
Computation, Machines and Formal Languages -
Exam (spring 2003)

Moed B

Lecturer: Prof. Michael Ben-Or.

Course number: 67521

Time: 3 hours.

Write your answers on the Hebrew exam sheet. If you wish, you can write your
answers in (readable) English.

If the answer is yes/no, write down the answer that you chose.

Answer all the questions 1-6 and one of the questions 7-9.

Unless stated otherwise, you have to add a short explanation (within the designated
area for each question) for your answers. Answers that will not be accompanied by
explanations will not be credited. The explanation should include the main steps
in the proof, do not get into technical details, notations etc. If your explanation is
given by a contradicting example, you have to state the example together with a
short explanation of the contradiction. If you have an example that contradicts an
unproven but a reasonable assumption (such as

������ � ), state the example, the
reasonable assumption, and a short explanation of the contradiction.

Definitions and Notations: (identical to those we used in class)

For a language � , we denote by � the language �	��
�� (i.e. the complement
of � ).
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Complexity Classes:�����
is the class of regular languages.�����
is the class of context-free languages.�

is the class of languages that are decidable by Turing Machines (TM).���
is the class of languages that are recognizable by TM’s.�

is the class of languages that are decidable by deterministic TM’s in polynomial
time.� � is the class of languages that are decidable by non-deterministic TM’s in poly-
nomial time.��	 �

is the class of languages that are decidable by deterministic TM’s in expo-
nential time.��
 ��� � �

is the class of languages that are decidable by deterministic TM’s in
polynomial space.
For a class of languages  , we denote by ���� the class of languages that their com-
plements are in  . that is, ���� ��� ��� ��� �� .
Computational problems:
�����
 ��!#"$
��&% �'�)( 
+*-,/. � 
 is a (multi) set of numbers that contains a subset
that sums to

, �01�&%2" ���3!40 �5�)( ��*768*-,-. � � is a directed graph, that contains a path from
6

to
,
, that visits every node in the graph exactly once �

We say that a Boolean formula is 9 " �;:=< if it is of the form:>@? (BA
?
C+D A

?
EFD1GHGHGID A

?
J .

where A
?
K is a variable or its negation.9 "L
 �3! �'�NM � M is a satisfiable 9 " �O:=<����P ARQTS " � ��: "3U)6 � �V�)( � C *;� E . � � C *;� E A PXW :Y��:[Z 6R\ � P QTS Z]�7^ P A�QTS 6 � . !&_�� � ��NM � M Z 6 <T`TaBacbedN` A :[Z , Z]<TZ WRfhg �Na W A :=<i� PI\ `ja A * A : f MjSkA 6 A ,]P ` WRl A am` Wonpnqn �

Reductions:
For two languages � C * � E , � Cprts � E denotes that there is a polynomial-time map-
ping reduction from � C to � E .

2



1. (15 points) You are given the following nondeterministic finite automaton
(see fig. 1).

0

0,1

1

0,1

(a) Does the string 1101000 belong to the language of the automaton?
(yes/no)
You do not have to prove or explain your answer.
Answer: yes.

(b) Draw a Deterministic finite automaton with a minimal number of states
for the same language.
Give a short explanation of the correctness and the minimality.

0 1

0,11 0

Figure 1: Deterministic Finite Automaton for the language � ����� � �

Correctness: Let � be in the language. Then it contains 01 as a sub-
string. Either the first 01 is preceded by 1’s and then we stay in the left
state and then move to the accepting state when we read the 01. Or it
is preceded by (zero or more) 1’s followed by 0’s, and then we move
to the middle state with the first 0, and then to the accepting state with
the appearance of the 1. In the accepting state the computation stays
till the end.
If there is no 01 (namely, the word is not in the language), then we
either have only 1’s, in this case we stay in the left state. Or we have
(zero or more) 1’s followed by 0’s, and then we end up in the middle
state, both are not accepting.
Minimality: The language defines three distinct equivalence classes:
� � * � ����� � * ( ���	� . �
��� ( ���	� . � . Thus By Myhill-Nerode the minimal
DFA has three states.

2. (15 points) Given an arbitrary language
�

over � � � � * � � , define the lan-
guage � ( � . �'� �������� �$� � , where ��� is the reverse of � .
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Let
� C � � � and

� E �'� ��� ��� �H: � � � .
For each one of the following languages, state whether it is correct or not.

You do not have to prove or explain your answers.

(a) � ( � C . � ��� � .

