a matching (of size 1), the filled edges are also 

a matching (of size 2). But there is no filled edge you may add to the 

dotted edge, so they will together form a matching. Therefore the 

exchange property is not satisfied. 

b. We prove that M=(S,I) is a matroid: 

 

I. S is final and isn’t empty as LS = and L is finite and non empty by 

the definition of the graph. 

 

II. Hereditary: Let IB∈ , i.e. there’s a perfect matching between B 

and a subset B’ of R, and let A be a subset of B: BA ⊆ . To prove that 

IA∈ we need to show that there is a subset A’ R⊆  and a perfect 

matching between A and A’: We choose the vertices in B’ that are 

matched to the vertices in A in the perfect matching between B and B'.  

Clearly there is a perfect matching between A and A'. 

 

III. Exchange property: 

Let IA∈ , IB∈  and BA < . We’re looking for a vertex ABu −∈  

such that IuA ∈∪ }{ : 

Let M be a perfect matching between B and a subset of R, and let M' be 

a perfect matching between A and a subset of R. Let us look at the 

graph 'MM ∪ , and consider its connected components: 

 

1. If a vertex u is part of a circle, its degree is 2 (an edge 

exiting and an edge entering), which means it belongs to 

both A & B (in a single perfect matching the degree of 

every vertex is at most 1). 

2. In a simple path of even length (starting and ending on 

the same side), the number of vertices in A is equal to 

the number of vertices in B: all the vertices that are not 



endpoints in the path must belong to both A and B (their 

degree is 2). As for the endpoints, one must belong to B 

and the other to A, otherwise it would contradict the 

perfect matching of A or B. 

3. Finally we get to simple paths of odd length. They are 

the only candidates for connected components that 

contains more vertices from B than from A. So there 

must be such a component that has a vertex u at one of 

the path’s ends such that ABu −∈ .  

Also, the vertex on the other end cannot belong to A', 

i.e. the set in R that is matched to A (otherwise the edge 

entering it would be the second one exiting from one 

vertex in A, contradicting the perfect matching). 

We add vertex u to A and change the matching of the 

vertices in this component to use only the edges in this 

component that exited from B. We know such edges 

exist in the graph and we also know they give perfect 

matching for the vertices in this component. In other 

components we keep the matching of A as it was. So we 

get a perfect matching for all vertices in }{uA∪ . 

 

c. After we proved that (S,I) defined in b is a matroid we may use the 

generic matroid algorithm: 

i. ←∅A  

ii. Sort the vertices in L according to their weights v (descending 

order). 

iii. For each ∈x S taken in monotonically decreasing order by the 

weight v(x) 

1. if ∪A {x}  has a perfect matching in R then ← ∪A A {x}  

 

This algorithm runs in polynomial time: first we sort in O(L*log(L)), 

then the loop has L iterations. Each iteration tests if there is a perfect 

matching for a subset of L (done in O(EV) with Edmonds-Karp, see 

Cormen p. 668). The unions can be done in O(V). And therefore we get 

O(EV
2
) running time. 

 

3. 

1. Suppose we have a maximum flow f. So the residual network Gf does not 

contain any paths between s and t. We will increase the capacity of a 

single edge (u,v) by 1, and receive a new residual network Gf. We now 

search for an augmenting path, if we didn't find any, it is clear that f is still 

a maximum flow. If we did, we will augment f along this path. We claim 

that the new flow f' is a maximum flow:                                                           

First, since the capacities are integers, the maximum flow must be an 

integer and therefore ≥f' f +1 . According to Max flow-Min cut 

theorem, the minimal cut in G before the capacity increment had 

capacity f . Since the capacity of only one edge in G was increased by 1 

with the capacity increment, we find that the minimal cut in G now has 



capacity ≤ f +1 . Therefore by introducing a flow with that capacity, we 

prove it is the maximal flow (again using the Min cut-Max flow theorem. 

The running time of the algorithm equals the sum of:                                                             

a.  the time to find a path between s and t in Gf, this can be done in 

O(E).     

b. the time to update f along the augmenting path. Done in O(V). 

The running time is then O(V+E)=O(E). 

 

2. Now suppose we decrease the capacity of a single edge (u,v) by 1. Let f be 

a maximum flow before the decrement. If f did not saturate the edge (u,v), 

then f is also a maximal flow after the decrement, and therefore we may 

output f. Else, let's consider a flow f' which is produced from f by reducing 

1 from the flow of f along a path from s to t through which f sends positive 

flow. Formally: we define G' to be a graph with vertices identical to G and 

edges along all the edges of G in which f sends a positive flow. We now 

find a path P between s and t in G' which includes the edge (u,v) (how can 

this be done ?). We define a new flow in G, f' which is identical to f for 

every edge not in P, and equals one less then f in every edge of P (and one 

more in the other direction of course). It can be verified that f is a flow in 

G and that 1f ' f= − . Now since the maximal flow in G was f  before 

the decrement, then it is either f  or f -1 after the decrement (since min-

cut =max-flow and the capacity of every cut was reduced by at most 1 

following the decrement). Therefore, it we now try to find an augmenting 

path in Gf', then either there are none and then f' maximal, or there is an 

augmenting path, we will augment f' along this path and achieve a flow of 

at least 1f ' f+ = , which is maximal (since it was even maximal in G 

before the decrement). 

The running time is then: 

1. O(E) finding a path between s and t in the graph G'. 

2. O(V) calculating f' from f, and calculating Gf'. 

3. O(E) finding an augmenting path in Gf'. 

All together O(E+V)=O(E) running time. 

Note: notice that there must be a path between s and t that passes through 

(u,v) in G'. f saturates (u,v), by conservation of flow, there is a vertex w 

such that (w,u) is an edge in G'. Again by conservation of flow, there is a 

vertex w2 such that f(w2,w)>0. Again by conservation of flow we find w3 

such that f(w3,{w,w2})>0, and so we continue iteratively to find a series 

w,w2,w3,…,wn such that f(wn,{w,w2,..,wn})>0. The series can only end when 

we have reached wn=s. And so there is a path from s to u similarly we can 

find a path from v to t, and concatenate them. 
 

4. We convert the given graph into flow network, and the existence of the perfect matching 

is equivalent to existence of the flow of size n (number of vertices in L). According to 

MAX-FLOW MIN-CUT theorem it is enough to prove that if for each A ⊆  L, |A| ≤  

|N(A)| then there exists cut of size n. Look at the following cut: the source s, n − k 

vertices in L, and n − m vertices in R. In this cut there are k edges from s to L and n − m 

edges from R to t. Let’s see how many edges are from L to R. It's given that the n − k 

vertices in L have at least n − k neighbors in R. Assume that all n − m vertices in R which 

are inside the cut are among them, but then there are at least (n − k) − (n − m) vertices 



outside the cut so this is the amount of edges from L to R crossing the cut. The total 

number of edges in the cut is at least k + (n −m) + (n − k) − (n −m) = n. 

 

 

5. 

a. Let f be a feasible flow in G. First we prove that all capacities in G' are non-

negative. It is enough to prove that for every u,v, c'(u,v) 0≥ , namely that 

c(u,v)+c(v,u) 0≥ . This can be shown through: 

≥c(u,v)+c(v,u) f(u,v)+ f(v,u)= 0 . 

Now, we will construct from f, a flow f' which saturates all the edges entering  

t'. We define for every ( u,v ) E∈ , f'(u,v)=f(u,v)+
2

c( v,u ) c( u,v )−
, for every 

0 0
2 2

c(V ,u ) c( u,V ) c( u,V ) c(V ,u )
u V , f '( s',u ) max( , ), f '( u,t ') max( , )

− −
∈ = =

and finally f '( s,t ) f '( t ,s ) f= − = − . This defines a flow in G', the skew 

symmetry and capacity constraints are immediate. The conservation of flow is 

shown as follows: 

if u V∈ , then 

2

0 0
2 2 2

0

v V '

c( s,V ) c(V ,s )
f '( s,v ) f ( s,V ) f ( s,s') f ( s,t ') f ( s,t )

c( s,V ) c(V ,s ) c( s,V ) c(V ,s ) c( s,V ) c(V ,s )
f max( , ) max( , ) f

∈

−
= + + + + =

− − −
+ − + −

=

∑

if u=s, then 

2

0 0 0 0
2 2 2

v V '

c( u,V ) c(V ,u )
f '( u,v ) f ( u,V ) f ( u,s') f ( u,t ')

c( u,V ) c(V ,u ) c( u,V ) c(V ,u ) c( u,V ) c(V ,u )
max( , ) max( , )

∈

−
= + + + =

− − −
+ − + =

∑
 

Similarly, if u=t. 

b. Now we assume that we have a flow f' in G which saturates the edges 

entering t'. First we observe, that f' is a maximal flow and that (V\{t'},{t'}) is 

a minimal cut in G' (according to Min cut-Max flow theorem). We will show 

that ({s'},V\{s'}) is also a minimal cut. Indeed, we define 

0A { u V ' : c(V ,u ) c( u,V ) }= ∈ − > , then 

2

2

u V ' u A

u V\A u V '

c(V ,u ) c( u,V )
c'( s',V \ s') c'( s',u )

c(V , A ) c( A,V ) c(V \ A,V ) c(V ,V \ A )

c( u,V ) c(V ,u )
c'( u,t ')

∈ ∈

∈ ∈

−
= = =

− = − =

−
=

∑ ∑

∑ ∑

 

and therefore, we conclude that f' saturates the cut ({s'},V\{s'}), as well. Now 

we simply define f to be f(u,v)=f'(u,v)- 
2

c( v,u ) c( u,v )−
. A similar calculation 

to that done in the last question proves that f is indeed a feasible flow in G. 

We conclude that maximal flows in G' match feasible flows in G, and the 

value of the flow is linked through the equation f f '( s,t ) f '( t ,s )= − = .  



c. From the previous two articles we find that we can restate the problem of 

finding a maximal feasible flow in G, by finding the maximal flow in G' 

which maximizes the value f'(t,s). We can now approach the problem as 

follows: first run the Edmonds-Karp algorithm on G' to obtain a maximal 

flow f', if f' does not saturate all the edges entering t', declare "No feasible 

flows in G". Now produce from f' a flow f through the transformation given in 

article b. Now turn back to the flow network G, and start running the 

Edmonds-Karp algorithm on G with the only alteration that at initialization 

the flow is not identically 0, but rather f. It can be proven that the capacities of 

the residual network are positive, that the flows produced in this method are 

feasible flows in G, and that flow produced is a maximal flow in G. The proof 

is identical to the proof in the case where there are only non-negative 

capacities and can simply be replicated. 

Running Time: The algorithm consists of two runs of the Edmonds-Karp 

algorithm on G and G', as well as building the graph G' in and constructing  f 

from f'. This can all be done in O(V
2
E). 

 



Algorithms - Exercise 5

Due Wednesday 29/11 24:00

1. The edge connectivity of an undirected graph is the minimum number k of edges that must be
removed to disconnect the graph. Give an algorithm that determines the edge connectivity.
(Hint: run the maximal-flow algorithm on O(|V |) flow networks)

2. A path cover of a directed graph G = (V,E) is a set P of vertex-disjoint paths such that
every vertex in V is included in exactly one path in P . Paths can be of any length, including
0. A minimal path cover of G is a path cover containing the fewest possible paths.

