Computation - Solution of Moed B

1. You are given the pushdown automaton over the alphabet {a, b, c}, described
in Figure 1.

a,e > €

£, > €

b,e > b

£,€ > ¢

c,b—e¢

Figure 1: PDA for the question 1

(a) What is the language that the automaton accepts? (6 points)
Answer: L = {a™b"c" : m > 1,n > 0}.

(b) Write the context free grammar of this language. (6 points)
Answer: S — AB. A — aAla. B — bBcle.

2. In the following questions the alphabet is {a, b, c}.

(a) Is the language L1 = {w : w does not contain aa as a substring}
regular? yes (4 points)
Answer: The complementary language L; is regular - see the finite
automaton for it in Figure 2. Since the class of regular languages is
closed under complementation, L is also regular.

(b) Is the language Lo = {w : in w, #a = #b = #c} regular?
no (4 points) Answer: Assume the contrary, that is, Lo is regular. Let

©

To00""
Figure 2: Automaton that accepts L

p be the pumping length, and let w = a?bPcP. By Pumping Lemma,
there exist z, v, z such that w = zyz and for all ¢ > 0, zy’z € L.
Note, that both z and y should contain only a’s. Let y = a!. Then
a:yZz = aPHlpPcP ¢ Lo, and we reached a contradiction.

What is the number of states in the minimal deterministic finite au-
tomaton that accepts the language Ls = {w : |w| < 3} ?

(4 points) Answer: The minimal deterministic automaton that accepts
L3 has 5 states, by the number of equivalence classes of L : the first
equivalence class contains ¢, the second contains all words of length 1,
the third class contains all words of length 2, the fourth class contains
all words of length 3, and the fifth class contains all words of length 4
or more.

3. Define the operation Parity on a language L over the alphabet 3::

Parity(L) = {w1Sws$...8w, : for every i, w; € ¥*, and the number of
i’s such that w; € L is even}

Remark: it is given that § ¢ X..

We say that a class of languages C is closed under the operation Parity
if for every language L € C, Parity(L) € C.
Is it known that the following classes are closed under Parity ?

(a)

(b)

REG

yes (5 points)

Answer: Let L € REG. Let A be the DF A that accepts L. In
Figure 3 we describe an N F' A that accepts Parity(L). Intuitively, the
automaton “remembers” whether the current number of sub-words that
belong to L is even or odd, and on each sub-word runs the automaton
A.

P

yes (5 points)

Answer: Let L € P, and let M be the DT M that decides L. We

©

(d)

(e

acC ini

A

Figure 3: Automaton that accepts Parity(L)

define Mpgyrity in the following way. Mpgrity has two tapes. On the
first tape there is an input, and on the second tape it writes the number
of sub-words of the input that belong to L. On each sub-word M prity
runs M, and if M accepts, it increases the number on the second tape.
Finally, after blank symbol encountered (end of the input), Mpg ity
checks whether the number on the second tape is even or odd. The time
complexity of Mpgyty is O((complexity of M on each subword) x (
number of sub-words)), which is polynomial in the size of the input.

NP

no (5 points)

Answer: Assume the contrary. Let M be the NT'M that decides
Parity(SAT) in polynomial time. Now, SAT C Parity(SAT) (be-
cause a word in SAT contains 0 occurrences of words in S AT, which
is even), thus, given an input to SAT we can run M. Thus, SAT is in
NP, in contradiction to the fact that SAT is N P-complete.

NL

yes (5 points)

Answer: Let L € NL, and let M be the NT'M that decides L in loga-
rithmic space. Note, that N L = co— N L, thus there also exists M’ that
decides L in logarithmic space. Now, we construct M Parity(L) by Tun-
ning M and M’ in parallel on each subword of the input. M Parity(L)
also keeps a bit that indicates the parity of the number of sub-words
that belong to L.

NPSPACE
yes (5 points)
Answer: By Savitch Theorem, NPSPACE = PSPACE, and is
closed under complementation. Let L € PSPACE, and let M be
the DT M that decides L in polynomial space. Now we construct

Mparity(z) by running M on each sub-word, and counting the num-
ber of sub-words of the input that belong to L. Clearly, Mpgpisy (1)
decides Parity(L) in polynomial space.

4. Are the following languages in N P? And are they N P-complete ?

(a)

(b)

©

MONOTONE — SAT = {¢ : ¢ € 3 — cnf, ¢ does not contain
negations and it is satisfiable}

(5 points)

Answer: MONOTONE — SAT € P (thus, in particular, it is not
known to be N P-complete. All we have to do is to check that the
formula is really in 3 —cn f form and that it does not contain negations.
If this is the case then we know that the assignment that gives true to
all the variables is satisfying. If it was N P-complete we would get that
NP =P.

4—-COLOR

(5 points)

Answer: 4 — COLOR is N P-complete. Tt is in N P because we can
non-deterministically choose a coloring of the graph in 4 colors and
check that it is valid. This checkup takes time that is linear in the num-
ber of edges (or quadratic in the number of nodes). For hardness in N P
we show a reduction from the N P-complete language 3 — COLOR.
Given a graph G we output the graph G’ which is identical to G' with
the addition of a new node that is connected to all the other nodes in
the graph. In every valid coloring of G’, the new node must get a color
which is different to all the other nodes. Therefore the coloring num-
ber of G’ is exactly the coloring number of G plus 1. So G is three
colorable if and only if G’ is four colorable.