Answer: No. � ( � C . � � � � � � � � � � � is not regular. There
are infinitely many equivalence classes � ��� ����� such that ��� ��� � J � J �
� ( � C . if and only if 9 � : .

(b) � ( � C . � ����� .

Answer: Yes. The following CFL derives it:

	� � 
 � � � 
 � ��
 .

(c) � ( � E . � ��� � .

Answer: No. � ( � E . � � ��� � E � ��� �8: � � � is not regular (pump the
word � s�� � E s�� � s� )

(d) � ( � E . � ����� .

Answer: No. (pump the word � s � � E s � � s � ).

3. (15 points) For each one of the following languages, write the smallest class
that contains it out of the following list:

�
,
���

, ��� ��� , or none of these
classes.

(a)
� �'��� %V* d�� � % is a deterministic TM and for every input � ,

%
does

not move to the state d during its running � .
Answer:

�
in ��� ��� but not in

���
.

First
���� ���

by the reduction
����� r�� �

.

On input
%V* � , we construct the TM

! ��� �
, that on input b , simulates%

on � . If
%

accepts � then
!���� �

accepts b . Otherwise it rejects.

Now, (�� % � * � . � ����� iff � !���� �F* d� "!#!$� � � iff there exists an input �
such that

!��%� �
moves to d� "!#! .

Second,
� � �O� ��� by the following algorithm that recognizes

�
:

on input � %V* d&� , for Z � � *"'h* GHGHG :
run

%
on � C * GHGHG * �

?
(by the lexicographic order) each one for Z steps.

If for some ( r Z , % enters d then accept.

(b)
� �'��� % � � % is a

!�% * � ( % . � ��� � � .
Answer: L is not in RE and not in coRE.

First,
����� r�� �

, using the following reduction. On input
% * � ,

construct the TM
� �%� �

, that on input b , simulates
%

on � . If
%
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accepts � and there is : � � such that b � ��� ��� then
� ��� �

accepts b .
Otherwise it rejects.
Note that

� ( � ��� �+. is either empty (
� ��� �

) or � � � � � � (
�� ������.

.
Then (�� % � * � . � ��� � iff � � ��� � � �� � . We conclude that

� �� ���
.

Second,
����� r�� �

, using the following reduction. On input
%V* �

construct the machine
� ��� �

, that on input b , simulates
%

on � for � b �
steps. If within � b � steps,

%
does not accept � and there is : � � such

that b � � � � � , then
� ��� �

accepts b . Otherwise it rejects.
If (�� % � * � . � ����� then

� ( � ��� � . is the language � � � � �k� (
�� �����

).
If (�� % � * � . �� �����

, then
� ( � �%� �+. is a language with only finitely

many words and so it is regular.
We conclude that

� ��� r�� �
, and so

� �� ���
.

4. (15 points) Given a language
�

over an alphabet � that does not contain the
symbol

�
, we define the language:

%'��� ( � . � � � C � � E � GHGHG � � E J � 9 � � * �
? � � � * and for at least 9 in-

dices ��� � � �
What is the smallest class from:

����� * ����� * � * � �p* ��
 ��� � � , that con-
tains the following set of languages:

(a) � %V��� ( � . �)� � ��� � � .
Answer:

�����
.

Let
�

be the DFA for
�

. The pushdown automaton for
%'��� ( � . , runs�

on every �
?
, and compares the number of strings in

�
to those not in�

. This is done by pushing the symbol � to the stack when detecting
�
? ���

(and when the stack is empty or has � in it), and popping �
whenever �

?
�� �

. If the stack is empty or contains
"

, then we push"
when detecting �

?
�� �

and popping
"

when �
? ���

. At the end
we accept if the stack is empty or it contains an even number of � (to
make sure that the input contains an even number of sub words �

?
).

To see that it is not in
��� �

take
� � � � � . Then

%'��� ( � . defines
infinite number of equivalence classes: � ( � � . E � �
Then ( � � . E � ( � � . E �	� C � � %V��� ( � . and ( � � . E�
 ��� C� ( � � . E ��� C � �� %'��� ( � . .

(b) � %V��� ( � . �)� � � � �
Answer: � � . We construct the following machine

%
, it first checks

that the input � is of the form � C � � E � GHGHG � � E J (that is having even
number of sub-words) and determines the value of 9 , if not it rejects.
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Then the machine guesses 9 distinct indices ( C * ( E * GHGHG * ( J , where � r(
? r ' 9 .