(a) Give an efficient algorithm to find a minimal path cover of a directed acyclic graph
G = (V,E). (Hint: look at the graph G′ = (V ′, E′), assuming |V | = n

V ′ = {x0, x1, . . . , xn} ∪ {yo, y1, . . . , yn}

E′ = {(x0, xi) : i ∈ V } ∪ {(yi, y0) : i ∈ V } ∪ {(xi, yj) : (i, j) ∈ E}

(b) Does your algorithm work for directed graphs that contain cycles?

3. (a) Show how to multiply two linear polynomials ax + b and cx + d using only three multi-
plications.

(b) Give two algorithms for multiplying two polynomials with degree ≤ n that run in time
Θ(nlog 3). The first algorithm should divide the input polynomial coefficients into a high
half and a low half, and the second algorithm should divide them according to whether
their index is odd or even.

(c) Show that two n-bit integers can be multiplied in O(nlog 3) steps, where each step oper-
ates on at most a constant number of 1-bit values.

4. Explain what is wrong with the ’obvious’ approach to polynomial division using a point-value
representation, i.e. dividing the corresponding y values.

5. (a) Find the polynomial p(z) with degree< 4 such that

p(1) = 4− i p(i) = −1 + 2i p(−1) = −6− i p(−i) = −1

(b) Use the FFT algorithm to compute the values of p(z) = iz3 − z2 + 2z − i in the 8-th
roots of unity.

1



Solution to Exercise 5 in Algorithms

1. Notation: the edge connectivity of G is C(G). Algorithm: Give capacity 1 to every edge in
the graph G. Pick any vertex in V and call it s. Now for every t ∈ V \ {v} find the maximal
flow h(t) of the network with t as a sink. Claim: C(G) = mint h(t).

Proof: Let A be a set of edges such that (V,E \ A) is disconnected and |A| = C(G). Pick t
to be any vertex which does not belong to the connected component of s in (V,E \ A). The
maximal flow h(t) is the size of a minimal cut between s and t, thus h(t) ≤ C(G). On the
other hand, for any t 6= v, we have h(t) ≥ C(G), as C(G) is the minimal number of edges to
be taken away in order to disconnect the graph. We obtain C(G) = mint6=v h(t).

2. (a) We build the graph G′ as hinted and use it to find the maximal matching M between
V and itself. M is a collection of edges (xi, yj) for some i-s and j-s. Let A be the set of
edges A = {(yi, xi) |1 ≤ i ≤ n}. Let H be the graph with vertices x1 . . . xn, y1 . . . yn and
edges M ∪ A. Every vertex in H has at most 2 edges: one incoming and one outgoing.
There are no cycles in G, so there are no cycles in H. Thus the edges in H form a set
of disjoint paths, each of the form: yi1 , xi1 , yi2 , xi2 , . . . , yik , xik . For each of these paths,
we take the path (i1, i2, . . . , ik) as a path in our path cover of V .
Proof of correctness: First, the set of paths we obtain is a path cover, as the paths are
disjoint in vertices and every vertex sits on some path. To show optimality, we show
that every path cover of G comes from a matching. Let {pα} be a path cover of G of size
k. Define M = {(xi, yj) | (i, j) is an edge in some path pα}. M is a matching, because
the paths in the path cover are disjoint. Now the size of the matching, |M |, is the total
number of edges in the path cover and we have k = n − |M | (the number of connected
components in a forest with n vertices and M edges is n−k). It follows that finding the
maximal matching will give the minimal path cover.

(b) No

3. (a) Compute a′ = ac, b′ = bd′ and e = (a + b)(c + d). Then (ax + b)(cx + d) = acx2 + (ad +
bc)x + bd = a′x2 + (e− a′ − b′)x + b′

(b) Let f and g be two polynomials of degree < n. Write f = fl +fbx
n/2 and g = gl +gbx

n/2

where fl, fb, gl, gb are polynomials of degree < n/2. Exactly as in (a) we get fg = flgl +
((fl +fb)(gl +gb)−flgl−fbgb)xn/2 +fbgbx

n, thus we only need to make 3 multiplications
of polynomials of degree< n/2. If T (n) is the running time, we obtain the recursion
formula

T (n) = 3T (n/2) + O(n)

Solving it gives T (n) = O(nlog2 3).

1



(c) Let y =
∑n−1

i=0 ai2i and z =
∑n−1

i=0 bi2i be two n-bit integers. We define polynomials f
and g as follows: f =

∑n−1
i=0 aix

i and g =
∑n−1

i=0 bix
i. Compute h = fg. Now y = f(2)

and z = g(2), so xy = h(2).
Input: y =

∑n−1
i=0 ai2i , z =

∑n−1
i=0 bi2i

f =
∑n−1

i=0 aix
i, g =

∑n−1
i=0 bix

i

Compute h = fg, with h =
∑2n−2

i=0 cix
i

We now want to compute h(2)
for i = 0 to 2n− 1 do

di = (ri−1 + ci) mod 2 the new digit
ri = (ri−1 + ci − di)/2 the carrier

end for
Output yz =

∑
i di2i

Running time: The polynomial multiplication takes O(nlog2 3). Note that all the coeffi-
cients ci are bounded by n, as ci =

∑i
j=0 ajbi−j . Thus ri is also bounded by n. Every

stage of the loop takes O(log n) time, so the total is O(nlog2 3 + n log n) = O(nlog2 3)

4. Let f and g be two polynomials. The obvious approach to division would be to compute
the values of f and g in roots of unity using FFT and then find a polynomial h such that
h(ωk) = f(ωk)

g(ωk)
. The problem is that even if f = gp for some polynomial p, it may happen

that g(ωk) = 0 and p(ωk) 6= 0. In this case, f(ωk) = 0 as well and we cannot compute the
value of p in ωk directly from f and g.

5. (a) z3 − iz2 + 2z − 1

(b) p(z) = iz3 − z2 + 2z − i. Divide into the odd and the even part: pe = −z − i and
po = iz + 2. Each one of these has to be evaluated at the 4th roots of unity. Divide
again: pee = −i,peo = −1, poe = 2 and poo = i. We evaluate each of these in 2nd roots
of unity, 1 and −1.

pee(1) = pee(−1) = −i peo(1) = peo(−1) = −1 poe(1) = poe(−1) = 2 poo(1) = poo(−1) = i

Next step

pe(1) = pee(12) + 1peo(12) = −i− 1 pe(i) = pee(i2) + ipeo(i2) = −2i

pe(−1) = pee((−1)2)− 1peo((−1)2) = 1− i pe(−i) = pee((−i)2)− ipeo((−i)2) = 0

For the odd one

po(1) = poe(12) + 1poo(12) = 2 + i po(i) = poe(i2) + ipoo(i2) = 1

po(−1) = poe((−1)2)− 1poo((−1)2) = 2− i po(−i) = poe((−i)2)− ipoo((−i)2) = 3

Finally

p(1) = pe(12)+1po(12) = 1 p(
1√
2

+
1√
2
i) = pe(i)+(

1√
2

+
1√
2
i)po(i) =

1√
2

+(
1√
2
−2)i

on so forth. Conclusion: some things are better left for computers.

2



Algorithms – Exercise 6 
Due Wednesday 20/12/06 24:00 

 

 

1. Compute the prefix function π  defined in the string matching algorithm for 

the given pattern: [a,b,a,c,a,b,c,a,a,b] 

 

2. Explain how to determine the occurrences of pattern P in the text T by 

examining theπ  function for the string P^T (the concatenation of P and T). 

 

3.  

a. What is the maximum number of times that any character in the text 

will be looked at by the stringSearchKMP function?  

b. Is it possible that adjacent characters in the text will be considered this 

many times? 

 

4.   

a. Find all the integers a such that: 

i. a mod 3 = 6 

ii. a mod 11 = 20 

iii. a mod 20 = 5 

b. Show that if n1,n2 are not relatively prime, then there exists a1,a2 such 

that the following set of equation does not have a solution x: 

i. x mod n1 = a1 

ii. x mod n2 = a2 

 

5. You are given a number N. Your task is divided into two stages: 

a. Phase I: you are given arbitrarily large space and time to run any 

calculations you wish on N. You may store the results of your 

calculations. 

b. Phase II: the memory you used in phase I now turns into read-only 

memory. You are now given only O(log(log(N))) bits of disk space, 

and a read-only array A composed of {0,1} of length O(N). 

Give an algorithm that runs according to these two stages, and outputs 

"true" if the number of 1's in A is N, and "false" otherwise. 

Hints: 



1. Use phase I to store ai=(N mod pi), when pi is the i-th prime number,                             

for i=1,..,k such that k is large enough to guarantee that the ai determine N 

uniquely. (Show that k=O(log(N)) is sufficient) 

2. You may assume that pi=O( ⋅i log(i) ), show how to determine if the 

number of 1's in A is N using only a space of O(log(pk)) bits. 



Algorithms – Exercise 6 (Solution) 
  

  

1. We can use a divide and conquer technique for the problem using the 

following observation: 
2

1 1 2 1

n /n n

i i i )

i i i n /

( x x ) ( x x ) ( x x
  

= = = +  

− = − −∏ ∏ ∏  

Pseudo-Code: 
 

Multiply(i,j) 

//Multiplies the i-th until j-th terms of the polynomial (j ≥  i) 

If (i == j) return (x-xi); 

Return 

Multiply_by_FFT(Multiply(i, 2i ( j i ) /+ −   ),Multiply( 2i ( j i ) /+ −  +1,j)); 

 

Where Multiply_by_FFT is simply a sub-routine that multiplies two 

polynomials of degree bounded by n using FFT in time O(nlog(n)).  

Running time: we'll denote the running time function T(n), then 

T(n)=2T(n/2)+O(nlog(n)) 

And we conclude that T(n)=O(nlog
2
(n)). (e.g. by simple induction) 

 

2. Pseudo-Code: 

 

FFT4(a) 

//a is a vector of size 4
n
 for some n∈�  

n length( a )← ; 

If (n==1) return a; 

wn
2 i / n

e
π← ;      

w 1← ; 

a0 0 4n( a ,...,a −← );    a1 0 3n( a ,...,a −← );  a2 0 2n( a ,...,a −← );   a3 0 1n( a ,...,a −← ); 

y0←FFT4(a0);      y1←FFT4(a1);   y2←FFT4(a2);   y3←FFT4(a3); 

for k←0 to n/4-1 

 A[k] ←  y0[k]+ w y1[k]+ w
2
 y2[k]+ w

3
 y3[k]; 

 A[n/4+k] ←  y0[k]+i w y1[k]- w
2
 y2[k]-i w

3
 y3[k]; 

 A[n/2+k] ←  y0[k]- w y1[k]+ w
2
 y2[k]- w

3
 y3[k]; 

A[3n/4+k] ←  y0[k]-i w y1[k]- w
2
 y2[k]+i w

3
 y3[k]; 

return A; 

 

The algorithm is justified through the following equation: 
1 4 1 4 1 4 1 4 1

4 4 1 2 4 2 3 4 3
4 4 1 4 2 4 3

0 0 0 0 0

4 4 2 4 3 4
0 1 2 3

n n / n / n / n /
i i i i i

i i i i i

i i i i i

P( x ) a x a x x a x x a x x a x

P ( x ) xP ( x ) x P ( x ) x P ( x )

− − − − −
+ + +

+ + +

= = = = =

= ⋅ = ⋅ + ⋅ + ⋅ + ⋅ =

+ + +

∑ ∑ ∑ ∑ ∑

Now since computing the FFT of a is equivalent to evaluating the polynomial 

defined by a in the n=length(a) roots of unity of order n, and since we know 

that raising those n roots of unity to the fourth power, yields 4 equal and 

consecutive sets of the n/4 roots of unity of order n/4, we see that we can 

compute the FFT of a through computing the FFT of the four polynomials 



P0,P1, P3,P3 . The for loop calculates in each iteration the k-th,k+n/4-th,k+n/2-

th, k+3n/4-th entry of the FFT. An exact proof for the correctness of this 

algorithm follows the same lines as that of the regular FFT (see Cormen ch. 