{¢ : the formula ¢ does not have a satisfying assignment}

(5 points)

Answer: The language is not known to be in N P. This language is the
complement of the N P-complete language SAT. As we showed in
class, if the complement of an N P-complete language is in NP then
NP = co— NP and this is not known.

Is the following language NN L-complete?

MULTI — PATH = {(G, s, 1) : in the graph G there are at least two
different paths from s to ¢}

yes/no (5 points)

Answer: Yes. To see that the language is in N L we run the normal

(b)

algorithm for PAT H twice in parallel (i.e. we walk on the graph where
each time the next step is chosen non-deterministically). In addition we
keep a bit which is initialized to 0, and is set to 1 in the first time that
the two paths differ. If at the end the two walks get to ¢ and the bit is
1 then we accept. The amount of memory that is required is twice the
amount that is needed for the algorithm to PAT H plus 1 which is still
O(log(n)). For hardness in N L we show a reduction from PATH.
Given (G, s,t) we output (G, s,t) where G’ is identical to G with the
addition of a path from s to ¢ through a new node. Clearly if there is a
path in G from s to ¢ then with the new path there are at least two paths
in G’. Otherwise there is exactly one path in G’.

Is the language {w : #a = #b = #c} in L ? yes/no (5 points)
Answer: Yes. We keep a binary counter for each one of the symbols.
We go once through the input and count the number of a’s, b’s, and
c’s. At the end we compare the counters. The amount of memory is
O(log(n)) because the value of the binary counters is 7 at the most.

6. For each one of the following languages state whether it is in R, RF, or not
in RE:

(a)

(b)

Ly = {(My, My) : L(My) = L(My)}

(6 points)

Answer: L, ¢ RE. We saw that ALL7); ¢ RE therefore a reduction
from this language will complete the proof. The reduction: given an
input (M) to ALL7)y, the output of the reduction will be (M, M')
where M' is a machine that always rejects, that is, L(M') = (), and
L(M') = ©*. It is easy to see that (M, M') € Ly <> (M) € ALLryy.

Ly = {{My, My) : there exists z € ¥* such that M; and M halt when
they are given z as input}

(6 points)

Answer: Lo € RE and Lo ¢ R. Itis in RE because we can run the
two machines on each input (in a lexicographic order) until we find z
on which both machines halt. In order not to get stuck forever on one
input we run the first input one step and then the first and the second
two steps and so on.To see that it is not in R we show a reduction from
HALTY,, (the language of T'M that halt on the empty string) which
we proved not to be in R. The reduction: on input (M) to HALTY,,,
the output will be (M, M") , where M’ is a machine that only halts on
e. Clearly (M) € HALTS.,, < (M, M') € L.

©

Ls = {{M) : L(M) C a*}

(6 points)

Answer: L3 ¢ RE. By Rice theorem we know that L3z ¢ R. To see
that it is not in RE we show that its complement is in RE. The last two
facts imply that L3 ¢ RE because otherwise we will have that both L3
and L3 are in RE which implies that Ly € R. L is in RE because we
can run over all the inputs that contain at least one symbol which is not
a, in the same manner that we did in section 1, until we find such input
that the machine accepts. In this case we know that the language of the
machine is not contained in a*.

7. You are given the following protocol between a prover P and a verifier V';

Input: A pair of graphs (G, G1), where the number of nodes in each graph

is n.

P: Choose two permutations my,m; € S, (Where the choice is uniformly
distributed and independent) and send to V the graphs: Hy = mo(Gy),
H 1 =T 1(G1).

V: Choose uniformly and independently b € {0, 1}, and send it to P.

P: Send to V' two permutations 7y, 71 € Sp,.

V: Accept if and only if: H, = 79(Gy) and Hy, = 71(G1).

Is this protocol a zero-knowledge interactive proof system for the language
GRAPH — ISOMORPHISM? Answer each condition separately:

(a)

(b)

©

The running time of V' is polynomial in the length of the input.

yes/no (4 points)

Answer: Yes. V has to choose a random bit and as a probabilistic ma-
chine it can do it in constant time, and then it has to check the equality
of two pairs of graphs on n nodes and this can be done in time which
is linear in the number of edges in the graphs, which is O(n?).

If the graphs are isomorphic then V' accepts with probability 1.

yes/no (4 points)

Answer: Yes. If the graphs are isomorphic, then Gy and G are iso-
morphic to Hy and H;. Therefore, for both values of b, P (which has
unbounded computational power) can find the isomorphisms between
Hy, and each of the graphs G and G;.

If the graphs are not isomorphic then V' accepts with probability 1/2 at
the most.

(d

yes/no (4 points)

Answer: Yes. If the graphs are not isomorphic then regardless of what
P is sending in the first stage, and regardless of the value of b, there
cannot be an isomorphism between Hj and both Gy and G1. Other-
wise, a composition of the two isomorphisms would give an isomor-
phism between G and GG;. Therefore, in this case, with probability 0
(and in particular less then 1/2) V' will accept.

The zero-knowledge condition holds (no V* can learn from the proof
any additional information).

yes/no (4 points)

Answer: No. In the last stage of the protocol, V has isomorphisms
between Hj and both Gy and Gi. A simple operation (that can be
done in polynomial-time) of composing the two isomorphisms gives
V' the isomorphism between Gy and G;. If a simulator (that runs in
probabilistic polynomial-time) could simulate this protocol, it would
also find (in probabilistic polynomial-time) an isomorphism between
G) and G and such an algorithm is not known to exist.