Then the machine guesses 9 witnesses b K�� * b K�� * GHGHG * b K�� , and verify that
�

? �5�
using the witness b K�� and the non-deterministic-polynomial-

time machine
%	�

deciding
�

.

The first step and the guessing steps are polynomial. The verification
is bounded by 9 times the running time of

%
�
, and hence the running

time is polynomial in the length of the input.

To see that it is not in
�

(unless � � � � ), take
� � � � , then

if
%V��� ( � . � � we can decide L in deterministic polynomial time

using the following fact: �
� �

if and only if �
� � � %'��� ( � . .

(c) � %V��� ( � . �)� � ��� � � �
Answer:

��
 ��� � �
. It is

��
 �	��� � �
because we can try all the

(polynomial-long) witnesses for each �
?

and decide whether it is in
�

or not, and then we can simply count the number of strings in and not
in the language.

It is not in � � (unless � � � ��� � � ), because otherwise we would
have a poly-time nondeterministic algorithm for


 �p!
: by taking the

input formula M and run the poly-time nondeterministic algorithm for%'��� ( 
 �3!&. on M � � C . It turns out that M � 
 �3! if and only if M � � C �%'��� ( 
 �3!&. (because � C is a satisfiable formula).

5. (15 points)

(a) Does the assumption (that we currently can’t prove) that
0 �&% "

���3!40 �� ��� � � implies that
!&_�� � � � � ? (yes/no)

Answer: no.
0 ��% " � �p!40 �� ��� � � implies that � � �� ��� � � ,

as
0 ��% " ���3!40

is in � � (and in fact an � � -complete language).��
 ��� � �
is a deterministic class and is closed under complement,

then
��
 ��� � � � ��� ��
 ��� � � . We also know that � ��� � ��
 � � � � ���
 ��� � �

, and thus ��� � �� ��
 ��� � � .!&_�� �
is
��
 �	� � �

-complete, and if
!&_�� � � � � , this means

that
��
 � � � � � � � . But then it must be the case that ��� � �����
 ��� � � � � � . We also know that ��� � ��� � � ��� � ������ � � . We get that � � � ��� � � , a contradiction.

(b) Does the assumption (that we currently can’t prove) that

�����
 ��!�"
���% rFs '�" 
 �p! implies that

��P ARQiS " :Y�N: " Uh6 � � � � ? (yes/no)

Answer: yes. We showed that
' " 
 �3! � �

. If

��&� 
 ��! "
���% rts '�" 
 �3!

, that is an � � -complete language is reducible
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to a language in
�

, then � � � � . The class
�

is deterministic, then
we conclude that ��� � � � � � � � .

Now,
��P ARQTS " :Y�N: " U)6 � � � � (To verify that � � C *;� E � � ��P A�QTS " :Y�N: " Uh6 �

one can check in polynomial time that � ( � C . � � E ). Thus,
��P A�QTS ":Y�N: "�U)6 � � ��� � � . Using the above we get that

��P ARQTS " :Y��: "�Uh6 � ���� � � � � � .

6. (15 points) Under the assumption (that we currently can’t prove) that
� 	 � �

� � � ��� � � , is it true that:

(a)
��
 �	� � � � ��	 � ? (yes/no)

Answer: yes. We already know that
��
 � � � � � ��	 �

. To show
the equality, we shall show that in this case

��	 �� ��
 �	� � �
.

We also know that � � * ��� � �� ��
 �	� � � , and thus � � � ��� � � ���
 � � � �
. Now, if

� 	 � � � � � �O� � � then
� 	 � � � � ���� � ��� ��
 �	� � � . And thus

��	 ��� ��
 � � � �
.

(b) � � � � ? (yes/no)

Answer: no. By the Hierarchy Theorem
� �� ��	 � .

If � � � � then ��� � � � � � � � . Now, if in addition
� 	 � �

� � � ��� � � then
��	 � � � � � ��� � � � � , a contradiction.

7. (a) Prove that the following language is � � -complete:� �'��� M * 9 � � M has a satisfying assignment in which exactly 9 variables are assigned true �
Proof: It is easy to see that

� � � � by the following nondeterministic
algorithm: on input � M * 9 � , choose nondeterministically an assignment
with exactly 9 variables receiving true. If this assignment satisfies M
then accept.

To see that it is � � -hard consider the following reduction from
� "
 �3!

: on input M (for
� " 
 �3!