30). 

The running time of the algorithm is given by the following recursion formula: 

T(n)=4T(n/4)+O(n) 

Which yields T(n)=O(nlog(n)).  (Proof e.g. by induction) 

 

3. We assume the alphabet is {-1,1} or change every 0 to -1. 

Define polynomials PSR and PT  for T and S-Reverse: 

0

n
i

SR n i

i

P s x− ⋅

=

=∑ , 
0

m
i

T i

i

P t x
=

= ⋅∑  

Multiply PSR and PT   through FFT: 

  
0

n m
j

SR T j

j

P P P c x
+

⋅ ⋅

=

= =∑ , where
0

j

j n k j k

k

c s t− −

=

= ⋅∑ . (if n<k, n ks − =0 ). 

cj is the sum of at most n+1 non-zero products (k=0,..,n), and since n ks − =0 

and tj-k can be either 1 or -1 for each j, we conclude that cj 1n≤ + . 

1jc n= + ⇔ for every 0 k n≤ ≤ , both n k j ks ,t− − are 1 or -1 ⇔  

⇔ for every 0 k n≤ ≤ , n k j ks t− −= , meaning a match was found. 

We therefore return every index j, such that cj=n+1. 

  Run time:  

a.       Defining the polynomials is O(m+n)=O(m) time. 

b.      FFT: O(mlog(m)). 

c.      Checking which cj=n+1 is O(m+n)=O(m)  

and totally: O(mlog(m)). 

 

 

 

4. We use the following observation: 
1 1

1 1 1 1
1 1

0 0

n n
Rev j n n j n

n j n j

j j

A ( x ) a x x a x x A( x )
− −

− − − − − −
− − ⋅ − −

= =

= = ⋅ = ⋅∑ ∑  



Now, given a point value representation of A(x) in the points (x1,x2,..,xn) (none 

of the points is 0), we can derive a point value representation of A(x) in the 

points (y1,y2,..,yn)=(x1
-1

,x2
-1

,..,xn
-1

) by: 

1Rev n
i i iA ( y ) x A( x )−=  

Since we consider arithmetical operations in this context (in FFT context) to 

be O(1), evaluation at each point takes O(1), and therefore the algorithm runs 

in O(n) time in total. 

Note: Pay attention that if the set of evaluation points is closed to inversion 

(i.e. 1
x A x A

−∈ ⇒ ∈ ), then this algorithm can be modified slightly to derive a 

point-value representation of A
Rev

 from the point-value representation of A in 

the same points of evaluation in O(n) time. For instance, the roots of unity of a 

certain order are closed to inversion. 

 



Algorithms - Exercise 7

Due Wednesday 13/12 24:00

1. For any k > 0 and any n > 0 let p =
∑kn−1

i=0 aix
i be a polynomial where ai = 1 if k|i and

ai = 0 otherwise. Compute FTkn(p).

2. (reshut) Given a complex number z, the z-chirp transform of a vector a = (a0, a1, . . . , an−1)
is the vector y = (y0, y1, . . . , yn−1), where yk =

∑n−1
j=0 ajz

jk. Give a O(n log n)-time algorithm
to compute the transform for any z. Hint: Use the equation

yk = zk2/2
n−1∑
j=0

(ajz
j2/2)(z−(k−j)2/2)

to view the chirp transform as a convolution.

3. Give a linear-time algorithm to determine if a text T is a cyclic rotation of another string T ′.
For example, car and arc are cyclic rotations of each other.

4. The binary gcd algorithm

(a) Prove that if a and b are both even then gcd(a, b) = 2gcd(a/2, b/2)

(b) Prove that if a is odd and b is even, then gcd(a, b) = gcd(a, b/2)

(c) Prove that if a and b are both odd, then gcd(a, b) = gcd((a− b)/2.b)

(d) Design an efficient binary gcd algorithm for input integers a and b, where a ≥ b, that
runs in O(log(a)) time. Assume that each subtraction, parity check and halving can be
done in O(1) time.

5. (a) Compute 10−1 mod 21 using the extended Euclid algorithm

(b) What does Ex− Euclid(fk+1, fk) return? Prove.

6. (a) Define lcm(a1, . . . , an) to be the least common multiple of a1, . . . , an, that is, the smallest
positive integer which is a multiple of each ai. Give an efficient algorithm to compute
lcm(a1, . . . , an) using Euclid(a, b) as a subroutine.

(b) a1, . . . , an are positive integers with ai ≤ M for each i. Give an algorithm that checks
whether a1, . . . , an are pairwise relatively prime with runtime O(n log n log M), assuming
that operations on numbers take O(1) time. (a1, . . . , an are pairwise relatively prime if
gcd(ai, aj) = 1 for every i 6= j.)

1



Algorithms – Exercise 7 (Solution) 
 

1. The Fourier Transform of p, is the vector which results from assigning the 

polynomial p all the roots of unity of order kn. Let us denote a primitive kn-th 

root of unity by w, and then the roots of unity will be - 1,w,…,w
kn-1

. The l-th 

coordinate of p is ∑∑
−

=

⋅
⋅

⋅
−

=
⋅ =

1

0

1

0

)()(
n

i

ikl

ik

ki
n

i

l

ik wawa . Now if w
lk
=1 (which happens 

iff nk|lk iff n|l) then the coordinate is simply n, otherwise we get by the 

geometric series formula 0
1

1

1

1)(
)(

1

0

=
−

−
=

−

−
=

⋅⋅

⋅−

=

⋅
⋅∑ kl

knl

kl

nkln

i

ikl

ik
w

w

w

w
wa . Therefore, 

the Fourier transform of p equals n in all coordinates which n divides and 0 

otherwise. 

 

2. We will use the hint: 

∑
−

=

−−
⋅=

1

0

2/)(2/2/ ))((
222

n

j

jkj
j

k
k zzazy  (This can be verified easily) 

We now define two polynomials:                                                    

p(x)=
2

1
2

0

n
i / i

i

i

a z x
−

⋅

=

⋅∑ , q(x)=
2

1
2 1

1

n
i / i ( n )

i ( n )

z x
−

− + −

=− −

⋅∑  

So that p(x)q(x)=(terms of order < n-1)+
2 2

1 1
2 2 1

0 0

n n
j / ( k j ) / k ( n )

j

k j

( a z )( z ) x
− −

− − + −
⋅

= =

⋅∑∑ + 

+(terms of order > 2n-2). 

And so the algorithm works as follows:  

1. Compute the vector 
2 2 1

1

k / n

k ( n )v ( z )
−
=− −= , and the vector u = 

2 2 1

0

k / n
k k( a z )

−
⋅ = , 

and define the coefficient representation of p(x),q(x). 

2. Calculate p(x)q(x) using FFT, and store the coefficients between n-1 and 

2n-2 in (m1,…,mn) 

3. Assign k k ky v m= ⋅  for every k between 0 and n-1. And return the yk-s. 

The above discussion proves the correctness of the algorithm. 

Running Time: In order to compute the vector v we require O(n) operations, 

the same holds for u. Therefore stage 1 takes O(n) time. Stage 2 takes 

O(nlog(n)) time for the FFT. And then step 3 takes some more O(n) time. All 

together that makes O(nlog(n)) as required. 

 



3. We recall from class that we can find all the occurrences of a pattern P of 

length n in a test T of length m in O(m+n) time. First we check if the two 

strings are of equal lengths, if not we output "no". Then, we define P=T and 

T=T'T', and run the KMP algorithm. If the KMP found an occurrence of P in 

T, we return "yes", otherwise "no".                                                                   

Correctness: If the algorithm outputted "yes", this means that there is an 

occurrence of T inside T'T', let's say the occurrence started in the m-th 

position, and the lengths of T,T' are n. Then the string which composes of the 

last m letters of T' and then the first n-m letters of T' equals T. Which means 

that T is indeed a cyclic rotation of T'.                                                                

If the algorithm outputted "no", this means that either T and T' are not of the 

same length, or that T does not occur in T'^T'. Let us assume in contradiction 

that T is a cyclic rotation of T', then there exists an index m such that the last m 

letters of T' concatenated to the first n-m elements of T' equal T. But this 

means that T occurs in T'^T' in the m-th position.         

Running Time: Since checking the lengths, and the KMP run in linear time, 

we receive a linear time algorithm. 

 

4.                                               

a. By the fundamental theorem of algebra, a and b have the following 

representation a=p1
l1

p2
l2

…pn
ln

, b = p1
r1

p2
2
…pn

rn
 (we may assume that 

the prime factors are the same by allowing li to receive also the value 

0). The gcd(a,b)=p1
min(l1,r1)

…pn
min(ln,rn)

. In the case where a,b are even 

we get that one of the prime factors is 2 and that it appears in a positive 

multiplication in both the representation of a and that of b. Lets us 

assume without loss of generality that p1=2. We therefore get -       

a/2= p1
l1-1

p2
l2

…pn
ln

, b/2 = p1
r1-1

p2
2
…pn

rn
 and                                            

gcd(a/2,b/2)= p1
min(l1,r1)-1

…pn
min(ln,rn)

=2gcd(a/2,b/2) 

b. We will still assume p1=2. In the case where a is odd and b is even, we 

get l1=0 and r1>0, therefore min{l1,r1}=0=min(l1,r1-1), and 

gcd(a,b/2)= p1
min(l1,r1-1)

…pn
min(ln,rn)

= p1
min(l1,r1)

…pn
min(ln,rn)

=gcd(a,b). 

c. If a,b are both odd then we get a-b is even. We will use the fact that for 

every a,b there holds gcd(a,b)=gcd(a-b,b) (see below), but from article 

b for a-b,b we get gcd(a,b)=gcd((a-b)/2,b).                       

Lemma:  for every a,b: gcd(a-b,b)=gcd(a,b)         

Proof: First, if d is a common divisor of a,b then it is a divisor of a-b, 

and therefore a common divisor of a-b,b. Second, if d is a common 

divisor of a-b,b it is a divisor of (a-b)+b=a and therefore a common 

divisor of a,b. Therefore the common divisors of a,b and of a-b,b are 

the same, and in particular the greatest common divisor. 

d. Pseudo-Code for binary_gcd(a,b) 

i. if (a is 0) return b 

ii. if (a is 1) return 1 

iii. if (b is 1) return 1 

iv. if (a is even & b is even) return 2*binary_gcd(a/2,b/2) 

v. if (a is odd & b is even) return gcd(a,b/2) 

vi. if (a is even & b is odd) return gcd(a/2,b) 

vii. if (a is odd & b is odd) return gcd( ba − /2,b) 



The correctness of the algorithm is justified through articles a-c. 

Running time: It is clear that at each recursive iteration, at least one of 

the coordinates becomes smaller by a factor of 2, therefore there can be 

no more then     log(b)log(a) + iterations, and since a b≥ and each 

iteration takes O(1) time (since subtraction, parity check and halving 

require O(1) time), we get running time of O(log(a)). 

