
Computation, Machines and Formal Languages -
Solution of the Exam (spring 2002)

Moed A

Lecturer: Prof. Michael Ben-Or.

Time: 2.5 hours.

Write your answers on the exam sheet.

If the answer is yes/no, write down the answer that you chose.

Answer all the questions.

Unless stated otherwise, you have to add a short explanation (within the designated
area for each question) for your answers. Answers that will not be accompanied by
explanations will not be credited. The explanation should include the main steps
in the proof, do not get into technical details, notations etc. If your explanation is
given by a contradicting example, you have to state the example together with a
short explanation of the contradiction. If you have an example that contradicts an
unproven but a reasonable assumption (such as

������ � ), state the example, the
reasonable assumption, and a short explanation of the contradiction.

Definitions and Notations: (identical to those we used in class)

For a language � , we denote by � the language �	��
�� .

Complexity Classes:����
is the class of regular languages.�����
is the class of context-free languages.

is the class of languages that are decidable by Turing Machines (TM).
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��
is the class of languages that are recognizable by TM’s.�

is the class of languages that are decidable by deterministic TM’s in polynomial
time.� � is the class of languages that are decidable by non-deterministic TM’s in poly-
nomial time.��� ��� � �

is the class of languages that are decidable by deterministic TM’s in
polynomial space.�

is the class of languages that are decidable by deterministic TM’s in logarithmic
space.� � is the class of languages that are decidable by non-deterministic TM’s in log-
arithmic space.
For a class of languages � , we denote by ����� the class of languages that their com-
plements are in � .

Computational problems:�
	��� �������
	�� ����� ����������� is a (multi) set of numbers that contains a subset
that sums to

�! "#���$� ���%�&" �'��� �(�*)+�����%� � is a directed graph, that contains a path from
)

to
�
, that visits every node in the graph exactly once

 
We say that a Boolean formula is , � �!-/. if it is of the form:021 �43

1
5�6 3

1
786 3

1
9 �

where 3
1
: is a variable or its negation., �;�<�%� ���>= � = is a satisfiable , � �?-/.  @ � ���BA4�DC ��� �'�

given
@

colors, it is possible to assign a color to each node in the
graph

�
, such that no two adjacent nodes get the same color

 � � �
EGFIH ��� �J� �
is a context free grammar, and

� � ��� � � �  � � �
K FML �N� ���O�
is a deterministic finite automaton, and

� � ��� � � �  P � � ���>= � = is a true fully quantified Boolean formula
 

Reductions:
For two languages � 5 � � 7 , � 5%QSR � 7 denotes that there is a polynomial-time map-
ping reduction from � 5 to � 7 .
For two languages � 5 � � 7 , � 5�QST � 7 denotes that there is a logarithmic-space
mapping reduction from � 5 to � 7 .
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1. (12 points)

Version A Draw a minimal deterministic finite automaton for the lan-
guage � ����� ��� � � ��� @ � @��	�  (over � ��� � ��
> ).
Give a short proof for the correctness and the minimality.

Solution: The automaton � is in Figure 1. Indeed, the run of � on a word of
even length ends in the initial state, which is also accepting, and the run of �
on a word of odd length ends in the non-accepting state. The automaton �
is minimal, since � defines two equivalence classes: of words of even length
and of words of odd length.

�

�

Figure 1: The minimal deterministic automaton for the language of words of even
length

Version B Draw a minimal deterministic finite automaton for the lan-
guage � ����� ��� � � ��� @� 
B� @����  (over � ��� � ��
> ).
Give a short proof for the correctness and the minimality.

Solution: The automaton � is in Figure 2. Indeed, the run of � on a word
of odd length ends in the accepting state, and the run of � on a word of even
length ends in the non-accepting state. The automaton � is minimal, since
� defines two equivalence classes: of words of even length and of words of
odd length.

2. (13 points)

Version A Let us define the following languages over � ����3 ���� :
� ����3�� ��� 3�� � - ����� @  

� � 3 � � �
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�

Figure 2: The minimal deterministic automaton for the language of words of odd
length

For each one of the following languages, write the smallest class of lan-
guages that contains it out of the following list:

�� �
,
��� �

, or
�

.