), let � C * GHGHG * � � be its variables. Define
new variables b C * GHGHG * b � . Let � be the formula M where we replace
every appearance of �

?
with �+b

?
, and every appearance of � �

?
with b

?
.

Let � be the formula M�� � . The output of the reduction is � � * : � .
We show that M � � "L
 �3! iff � � * : � �$� .

Now if M �� � "L
 �3! then � is not satisfiable and hence not in
�

.

If M � � " 
 �3! then there is a satisfying assignment for M with exactlyf
true values (for some � r f r : ). In this case the assignment to the

variables of � that gives � C * GHGHG * � � the same values and to b C * GHGHG * b �
the opposite values (that is, b

?
� , P ` W if and only if �

?
� < A a 6NW ),
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satisfies � . Furthermore, there are exactly
f � ’s that receive true and: " f b ’s that receive true, altogether exactly : variables of � receive

the value true.

(b) Is it true that the following language is � � -complete:� J �'�NM � M has a satisfying assignment in which exactly 9 variables are assigned true �
Answer: No, unless � � � � .

The following is a polynomial-time algorithm for
� J :

On input M , a formula with : variables, for every subset of size 9 of
� C * GHGHG * � � , define the assignment that gives true to exactly these 9
variables. If one of these assignments satisfies M then accept, other-
wise reject.

Clearly the algorithm gives the right answer, and its running time is the
size of the formula multiplied by the number of assignments that we
check which is � � J�� ����( : J . . Note that unlike the previous section,
here 9 is a constant and not part of the input, so the running time is
polynomial in : .

8. Let
% C *7% E * GHGHG be the lexicographic order on Turing machines.

For every � � � � , we say that
% ?

is minimal for � if:

� % ? halts on the input 
 (the empty string) with the output � . That is, at
the end of the computation the tape of the machine contains the word
� .

� For every (�� Z , either
% K does not halt on 
 , or it halts with a different

output than � .

Define the following language:� �'��� % � � % is minimal for some ���
Prove the following claims.

Hint: use the recursion theorem.

(a)
� �� ���

.

Proof: Assume that
� � ���

, then there is an enumerator
�

for the
language. Define the following TM



that on input � does the follow-

ing:
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� Print own description � 
 � (this is possible by the recursion theo-
rem).

� Run the enumerator
�

until it prints a description of a machine% ?
that appears after



in the lexicographic order (such

% ?
exists

because
�

is infinite).
� Run

% ?
on � and do the same.

Clearly, on every input and in particular on 
 , 
 behaves exactly as
% ?

.
Since

% ? � �
, there is � which is the output of

% ?
on 
 . Therefore

� will also be the output of



on 
 . But



comes before
% ?

in the
order which contradicts the fact that

% ?
is minimal (otherwise it would

not be printed by
�

). We conclude that no such enumerator exists and
hence

� �� ���
.

(b) Let
��� � �

be an infinite language, then
��� �� ���

.

Proof: The proof is similar to the previous section. Note that there we
never used the fact that

�
contains all the minimal machines, we only

needed an infinite number of them.

9. Show an interactive proof system for the following language:� �'��� ��* 9 � � the graph
�

contains a clique of size 9 but no clique of size 9 � � �
Give a short explanation why this is indeed an interactive proof system.

Hint: Use the interactive proof system for
� 
 �p!

that was presented in class
(you do not need to describe this proof system).

Answer: Note that the language� � �'��� � * 9 � � the graph
�

does not contain a clique of size greater than 9j�
is a ��� � � language. This is because showing the opposite can be done in� � just by choosing (and verifying) a clique of size greater than 9 . As we
showed in class, every language in ��� � � has an interactive proof system,
and in particular

� �
.

Now the protocol for the language
�

will be the following, On input � ��* 9 � :
� The prover sends names of 9 nodes in the graph, and the verifier checks

that they are a clique (otherwise he rejects).
� The prover and the verifier run the protocol for the language

���
, on the

input � � * 9 � .
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We explain why it is an interactive proof for
�

:

If �
� �

, then there is a clique of size 9 , the prover will send this clique in
the first stage. Also there is no clique of size greater than 9 , and hence by the
completeness of the protocol that we showed in class, the verifier will accept
the second stage with probability 1.

If �
��1�

, then either there is no clique of size 9 , and the verifier will always
reject in the first stage. Or there is a clique of size greater than 9 , and by the
soundness of the protocol that we showed in class, the verifier will reject the
second stage with probability at least 1/2.
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