 

5.   

a. We'll run Ex-Eculid(21,10), then y mod 21 will be 10
-1

 mod 21.  

i. Ex-Euclid(21,10) calls … 

ii. Ex-Euclid(10, 21 mod 10) = Ex-Euclid(10,1) calls … 

iii. Ex-Euclid(1, 10 mod 1) = Ex-Euclid(1, 0). This is evauluated to 

be  (1,1,0). 

Now we roll back the recursion: 

In the second stage, (x,y)=(0, 1-
10

0
1

*
 
  

)=(0,1). In the first stage, (x,y) 

= (1, 0-
21

1
10

*
 
  

)=(1,-2). And this is the result. We see that indeed 

1=1*21-2*10. We deduce that 10
-1

 (mod 21)=-2 (mod 21)=19 (mod 

21). 

b. We will denote Ex-Euclid(fk+1,fk)=(dk,xk,yk). We recall that the 

Fibonacci sequence is defined as – f0=1 ,f1=1, fk+1 = fk+fk-1 (k>0) 

We will prove by induction that dk=1 for all k>0, and that                      

xk+1=yk=(-1)
k+1

fk-1 for all k>0. The fact that xk+1=yk is obvious from the 

pseudo-code of Extended-Euclid. We turn to the other parts of the 

claim: (For k=0, the answer is d0=1,x0=0,y0=1) 

k=1: Ex-Eculid(2,1)=(1,0,1), and therefore it agrees with the formulas. 

1 1,...,k k→ + : First, we notice that fk>fk-1 for all k>1. Now, by the 

induction formula for f: fk+1 = fk+fk-1, we see that fk+1 mod fk=fk-1. And 

so, we see that the recursion call in Extended-Euclid(fk+1,fk) is 

Extended-Euclid(fk, fk+1 mod fk)=Extended-Euclid(fk,fk-1)=(dk,xk,yk). 

Now, by the induction hypothesis, we deduce that 

(dk+1,xk+1,yk+1)=Extended-Euclid(fk+1,fk)=                                          

(dk,yk,xk-
1k

k

k

f
* y

f

+ 
 
 

)=(1,yk,yk-1-yk)=(1,yk,(-1)
k
fk-2- (-1)

k+1
fk-1)=                    

(1,yk,(-1)
k+2

(fk-2+fk-1))=( 1,yk,(-1)
k+2

fk). And the proof is complete. 

 

 



6.   

a. Lemma 1: lcm(a1,a2,…,an)=lcm(lcm(a1,a2),a3…,an) for every positive 

integers a1,a2,…,an. 

Proof: if m is a multiplier of a1,a2, then it is a multiplier of l= 

lcm(a1,a2). This is true because we can divide m by l with remainder r 

so m=x*l+r where r<l. And now, a1|l,m and therefore a1|r. The same 

holds for a2. And so we see that r is a common multiplier of a1,a2, but l 

is the least common multiplier of them, and so we arrive at a 

contradiction. We conclude that if m is a multiplier of a1,a2,…,an, it is a 

multiplier of lcm(a1,a2),a3…,an. The other direction is obvious. And so, 

every multiplier of a1,a2,…,an is a multiplier of lcm(a1,a2),a3…,an and 

vice versa, and so in particular their least common multiplier is the 

same. That completes the proof. 

Lemma 2: For every positive integers a,b there holds: 

lcm(a,b)=a*b/gcd(a,b) 

Proof: By the fundamental theorem of algebra, a and b have the 

following representation a=p1
l1

p2
l2

…pn
ln

, b = p1
r1

p2
2
…pn

rn
 (we may 

assume that the prime factors are the same by allowing li to receive 

also the value 0). The gcd(a,b)=p1
min(l1,r1)

…pn
min(ln,rn)

. And also 

lcm(a,b)= p1
max(l1,r1)

…pn
max(ln,rn)

. And so we conclude that 

lcm(a,b)*gcd(a,b)= p1
max(l1,r1)

…pn
max(ln,rn)

* p1
min(l1,r1)

…pn
min(ln,rn)

=            

p1
 (l1+r1)

…pn
(ln+rn)

=a*b. As required. 

We arrive at the following algorithm: 

Euclid-LCM(a1,…,an) 

1. if (n=2) return a1*a2/Euclid(a1,a2) 

2. return Euclid-LCM(lcm(a1,a2),a3,…,an) 

The presented algorithm calls for the Euclid algorithm n-1 times. 

b. Pseudo-Code: 

Relatively-Prime(a1,…,an) 

return (Relatively-Prime(a1,…, aceil(n/2)) AND (a ceil(n/2)+1,…,an) AND                                   

gcd(a1*a2*…*aceil(n/2),aceil(n/2)+1*…an)=1) 

Remark: We will assume that n=2
k
 for simplicity for the analysis, 

In order to prove the correctness of the algorithm, we will prove that 

a1,a2,…,an are pairwise relatively prime ↔  a1,a2,…, aceil(n/2) are 

pairwise relatively prime, aceil(n/2)+1,…,an are pairwise relatively prime 

and a1*a2*…*aciel(n/2),aceil(n/2)*…an are relatively prime. The →  side of 

the claim is obvious. For the other direction, we have to show that ai 

and aj are relatively prime when i>ceil(n/2) and j ≤ ceil(n/2). If we 



assume in contradiction that they both have a common divisor d>1 

then d is also a common divisor of a1*a2*…*aceil(n/2) , aceil(n/2+1)*…an 

and therefore we arrive at a contradiction to our assumption that 

a1*a2*…*aceil(n/2) , aceil(n/2)*…an are relatively prime.  

Running Time: We denote the running time by T(n). Recalling that 

calculating gcd(a,b) for a,b<C requires O(log(C)) time, and that ai≤M 

for every i, and so a1*a2*…*aceil(n/2),aceil(n/2)*…an ≤  M
ceil(n/2)

, we arrive 

at the following recursion formula:                                                                   

T(n)=2T(n/2)+O(log(M
n/2

))=2T(n/2)+O(n*log(M))                                 

By solving the recursion we see that, T(n)=O(n*log(n)*log(M)). As 

required. 

 



Algorithms – Exercise 8 
Due Wednesday 20/12/06 24:00 

 

 

1. Compute the prefix function π  defined in the string matching algorithm for 

the given pattern: [a,b,a,c,a,b,c,a,a,b] 

 

2. Explain how to determine the occurrences of pattern P in the text T by 

examining theπ  function for the string P^T (the concatenation of P and T). 

 

3.  

a. Consider the string matching algorithm with a pattern P and a text T. 

What is the maximum number of times that any character in the text T 

will be looked at by the algorithm?  

b. Is it possible that adjacent characters in the text T will be considered 

this many times? 

 

4.   

a. Find all the integers a such that: 

i. a mod 3 = 2 

ii. a mod 11 = 9 

iii. a mod 20 = 5 

b. Show that if n1,n2 are not relatively prime, then there exists a1,a2 such 

that the following set of equation does not have a solution x: 

i. x mod n1 = a1 

ii. x mod n2 = a2 

 

5. You are given a number N. Your task is divided into two stages: 

a. Phase I: you are given arbitrarily large space and time to run any 

calculations you wish on N. You may store the results of your 

calculations. 

b. Phase II: the memory you used in phase I now turns into read-only 

memory. You are now given only O(log(log(N))) bits of disk space, 

and a read-only array A composed of {0,1} of length O(N). 

Give an algorithm that runs according to these two stages, and outputs 

"true" if the number of 1's in A is N, and "false" otherwise. 

Hints: 



1. Use phase I to store ai=(N mod pi), when pi is the i-th prime number,                             

for i=1,..,k such that k is large enough to guarantee that the ai determine N 

uniquely. (Show that k=O(log(N)) is sufficient) 

2. You may assume that pi=O( ⋅i log(i) ), show how to determine if the 

number of 1's in A is N using only a space of O(log(pk)) bits. 



Algorithms - Exercise 8 Solution 
 

1. Compute the prefix function Π defined in the string matching algorithm for 

the given pattern: [a,b,a,c,a,b,c,a,a,b] 

 

Answer: 
 

i 1 2 3 4 5 6 7 8 9 10 

P[i] a b a c a b c a a b 
Π[i] 0 0 1 0 1 2 0 1 1 2 
 

 

 

 

 

2. Explain how to determine the occurrences of pattern P in the text T by 

examining the Π function for the string P^T (the concatenation of P and T). 

 

Answer: 
 

Denote:  |P| = m 

  |T| = n 

 

For the non-trivial case where n ≥ m go over all 2m ≤ i ≤ n+m if: 

 

- Π(i) < m: continue. 

- Π(i) = m: mark T(i-2m+1) as the beginning of an occurrence of P in T. 

- Π(i) > m: if there exists a j such that Π
j
(i) = m  Mark T(i-2m+1) as the   

                            beginning of an occurrence of P in T. 

 

 

 

Using the definition of Π
*
(i) (Cormen p927) an equivalent answer is: 

 

For all 2m ≤ i ≤ n+m such that m є Π
*
(i) mark T(i-2m+1) as the beginning of an 

occurrence of P in T. 

 

Note: the index into T is "i-2m+1" as i is an index into P^T marking the and of an 

instance of P. This means we need to subtract m to mark the beginning and another m 

as we are looking for an index into T not P^T. 

 

 

 

 

 

 

 

 

 



3. a. Consider the string matching algorithm with a pattern P and a text T. 

        What is the maximum number of times that any character in the text T 

        will be looked at by the algorithm? 

 

Answer: 
 

Claim: Any character in T can be considered at most |P| times. 

Proof:  consider the loop over the characters in T. Each such character can either be 

looked at once, or several times within the inner loop. The inner loop's stops once  

k == 0. Within the loop k is given the value of Π(k) which by definition is smaller 

then k and as k is smaller or equal to |P|, at most |P| steps will take till k will be equal 

to zero and the inner loop will stop. 

 

Example of |P| looks at each character in T: 

 

Consider P = aaa 

    T = aab 

The third character of T, 'b', will be looked at |P| times. 

 

b. Is it possible that adjacent characters in the text T will be considered this many 

times? 

 
Answer: 
If |P| > 1, No.  

The only why a character could be considered |P| times is if it was considered in the 

inner loop with the iterations ending when k == 0. The equality check outside the 

inner loop can enlarge k by at most 1, meaning the next iteration of the outer loop 

(adjacent character) will perform at most 1 inner loop iteration. 

 

4. a. Find all the integers a such that: 

     i. a mod 3 = 2 

     ii. a mod 11 = 9 

     iii. a mod 20 = 5 

 

Answer: 
Let's start with a few definitions: 

n1 = 3, n2 = 11, n3 = 20 

n = n1 x n2 x n3  

ai = a mod ni ,1 ≤ i ≤ 3 

mi = n/ ni 

ci = mi(mi
-1

 mod ni) 

 

Note that gcd (n1, n2) = gcd (n3, n2) = gcd (n1, n3) = 1. Hence: n1, n2, n3 are pairwise 

relatively prime.  

As you have seen in the proof of the Chinese reminder theorem since mi and ni 

are pairwise relatively prime ci is well defined and (mi
-1

 mod ni) exists (see theorem 

31.6 and corollary 31.26 in Cormen). 

 

By the Chinese theorem we get that a is defined uniquely: 



a = (a1c1 + a2c2 + a3c3) mod n  

 

Now it is left to calculate the values: 

a1 = 2, a2 = 9, a3 = 5 (given in the question) 

n = 660 

m1 = 220,m2 = 60,m3 = 33 

m1
-1

 = 1, m2
-1

 = 9 , m3
-1

 = 17 

c1 = 220, c2 = 540, c3 = 561 

 

=> a = (2*220+9*540+5*561) mod 660 = 185 => a = 185 + k, kєZ 

 

 

b. Show that if n1,n2 are not relatively prime, then there exists a1,a2 such 

that the following set of equation does not have a solution x: 

i. x mod n1 = a1 

ii. x mod n2 = a2 

 

Answer: 
 
By Contradiction, lets assume that for all a1,a2 there exists a solution x.  

i=> x = a1+kn1 

ii=> x = a2 +ln2 

=> a1+kn1 = a2+ln2=> kn1-ln2=a2-a1 (**) 

 

From n1 and n2 being non relatively prime we get that gcd(n1,n2)=s>1. 

 

Thus s|( kn1-ln2) from (**) we get s|(a2-a1). 

Let us choose a1=s-1 and a2 = s we get s|(s-s+1)=>s|1 which contradicts s>1□ 

 

 

 
5. You are given a number N. Your task is divided into two stages: 

     a. Phase I: you are given arbitrarily large space and time to run any 

        calculations you wish on N. You may store the results of your 

        calculations. 

 

     b. Phase II: the memory you used in phase I now turns into read-only 

         memory. You are now given only O(log(log(N))) bits of disk space, 

         and a read-only array A composed of {0,1} of length O(N). 

 

Give an algorithm that runs according to these two stages, and outputs 

"true" if the number of 1's in A is N, and "false" otherwise. 

 

Hints: 

1. Use phase I to store ai=(N mod pi), when pi is the i-th prime number, 

for i=1,..,k such that k is large enough to guarantee that the ai determine N 

uniquely. (Show that k=O(log(N)) is sufficient) 

2. You may assume that pi=O( i log(i) ), show how to determine if the 

number of 1's in A is N using only a space of O(log(pk)) bits. 



 

Answer: 
 
Phase I: 
Given N we will compute ai=(N mod pi) for i=1,..,k. 

Which k should we choose, such that k is large enough to guarantee that the ai 

determine N uniquely? 

According to the Chinese theorem N mod(p1p2… pk) is a unique solution for the 

equations defined by ai, up to addition subtraction of p1p2…pk. Thus, we have to 

choose k such that p1p2…pk>L, and thus we will get a unique solution in the range 

[0,L-1]. 

 

It is obvious that for each i, pi ≥ 2. Thus, L < 2
ceil(log(L))

 ≤ Πi=1
ceil(log(L)) 

pi.  

 

From the above claim we get that by choosing k=O(log(L))=O(log(N)), L < p1p2… pk 

,we get that the ai's determine N uniquely. We store k, p1,…,pk and the ai's. 

 

Phase II: 
Algorithm:  

1. r := 0 

2. for i=1,…,k 

a. Iterate over A sequentially 

i. If  at the current position you see a '1' in A, update: r = r + 1 

(mod pk) 

b. if (r != ai) 

i. return false 

3. return true 

 

As proved in phase I, ai determine N uniquely, thus if S is a solution of the equations 

defined by ai, we can conclude that S=N. Thus the algorithm will return true, iff the 

number of 1's, S, is N as required. 

 

Now we will see that the algorithm uses only O(log(log(N))) extra space in the second 

phase: 

Since the only additional memory we are using is r,i (we assume that we can iterate 

over A by request, without referring to the pointer sizes), we get: 

1. For i we need O(log(k)) bits. Since k=O(log(N)), we get O(log(log(N)) space 

for i. 

2. r will hold a maximal value of pk, therefore we need O(log(pk)) bits for r. but 

since (by the hint) we know that pk=O(k*log(k)), we get that 

O(log(pk))=O(log(log(N)). 

 

In total we used O(log(log(N))) additional space in the second phase. 



Algorithms - Exercise 9

Due Wednesday 27/12 24:00

1. It is possible to strengthen Euler’s theorem slightly to the form:

aλ(n) ≡ 1(mod n) for all a ∈ Z∗
n

where n = pk1
1 · · · pkr

r and λ(n) is defined by λ(n) = lcm(φ(pk1
1 ), . . . , φ(pkr

r )). Prove:

(a) λ(n)|φ(n)
(b) If λ(n)|n − 1 then an−1 ≡ 1(mod n) for all a ∈ Z∗

n. Such an n is called a Carmichael
number

(c) If n is Carmichael then p2 does not divide n for every p

(d) If n is Carmichael then n is a product of at least 3 primes

2. Maximal independent set problem. Given an undirected graph G = (V,E), where each vertex
has d neighbors we want to find a large independent subset S ⊂ V . S is independent if for
every v, y ∈ S we have (u, v) /∈ E. Consider the following decentralized algorithm for the
problem. Each vertex vi independently picks a random value xi, where xi = 1 with probability
p and xi = 0 with probability 1−p. A vertex is in S iff it picked 1 and all its neighbors picked
0.

(a) Prove that the resulting S is an independent set
(b) Define yi to be 1 if vi is in S and 0 otherewise. Now |S| =

∑
yi. Find the expected size

of S as a function of n = |V |,d and p.
(c) Find p that maximizes the expected size of S. Give a formula for the expected size of S

when p is set to this value.

3. Suppose you are trying to sell your house. Every day a different person comes, and offers you
a price. You can either agree to his price or turn him away. You know that there are n people
with distinct bids b1, . . . , bn, but they come in random order. Give a strategy under which
you sell the house for the highest price possible with probability at least 1

4 . For example, if
the strategy is accepting the first buyer, the probability is 1

n . You may assume that n is even.

4. Consider the following analogue of Karger’s algorithm for finding minimum s − t cuts. We
will contract edges iteratively: in each iteration, let s and t denote the possibly contracted
edges that contain the original nodes s and t, respectively. To make sure that s and t do not
get contracted, at each iteration we delete any edges connecting s and t and select a random
edge to contract among the remaining edges. Give an example to show that the probability
that this method finds a minimum s− t cut can be exponentially small.

1



Solution to Ex 9 in Algorithms

1. (a) As we have seen in class, φ(n) =
∏

i φ(pki
i ), so λ(n)|φ(n).

(b) If λ(n)|n− 1 then n− 1 = sλ(n) for some integer s, and then an−1 = (aλ(n))s ≡ 1 mod
n.

(c) Let n =
∏

i p
ki
i be a Carmichael number. If p2|n for some p, we know that for some i we

have ki ≥ 2. Then φ(pki
i ) = (pi − 1)pki−1

i , so p|φ(pki
i ). In this case, p|λ(n). But p does

not divide n− 1, a contradiction.

(d) Assume that n is Carmichael and n = pq for primes p, q with p > q. Then lcm(p−1, q−
1)|n− 1, in particular p− 1|n− 1. But (p− 1)q = pq − p < n− 1 and (p− 1)(q + 1) =
pq + p− q − 1 > n− 1. Contradiction.

2. (a) If v ∈ S, then xi is zero for all the neighbors of v, thus none of these neighbors are in S.
So if v is a neighbor of u, at lease one of them is not in S, so S is independent.

(b)

yi = xi

∏
j neighbor of i

(1− xj)

So Pr(yi = 1) = p(1− p)d, and then E(yi) = p(1− p)d. As expectation is linear, we get
E(|S|) = E(

∑
i yi) = np(1− p)d.

(c) We compute the derivative of E(|S|) with respect to p and look for its zeros.

∂E(|S|)
∂p

= n(1− p)d + npd(1− p)d−1 = 0

1− p = pd ⇒ p =
1

d + 1

So if we pick the optimal p, we get E(|S|) = n dd

(d+1)d+1

3. Algorithm: let n/2 buyers to come and go, and compute the maximum of their offers z. Now
wait till somebody offers more than z, and except him (otherwise, except the last).

Proof: let M be the maximal offer and m the second best one. With probability 1
4 m will

be among the first n/2 and M among the last n/2. In this case the algorithm will pick M ,
which is the right answer.

4. Let G = (V,E) be the graph in the figure. It is easy to see that the minimal s− t cut in G is
{s}, V \ {s}. This means that in order to get the optimal cut, the algorithm cannon contract
the edges between s and xi for any i. We begin with 5n edges, and we must contract 4n out

1



of them. Every time the probability that we will contract a ’good’ edge is at most 4/5. Thus
the success probability p of the algorithm is

p ≤ (
4
5
)4n = (

44

54
)n ≤ 2−n

2





Algorithms – Exercise 10 
Due Wednesday 3/1/07 24:00 

 

 

1. Let n=pq, where p,q are prime numbers. Show how you can find p,q given 

n, ( n )φ  (Euler's phi function of n) in polynomial time (The solution should be 

polynomial in the input size- O(log(n))). 

 

2. Prove that if x is a nontrivial square root of 1 modulo n                                              

(i.e. 2 1 1 1x mod n,x , mod n= ≠ − ), then gcd(x-1,n) and gcd(x+1,n) are both 

nontrivial divisors of n. 

 

3.  

a. Suppose we have a sequence of items passing by one at a time. We 

want to maintain a sample of one item with the property that it is 

uniformly distributed over all the items we have seen at each step. 

Moreover, we want to accomplish this without knowing the total 

number of items in advance or storing all the items that we see.                                                

Consider the following algorithm which stores just one item in 

memory at all times. When the first item appears, it is stored in the 

memory. When the k-th item appears, it replaces the item with 

probability 1/k. Show this algorithm solves the problem. 

b. Suppose we modify the algorithm above, so that when the k-th item 

appears, it replaces the item in memory with probability 1/2. What is 

the probability that we have stored the i-th element after seeing n 

elements? 

 

4. Consider the n-dimensional cube routing algorithm described in the tirgul.  

a. Show that for every edge e of the graph, the expected number of 

routing paths passing through e is O(1) (as a function of n). (Hint: the 

number of routing paths passing through e can be written as a sum of 

random variables that may take {0,1} values, bound their expectation 

and use linearity of expectation) 

b. Show that for every packet, the expected time before reaching its 

destination node is bounded from above by an O(n) bound. 

 

 

 



Note: (Diffie-Hellman key exchange)  

Alice and Bob may communicate through a given channel. However, the channel is 

not safe since the malicious Eve is eavesdropping. Alice and Bob would like to agree 

on a certain value, they would both know but Eve wouldn't.  

Consider the following protocol: 

1. Alice and Bob agree on a prime number p, and a generating element in *
pZ , g. 

2. Alice picks a random natural number a and sends (g
a
 mod p) to Bob. 

3. Bob picks a random natural number b and sends (g
b
 mod p) to Alice. 

4. Alice computes (g
b
)
a
 mod p. 

5. Bob computes (g
a
)
b
 mod p. 

Now Alice and Bob know the number g
ab

, which Eve supposedly does not know. This 

was the first practical method for establishing a shared secret over an unprotected 

communications channel (introduced at 76').  

For more info: http://en.wikipedia.org/wiki/Diffie-Hellman 



Algorithms – Exercise 10 (Solution) 
 

 

1. We notice that since n=pq for p,q different primes, then by the 

formula ( n )φ =
1

1
p / n
prime

n ( )
p

−∏ , we conclude ( n )φ =(p-1)(q-1), and therefore               

n- ( n )φ +1=p+q, and we know that q=n/p and hence n- ( n )φ +1=p+n/p, or    

p
2
-p(n- ( n )φ +1)+n=0 and so we can solve for p by solving a quadratic 

equations (the two roots would be p and q). We notice that this algorithm is 

indeed polynomial in log(n). This is since the solution of a quadratic equation 

requires arithmetical operations (clearly polynomial), and finding the square 

root of a given natural number. We show a simple way to find m given m
2
: we 

perform a binary search over all numbers smaller then m
2
: 

Simple_sqrt(n, high, low) 

mid = 
2

high low+ 
  

 

if (mid
2
==n) return mid; 

if (mid
2
 > n)  return Simple_sqrt(n,mid-1,low); 

if (mid
2
 < n) return Simple_sqrt(n,high,mid+1); 

We see this is simply a binary search, it will perform in O(log(n)), i.e. 

polynomial in the input size. Note that this algorithm assumes that n indeed 

has an integer square root. 

 

2. First by definition we notice that gcd(x-1,n) and gcd(x+1,n) are both divisors 

of n. Let's assume without loss of generality x<n, we must prove that the gcd's 

are not 1. We can write n=
2

1
1 2

ll lk
. .. kp p p⋅ ⋅ , and since 

2 1
n

x ≡  then x
2

1
ip
≡  for 

every i, and since pi is prime, then necessarily x
ip
≡1 or -1. By the Chinese 

remainder theorem, we know that since x is not 1,-1 (mod n) then there is an 

index i such that x
ip
≡1 and j such that x

jp
≡ -1 (otherwise, all the remainders x 

mod pi
li
 would have been 1 or -1, and hence x mod n would have been 1 or -1 

respectively). So we conclude that there exists i,j such that x-1
ip
≡0 and x+1

jp
≡0 

and so gcd(x-1,n) ip≥ >1 and gcd(x+1,n) jp≥ >1. 

 



3.  

a. We need to prove that if we received n items in total, then each item 

has a probability of 1/n to be chosen. Consider the i-th item. It will be 

chosen iff it is taken in the i-th stage, and then not replaced in all stages 

i+1,…,n. We'll denote iA  the event that i is taken in the i-th step. We 

notice that A1,..,An are independent events. Therefore: 

1

1 1 1 1
1 1

1
i ...i nPr( i _ is _ chosen ) Pr( A A A ) ( ) ( )...( )

i i n n
+= = ⋅ − − =

+
∩ ∩ ∩  

b. We'll denote Ai to be the same as above. And compute for i>1: 

1 1

1 1 1 1
1 1

2 2 2 2
i ...i n n i

Pr( i _ is _ chosen ) Pr( A A A ) ( ) ( )...( )+ − += = ⋅ − − =∩ ∩ ∩

And the probability that the first item is chosen is: 

1 2 1

1 1 1
1 1 1 1

2 2 2
... n n

Pr( _ is _ chosen ) Pr( A A A ) ( )...( ) −= = ⋅ − − =∩ ∩ ∩  

 

4.  

a. Let e be an edge in the n-dimensional cube, say between the vertices 

(x1,..,xi,…,xn) and (x1,...,xi',…,xn). We'll define random variables 1v for 

every v V∈ as follows – 1v equals 1 iff the routing path between v and 

g(v) passes through the edge e in the direction                                           

(x1,..,xi,…,xn)→ (x1,...,xi',…,xn). 

i. 1 0vE[ ] =  for every v V∈ such that (vi,…,vn)≠  (xi,…,xn) 

(because the routing algorithm routes by changing v bit by bit 

to g(v), therefore if the above condition does not hold, the path 

will simply not go through e). 

ii. We now consider the case where (vi,…,vn)=(xi,…,xn) -

1
1

1 1 1
2

v v i i
i

E[ ] Pr( ) Pr( prefix ( g( v )) ( x ,...,x '))= = = = =     

where prefixi denotes the first i bits of g(v). The probability is   

2
-i
 since g(v) is chosen uniformly over all the vertices of V, 

there are 2
n
 vertices, and 2

n-i
 that satisfy the above condition. 

Let us denote in X, the number of routing paths going through e then 

X=X1+X2+ X3+ X4 where X1 denotes the number of routing paths 

between v and g(v) going through e in the direction 

(x1,..,xi,…,xn)→ (x1,...,xi',…,xn), and X2 denotes the number of routing 

paths between v and g(v) going through e in the direction 

(x1,..,xi',…,xn)→ (x1,...,xi,…,xn). X3 is the number of routing paths going 

through e through g(v) and ( v )π  (v's final destination) in the direction 

(x1,..,xi,…,xn)→ (x1,...,xi',…,xn), and X4 is the number of paths in the 

opposite direction between those vertices. We notice that X1,X2,X3,X4 

are identically distributed, and therefore E[X]=E[X1+X2+X3+X4]= 



E[X1]+E[X2]+ E[X3]+ E[X4] =4E[X1]. We also notice that 

1

1

1
1 1 0

2

1
2 0 5

2

v v i n i n
i

v V v V

i

i

E[ X ] E[ ] E[ ] { v : (v ,...,v )=(x ,..,x )}

.

∈ ∈

−

= = = + ⋅ =

= ⋅ =

∑ ∑
 

Therefore E[X]=2. 

b. We'll denote the expected time for a certain packet v before reaching 

its destination ( v )π  by Y. Then we notice that the routing path 

between v and ( v )π  consists of at most 2n edges (since it will take 

him at most n edges to get from v to g(v) and then at most n to get from 

g(v) to ( v )π ). Let Yi denote the random variable that specifies the time 

it took the packet v to get from its (i-1)-th stop to its i-th stop (and Yi=0 

for every i longer then the total length of v's routing path).    

Then, 
1

n

i

i

Y Y
=

=∑  and we notice that Yi eX≤  for some Xe – the routing 

paths passing through the edge e (for some edge e). But from a we get 

E[Xe]=2, and hence E[Yi] 2≤ . By taking expectation we get: 
2 2

1 1

4
n n

i i

i i

E[Y ] E[ Y ] E[Y ] n
= =

= = ≤∑ ∑ . 

Remark: We can also get a 2n bound by noticing that the constraint is 

that only one path in the same direction would go through e in any 

given turn. Therefore, as we have seen in a the expected number of 

edges passing through e in any one direction is 1 and therefore obtain a 

2n bound. 



Algorithms - Exercise 11

Due Wednesday 10/1 24:00

1. Broadcast attack on Rabin cryptosystem. Alice and Mary both use the Rabin cryptosystem.
Alice’s private key is (p1, q1) with public key n1 = p1q1 and Mary’s is (p1, q2) and n2 = p2q2.
Assume that n1 < n2. Bob wants to send the same message 0 < M < n1 both to Alice and
Mary, thus he is sending C1 = M2 mod n1 and C2 = M2 mod n2. Show that if the evil
eavesdropper Eve gets hold of C1 and C2, she can recover the original message M (Eve knows
n1 and n2 as they are public). Hint: use the chinese remainder theorem for N = n1n2.

2. Secret sharing with cheating parties. You have seen in class a secret sharing scheme in which
a secret ( a number s) is shared between n people such that each k + 1 of them can recover s
together, and each k of them know nothing about s. In the scheme we assumed that when a
group of people try to recover the secret, everyone in the group tells the truth. What happens
if that is not true?

(a) Show that if f and g are two polynomials above Fp of degree ≤ k with f 6= g and A ⊂ Fp

with |A| = 3k + 1 then |a ∈ A s.t. f(a) 6= g(a)| ≥ 2k + 1.

(b) Show that even if k people are telling lies, any group of 3k + 1 people can recover the
secret (the algorithm does not have to be efficient. just show that the secret is uniquely
defined).

3. RSA

(a) Prove that RSA is multiplicative: if C1 is the encryption of M1 and C2 is the encryption
of M2, then C1C2 is the encryption of M1M2.

(b) Let (n, e) be a public key of RSA. Show that if we have an efficient algorithm A which
decrypts the 1 percent of the messages, we can build an efficient randomized algorithm
that decrypts every message with high probability. Hint: if you need to decrypt C, pick
a random M ′, compute its encryption C ′ and try decrypting CC ′.

4. Comparing Linear Programs. A linear program is a sequence of computations, where at each
step the result is a product or a sum of the results of two of the previous steps or the inputs.
More formally: a linear program with m inputs x1 . . . xm is a sequence {(oi, li, ri)}n

i=1, with
oi ∈ {+,−, ∗} and −m ≤ li, ri ∈≤ i. Now oi is the operator used at the i− th step, and li, ri

determine which previous results we use. If li < 0 or ri < 0 we use x−li or x−ri .

Example: m = 2 and n = 3. the program is (+,−1,−1); (+, 1,−2); (∗, 1, 2) The result after
the first step is x1 +x1 = 2x1. After the second step 2x1 +x2. Third step: 2x1 ∗ (2x1 +x2) =
2x2

1 + x + 1x + 2.

1



(a) Write the result obtained by the following program with m = 2, n = 4:

(+,−1,−2); (∗,−1,−2); (+, 1, 2); (∗, 3, 3)

(b) Show that the result of the n − th step is a polynomial f in m variables with maximal
degree bounded by 2n.

(c) Show that all the coefficients of f are bounded by 22n

(d) Our goal is to compare two given programs. The programs are identical if the corre-
sponding polynomials f1 and f2 are equal. We cannot compute explicitly f1 and f2, as
they might be too long. Let g = f1 − f2 and suppose g 6= 0. Let p be a random prime
number with 22n < p < 23n. Bound from above the probability that g ≡ 0 mod p.

(e) Let h 6= 0 be a polynomial over Fp with degree≤ 2n. Bound from above the probability
that h(x) = 0 for a random x ∈ Fp

(f) Give an efficient randomized algorithm that decided with high probability whether two
given programs are identical.

2



Soluiton to Exercise 11 in Algorithms

1. The equations 0 ≤ x < n1n2, x mod n1 = C1 and x mod n2 = C2 have a unique solution x
due to the Chinese remainder theorem. x can be efficiently computed. Now x ≡ M2(mod n1)
and x ≡ M2(mod n1), with 0 ≤ x,M2 < n1n2 thus according to the uniqueness part of the
Chinese remainder theorem x = M2. All that is left is to find the square root of x. This can
be done, for example, by binary search:

Input: x < 2n

s = 0 , b = 2n

if ((s + b)/2)2 < x then
s = (s + b)/2

else
b = (s + b)/2

end if
Output s

2. (a) Let X ⊂ Fp be defined as the set of points on which f and g agree: X = {x ∈ Fp|g(x) =
f(x)}. If f 6= g with degrees bounded by k then |X| ≤ k. If |A| = 3k + 1 then
|A \X| ≥ 2k + 1, as requested.

(b) Let f be the original secret, A ⊂ Fp with |A| = 3k + 1 and h : A → Fp the values
reported by people. We claim that given h, f can be uniquely defined as a polynomial
which values agree with those of h for at least 2k + 1 points in A. Proof: as at most k
people cheat, f and h agree on at least 2k + 1 points in A. On the other hand, if g 6= f ,
then g and f agree on at most k points, thus g and h agree on at most k+k = 2k points.

3. RSA

(a) By definition: C1C2 = (M e
1 mod n)(M e

2 mod n). Thus C1C2 mod n = (M1M2)e mod n.

(b) As hinted: given C to decrypt, we pick a random M ′ ∈ Z∗
n, compute its encryption C ′

and try decrypting CC ′. If the decoding succeeds and we get X, then by (a) follows
that MM ′ = X, thus M = XM ′−1 mod n. Encryption is 1:1 and onto, so if we pick
M ′ uniformly in Z∗

n, then C ′ is uniform in Z∗
n and thus CC ′ is uniform in Z∗

n. So every
time we have probability of 0.01 to succeed, and the trials are independent. If we try k
times, the probability of success is 1− (1− 0.01)k, and can be made arbitrarily close to
1.

4. Comparing Linear Programs.

(a) ((x1 + x2) + x1x2)2

1



(b) By induction: the polynomials obtained up to step n are of degree ≤ 2n−1, thus addition
or multiplication of two of those results in a polynomial of degree ≤ 2n.

(c) We shall prove that the coefficients are bounded by 23n
(3 instead of 2!!). By induction,

coefficients up to step n are smaller than 23n−1
. As seen before, the degree of f is

bounded by 2n. There are at most 22n
different ways (much less, actually) to obtain a

monomial of degree 2n as a product of two monomials. Thus the coefficients are at most
22n

23n−1
23n−1 ≤ 23n

.

(d) Take any non-zero monomial of g with coefficient a. As |a| < 23n
the number of primes

dividing a is at most 3n. On the other hand, the number of primes between 22n and 23n

is Ω(23n

3n ), thus the probability that g ≡ 0 mod p is bounded by 3n3n
23n ≤ 2−n.

(e) By the Schwartz-Zippel lemma if h 6= 0 is a polynomial in m variables over Fp with
degree ≤ 2n then the probability of h(x1, . . . , xm) = 0 when xi are uniformly distributed
in Fp is bounded by 2n

p . With our choice of p, 2n

p < 2−n

(f) Combining the pieces: We draw a random prime p with 22n < p < 23n, and draw
random x1...xm ∈ Fp. We now run the linear programs on x1...xn, treating addition and
multiplication as operations modulo p. If two results are equal, the algorithm claims
that the programs are equal, otherwise it claims that they are different.
If the programs are equal, the algorithm will always output the right answer. What is
the probability that the programs are different and the algorithm will fail? By the bound
above, this probability is less than 2−n + 2−n = 2−n+1. The running time is polinomial
in n and m, as all the calculations are done mod p, and the number of digits on p is at
most 3n.

2



Algorithms – Exercise 12 
Due Wednesday 17/1/06 24:00 

 

1. Remainder: given an undirected graph G=(V,E) a matching is a set EM ⊆  

such that no vertex in V is adjacent to more then one edge in M. A maximal 

matching is a matching of the largest cardinality between all matchings in G.                                         

a. Give an efficient algorithm that given a graph G, finds a matching M in 

G such that if 'MM ⊆  where M' is a matching, then M=M' (i.e. M is 

not a proper subset of any other matching). What is the running time of 

your algorithm? 

b. Show that the algorithm you've given in a. is a 2-approximation to the 

problem of finding the maximal matching in G. 

c. Show that the bound from b. is tight for every Vn = , such that n is 

divisible by 4. In other words, for every k, give a graph G on 4k 

vertices, for which the algorithm you've given in a. may return a 

matching of exactly half the size of the maximal matching. 

 

2. Run the Approx-Subset-Sum algorithm we have seen in the tirgul on the 

following input. Write down the Li after each iteration of the for loop.                        

S={13,15,16,17,22,23,24,27,29,50}, t=125, 0 4.ε =  

 

3. (reshut, but recommended) Consider the following approximation algorithm 

for the 0-1 knapsack problem (see ex3, q2). Sort the objects by decreasing 

ratio of profit to size. Let the sorted order of objects be a1,a2,…,an. Find the 

lowest k such that the size of the first k objects exceeds N. Now, pick one the 

two: either {a1,…,ak-1} or {ak} (pick the more profitable one of course). Show 

that this is a 2-approximation for the problem. (we assume all objects are of 

size not greater then N) 

 

4. Weighted Set Cover. Give a ln( U ) approximation to the following problem: 

Given a universe U of n elements, a collection of subsets of U, A={S1,…,Sk}, 

and a cost function +
→ RAc : , find a minimum cost sub-collection B A⊆  that 

covers all elements of U.                                                                                     

Remarks:   

1. You may assume ∪
AS

SU
∈

= .                                                                                                              

2. The cost of B A⊆  is defined as ∑
∈BS

Sc )( . 



Hint: try to modify the algorithm you've seen in class for the non-weighted set 

cover. 



Algorithms – Exercise 12 (Solution) 
  

  

 

1.  

a. Pseudo-Code: 

 

Find-Max-Matching(G) 

//G is a graph, its Vertex set is V, and edge set is E 

1. Initialize A, an array of size V with the value "Not Covered" 

2. Initialize M to be an empty list 

3. For e { u,v } E= ∈  

  If (A[u]="Not Covered" and A[v]="Not covered") 

   Append e to the end of M 

   A[u]←"Covered" 

   A[v] ←"Covered" 

4. return M 

 

We claim that M is not a proper subset of any other matching in G. 

Otherwise, let e={u,v} E∈  be such that M { e }∪  is a matching. Then 

necessarily u,v are not covered by M. Therefore, when the for loop in 3 

considered e, it would have been added to M. M is clearly a matching 

since if {u,v},{u,w} M∈ then let us assume (without loss of generality) 

that {u,v} was considered after {u,w}, then we arriving at the if in 3, we 

would have got A[u]="Covered", and {u,v} would not have been added 

to M. 

The running time of the algorithm is O(V+E). 

 

b. Let M be the output of the algorithm in a, and let M' be a maximal 

matching in G. We notice that if M k= , then the number of vertices 

covered by M is 2k (follows directly from the definition of matching). 

We also notice that for every edge {u,v} M '∈ , we get that either u is 

covered by M or v is (otherwise M { u,v }∪  would be a strict superset of 

M, which is a matching in G in contradiction). We therefore conclude 

that 2 2M ' k M≤ ≤ . And therefore the algorithm in a is a 2-

approximation. 

c. For every integer k, we will show a graph of 4k edges in which there is 

a matching that is not a subset of any other matching of size k, but the 

maximal matching is of size 2k: 



 
 

The algorithm may return the matching indicated by the thin line, 

while the maximal matching is that returned by the thin line. 

 

 

2. The lists themselves appear in a separate file. It is important to notice how 

long the lists tend to get even for a relatively small input. This indicates that 

although the algorithm is polynomial, it may be in many cases too slow to use 

in practice. 

 

3. A solution to the 0-1 knapsack problem is a sequence of (s1,s2,…,sn) 0 1 n{ , }∈  

that indicates for each item i whether it was taken or not. We recall the 

fractional knapsack problem which allowed si's to take values in [0,1] (still 

maximizing the quantity 1

1

n

n i i

i

q( s ,...,s ) s x
=

=∑ under the constraint 

1

n

i i

i

s w N
=

≤∑ ). We saw that the solution to this problem was (assuming the 

objects are sorted in a decreasing order of profit to size, and k is defined as in 

the specification of the question):                                                                             

1

f
s =1,…, 1

f

ks − =1, 
f

ks =N-

1

1

k

i

i

k

N w

w

−

=

−∑
, 1

f

ks + =0,…, 
f

ns =0. Since all allowed 

solutions of the 0-1 knapsack are allowed solutions for the fractional knapsack 

problem, we conclude that 1 1n n

OPT OPT f f
q( s ,...,s ) q( s ,...,s )≤  (where 1

OPT OPT

ns ,...,s  

denote the optimal solution for the 0-1 knapsack). Therefore: 

 
1 1

1 1

1 1 1
n n

n k k
OPT OPT f f f f

i i i k k i k

i i i

q( s ,...,s ) q( s ,...,s ) s x x s x x x
− −

= = =

≤ = = + ≤ +∑ ∑ ∑  

We therefore conclude that either 
1

1

1

0 5
n

k
OPT OPT

i

i

. q( s ,...,s ) x
−

=

⋅ ≤∑ , or 

10 5
n

OPT OPT

k. q( s ,...,s ) x⋅ ≤ . Since our algorithm picks the higher of these two 



options we see that the algorithm returns a solution which is at least half the 

quality of the optimal, and therefore is a 2-approximation to the problem. 

 

 

4. Pseudo Code: 

 

1. C ←∅  

2. X U←  

3. While X ≠ ∅  

 Calculate f(S)=
c( S )

X S∩
 for every set S not in C 

 S0 ←The set not in C with the lowest f(S) 

 C 0C S← ∪  

 X 0X S← −  

4. return C 

 

First of all it is obvious that C is a sub-collection of A that covers U.  We'll 

denote U n= . We will denote the set X after the j-th iteration as Xj. We will 

assume without loss of generality that S1,…,Sn is the order in which the sets in 

A were chosen by the algorithm. Observe that 1j j j jX X X S+ = − ∩ , and also 

that q(OPT)
j j

j j
j j

c( S ) X
f ( S ) X

S X
≥ =

∩
 for every j (we will prove that later). We 

conclude therefore that  
j j

j j

j

c( S ) X
S X

f ( S )
≥∩ , and hence for every iteration j 

we get- 

1

1 1

0

1

1 1 1 1

j
j j j j j

j j

c( S )
X X X S X ( ) ...

q( OPT )

c( S ) c( S ) c( S ) c( S )
X ( )...( ) n( )...( )

q( OPT ) q( OPT ) q( OPT ) q( OPT )

+ = − ≤ − ≤

≤ − − ≤ − − ≤

∩

. 

Now by the averages inequality: 

1 11

j
j j

k k

k k

c( S ) c( S )

n n exp
j q( OPT ) q( OPT )

= =

   
   
   ≤ − < ⋅ −

⋅   
   
   

∑ ∑
. We conclude that once 

1

j

k

k

c( S ) ln( n ) q( OPT )
=

= ⋅∑ , then 1 1jX + < , and therefore 1jX + =∅ , and the 

algorithm will exit. And therefore, the solution we obtain is a ln(n)-

approximation. 

We are left to prove that c(OPT)
j j

j j
j j

c( S ) X
f ( S ) X

S X
≥ =

∩
. Let us denote the 

price of each element ju X∈ by price(u)= u S Cmin f ( S )∈ ∉ , that is the minimal 

price we may pay in order to cover u (the price may differ from iteration to 



iteration of course). We notice that in order to cover all the remaining 

elements, i.e. all elements in Xj, we will have to pay at least 
ju X

price( u )
∈
∑ . So 

we get 
j j

j j j

u X u X

q( OPT ) price( u ) f ( S ) X f ( S )
∈ ∈

≤ ≤ =∑ ∑ , where the last 

inequality is justified by the choice of Sj as the element that minimizes f(S). 
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L =

     0

L =

     0    13

L =

     0    13    15    28

L =

     0    13    15    16    28    29    31    44

L =

  Columns 1 through 10 

     0    13    15    16    17    28    29    30    31    32

  Columns 11 through 16 

    33    44    45    46    48    61

L =

  Columns 1 through 10 

     0    13    15    16    17    22    28    29    30    31

  Columns 11 through 20 

    32    33    35    37    38    39    44    45    46    48

  Columns 21 through 28 
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    50    52    54    61    66    68    70    83

L =

  Columns 1 through 10 

     0    13    15    16    17    22    23    28    29    30

  Columns 11 through 20 

    31    32    33    35    36    37    38    39    40    44

  Columns 21 through 30 

    45    46    48    50    52    54    56    58    60    62

  Columns 31 through 40 

    66    68    70    73    75    77    83    89    91    93

  Column 41 

   106

L =

  Columns 1 through 10 

     0    13    15    16    17    22    23    24    28    29

  Columns 11 through 20 

    30    31    32    33    35    36    37    38    39    40

  Columns 21 through 30 

    41    44    45    46    47    48    50    52    54    56

  Columns 31 through 40 
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    58    60    62    64    66    68    70    72    74    76

  Columns 41 through 50 

    78    80    82    84    86    89    91    93    97    99

  Columns 51 through 54 

   101   106   113   117

L =

  Columns 1 through 10 

     0    13    15    16    17    22    23    24    27    28

  Columns 11 through 20 

    29    30    31    32    33    35    36    37    38    39

  Columns 21 through 30 

    40    41    42    43    44    45    46    47    48    49

  Columns 31 through 40 

    50    52    54    56    58    60    62    64    66    68

  Columns 41 through 50 

    70    72    74    76    78    80    82    84    86    89

  Columns 51 through 60 

    91    93    95    97    99   101   105   109   113   116

  Columns 61 through 62 

   120   124

L =
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  Columns 1 through 10 

     0    13    15    16    17    22    23    24    27    28

  Columns 11 through 20 

    29    30    31    32    33    35    36    37    38    39

  Columns 21 through 30 

    40    41    42    43    44    45    46    47    48    49

  Columns 31 through 40 

    50    52    54    56    58    60    62    64    66    68

  Columns 41 through 50 

    70    72    74    76    78    80    82    84    86    89

  Columns 51 through 60 

    91    93    95    97    99   101   105   109   113   116

  Columns 61 through 62 

   120   124

L =

  Columns 1 through 10 

     0    13    15    16    17    22    23    24    27    28

  Columns 11 through 20 

    29    30    31    32    33    35    36    37    38    39

  Columns 21 through 30 

    40    41    42    43    44    45    46    47    48    49

file:///D|/Schooling/Algorithms/2006-2007/exs/ex12solq2.txt (4 of 5)05/02/2007 20:20:46
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  Columns 31 through 40 

    50    52    54    56    58    60    62    64    66    68

  Columns 41 through 50 

    70    72    74    76    78    80    82    84    86    88

  Columns 51 through 60 

    90    92    94    96    98   100   104   108   112   116

  Columns 61 through 62 

   120   124
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Algorithms – Exercise 13 
Due Wednesday 24/1/06 24:00 

 

Definition: We say that a probabilistic algorithm is a C-approximation to a 

maximization problem if for every instance of the problem it returns an output O 

(which is a random variable) which satisfies q(OPT) ⋅≤ C  E[q(O)].                                              

An example to such an algorithm is the 2-approximation to the problem of finding 

an assignment that satisfies a maximal number of linear equations over Z2, which 

you have seen in class. 

1. Weighted Max-Cut. Give a probabilistic 2-approximation algorithm to the 

weighted Max-Cut problem:                                                                           

You are given an undirected graph G=(V,E), and a weight function 

w:
+

→ RE . A cut in G is a subset VS ⊆ , the weight of the cut is defined as 

w(S)= ∑
∈ )(

)(
SEe

ew  where },:},{{)( SvSuEvuSE ∈∈∈= . The problem is to 

find the cut of maximal weight. 

 

2. Verification of sorting networks. 

a. You are given a comparison network which receives n inputs, and you 

wish to verify that it indeed sorts any set of n inputs (i.e. that its output 

is the n inputs in a sorted order). Show it is enough to test the network 

on n! certain inputs to verify its correctness. 

b. Show that if, given input sequence a1,a2,…,an , a comparison network 

outputs the sequence )()2()1( ,...,, naaa πππ for some permutation π , then 

for any weak-monotonically ascending function f , it returns the output 

)(),...,(),( )()2()1( nafafaf πππ , given the input f(a1),f(a2),…,f(an). 

c. Show that if a comparison network which receives n inputs, sorts 

correctly every input composed of 0,1 (i.e. all possible 2
n
 sequences of 

{0,1}) then it sorts correctly every input of size n. 

 

3. Assume the PRAM (Parallel Random Access Memory) model with CRCW 

(Concurrent Read Concurrent Write).                                                                

Assume conditioning/comparison/arithmetic/memory operations are one 

operation and consume O(1) time. 

a. Give an algorithm that sorts n different numbers in T(n)=O(log(n)) 

time, W(n)=O(n
2
) operations.                                                                          

b. Give an algorithm that finds the maximum of n numbers in T(n)=O(1) 

time, and W(n)=O(n
1.5

) operations.  

Hint: Both algorithms are modifications on the O(1) time algorithm for finding 

maximum that we've seen in the tirgul. 



Algorithms – Exercise 13 (Solution) 
 

1. We give the following algorithm: for every vertex v V∈ , put it in the set S in 

probability 0.5. Do so independently for each vertex. We will denote the 

maximum cut in the graph with Smax.                                                                           

Then clearly w(Smax)=
maxe S e E

w( e ) w( e )
∈ ∈

≤∑ ∑ . Let 1e be a random variable that 

takes the value 1 if e E( S )∈ , and 0 otherwise. Then 

E(w(S))=

1 1e e

e E e E { u ,v } E

E[ w( e ) ] w( e ) E[ ] w( e ) Pr( u S ,v S _ OR _ u S ,v S )
∈ ∈ ∈

⋅ = ⋅ = ⋅ ∈ ∉ ∉ ∈∑ ∑ ∑

= 0 5 0 5 0 5 0 5 0 5
{ u ,v } E ( u ,v ) E

w({ u,v }) ( . * . . * . ) . w( e )
∈ ∈

⋅ + =∑ ∑ . 

We conclude: w(Smax)≤2 E(w(S)), and therefore the algorithm is a probabilistic 

2-approximation to MAX-CUT. 

 

2.   

a. We will test the network on all the possible permutations of {1,2,…,n}. 

All together there are n! such permutations. Let us assume that it sorts 

all these inputs correctly. Let (x1,…,xn) be another set of different 

integers. We will prove that it sorts them correctly as well. Let π  be a 

permutation such that 1 2( ) ( ) ( n )x x ... x
π π π

< < . We will prove that for every 

level i of the sorting network, the ordering of the elements for the input 

(x1,x2,..,xn) is the same as that of the elements for the input 

( 1 11( ),..., ( n )− −
π π ): 

For i=0, it follows from the definition of π . 

1i i→ + . If we assume that the ordering of (x1,…,xn) is the same as that 

of ( 1 11( ),..., ( n )− −
π π ) after the i-th level, then since they are ordered the 

same, then for every comparison operation the outcome would be the 

same, and so we see that if the permutation (ordering) before the (i+1)-

th level was σ  for both outputs, then the comparators on the (i+1)-th 

level performed the same permutation τ  on these two inputs, and so the 

permutation after the (i+1) stage is τ σ�  for both inputs. 

This shows that the network sorts well for a set of n different numbers. If 

(x1,…,xn) is a sequence of not necessarily different integers, then we may 

define a new order: xi� xj iff xi>xj or xi jx=  and i>j. Then we may 

assume that the comparators perform the �  rather then > operation 

(since if they encounter two equal numbers, it does not matter if they 

swap them or not). And so we get a reduction to the problem of sorting n 

different numbers, since (x1,…,xn) are considered different under the �  

order relation. 



b. See Lemma 27.1 in Cormen (p. 709) 

c. See Lemma 27.2 in Cormen (p. 711) 

 

3.  

a. The algorithm: 

i. Stage 1: Build a two dimensional n*n array of {0,1}, where in the 

(i,j) coordinate, there is a 1 iff A(i)>A(j) or A(i)=A(j) and i≥ j. 

All these operations can be done concurrently since we have 

Concurrent Read assumption. Denote this array by B. Since all 

these are done concurrently, this stage takes time T(n)=O(1), and 

operations W(n)=O(n
2
). 

ii. Stage 2: Build an array M of n elements such that 

M(i)=B(1,i)+B(2,i)+…B(n,i). For every i. The calculation of 

separate M(i)-s is done concurrently, we will show below how to 

calculate the sum of n numbers in W(n)=O(n) and 

T(n)=O(log(n)). And so all together, this stage takes 

W(n)=n*O(n)=O(n
2
) and time T(n)=O(log(n)). 

iii. Stage 3: Now for every i, M(i) holds the number of cells which 

are smaller then A(i) plus the number of elements that are equal 

to A(i) but have a smaller index in A. So if we for every i, we 

write A(i) into C(M(i)), then C will be a sorted array which holds 

the same elements as A. This can be done in W(n)=O(n), and 

T(n)=O(1), since all the cells of C can be computed concurrently. 

Lemma: In the PRAM CRCW model, it is possible to calculate the sum 

of n numbers in O(log(n)) time, with O(n) operations. 

Proof: We give an algorithm – Given a1,…,an, if n=1 return a1, else 

calculate recursively s1=a1+…+aceil(n/2), and s2=aceil(n/2)+1+…+an , and 

return s1+s2. The running time of the algorithm satisfies the recursion: 

T(n)=T(n/2)+O(1), and so T(n)=O(log(n)), and the operations number 

satisfies W(n)=2W(n/2)+O(1), and so W(n)=O(n).  

Running Time: Summing up the running time from the three stages we 

reach T(n)=O(1)+O(log(n))+O(1)=O(log(n)). Also summing up the 

operations W(n)=O(n
2
)+O(n

2
)+O(n)=O(n

2
). 

Remark: In this algorithm we don't use the fact that it is also a 

Concurrent Write model, so it could be done also with Exclusive Write. 

b. We have seen in the tirgul how to find the maximum of n elements in 

O(1) time and W(n)=O(n
2
) using the CRCW model (see remark below). 

We perform the following algorithm: 

i. Divide the n given numbers into n
1/2

 sets of n
1/2

 numbers. Use n 

processors for each of the n
1/2

 sets to find their maximum in O(1) 

time. Save the maximum of each of these n
1/2

 sets in 

m1,…,msqrt(n). 



ii. Use n processors to find the maximum of m1,…,msqrt(n). Output 

that maximum. 

Since stage i. can be done in O(1) time for each of the sets, and the 

calculation in each set can be done concurrently, we see that it takes 

O(1) time for the first stage. Since we use n
1/2

 sets of n processors for 

O(1) time, we get W(n)=O(n
1.5

) for the first stage. The second stage uses 

n processors, and takes O(1) time, and so W(n)=O(n) operations. All in 

all, we get O(1) time and W(n)=O(n
1.5

), where we obviously did not use 

more then n
1.5

 processors at each time phase. 

Remark: Pay notice that if the inputted numbers are not different, we 

need a small modification of the algorithm shown in class for finding the 

maximum of n numbers. Since we want the array B to have exactly one 

row in which there are only 1s (and that would be the row with the index 

of the maximal element), we can modify it as follows (the modification 

is in the if): 

Input: an array A holding n numbers. 

1. for 1 i, j n≤ ≤  

a. If (A(i) A( j )_ OR _( A( i ) A( j )_ AND _ i j ))> = ≥  

i. 1B( i, j )←  

b. Else 0B( i, j )←  

2. for 1 i n≤ ≤  

a. M(i) 1 2B( i, )& B( i, )& ...& B( i,n )←  

Output: An array M of length n, with (n-1) 0s, and 1 in the index of one 

of the maximal elements of A. We can easily write the maximum into 

another address in O(1) time, and O(n) operations, when asked to. 
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