(a)
��� �

- the answer is
�����

(b)
�

- the answer is
�����

(c)
��� �

- the answer is
�����

(d)
�

- the answer is
�

Version B Let us define the following languages over � ����3 ���� :
� ����3�� ��� 3�� � - Q � Q @  

� � � � 3 �
For each one of the following languages, write the smallest class of lan-
guages that contains it out of the following list:

�� �
,
��� �

, or
�

.

(a)
��� �

- the answer is
�����

(b)
�

- the answer is
�����

(c)
��� �

- the answer is
�����

(d)
�

- the answer is
�

3. (13 points)

(a) For each one of the following languages, write the smallest class that
contains it out of the following list:


,
��

, ��� �� , or none of these
classes.
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i.
� � � EGFIH
Answer: �?� ��
In class we saw

����� Q � � � EGFIH
: given a pair

� � � ��� we con-
structed a CFG

�
such that

�
derives all words that are not ac-

cepting computations of
�

on � . Then,
�

does not accept � iff
� � ��� � � � . Therefore,

� � � EGFIH
is not in

��
. The complement

of
� � � EGFIH

is recognizable, since given a CFG
�

, we can check
for all words, trying them in alphabetic order, whether

�
derives

them or not (we saw in class a polynomial algorithm that checks,
given

�
and � , whether

�
derives � ). For each word � the check

is finite, and thus if there exists a word that
�

does not derive, the
algorithm will stop and give a positive answer.

ii.
� � � K FML
Answer:


We saw in class an algorithm that given a DFA � checks whether
� � � � � � � : the algorithm computes � , and then checks empti-
ness of � � � � ��� .

iii. � �N��� � 	�� � � �J�
contains more than 100 words

 
Answer:

��
The language � is not in


by Rice theorem. It is in RE, since

given a TM
�

, we can guess

 � 


words that it accepts and run�
on all of them in parallel. If indeed

�
stops and accepts, then� � ��
 � .

(b) For each one of the languages for which you answered


, write the
smallest class that contains it out of the following list:

�
, � � ,

�
.

Answer:
� � � K FML 
 � �� � � K FML 
 � � , since the translation of a DFA � into a comple-

ment DFA
�

can be done in
�

by reversing the roles of accepting and
non-accepting states, and then the check of emptiness of � is done
by running the algorithm

���%�&"
for the initial state and each one of

the accepting states.
� K FML

is also � � -hard by the reduction from���%�&"
: given

� �(�*)+��� � , there is a path from
)

to
�

in
�

iff the automa-
ton � H , obtained from the graph

�
by setting states to be the nodes

of
�

, and edges transitions (the determinism can be ensured by choos-
ing the alphabet of size equal to the maximal branching degree of

�
),

with the initial state
�

and the single accepting state
�
, has an empty

language. Now, from � � -hardness of
� K FML

follows � � -hardness of� � � K FML
, since the reduction from

� K FML
to
� � � K FML

is in
�

. Thus,
it is likely that

� � ��K FML �
 � .
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4. (12 points)

Version A For each one of the following functions, answer whether it is� � 
�� , � ������� - � , or
� � - � .

(a) . 5 � - � � � 3��I� � � �	� � � � �	�
��� � � � � 
�� � ��
> �  
Answer:

� � 
��
First we show that

� �	�
� � � Q � �	� � � � (for some constant � ). Let� � � 	�� � � be the minimal description of the string � . Define the
machine

��
, that on every input � , outputs ��� � . Now define the ma-

chine
�� 

that on every input, first runs
�

and then
��

. Clearly,� � �   	 � � � is a description of the string �
��� , and its length is it
most

� �	� � � � � �  	 � � � �	� � � � .
Similarly we show that

� �	� � Q � �	�
��� � � � . Let � � � 	 � � � be the
minimal description of the string �
� � . Define the machine

��
, that on

every even length input � , it outputs the
� � ��� � -long prefix of � . Now

define the machine
�� 

that on every input, first runs
�

and then
��

.
Clearly, � � ��  	 � � � is a description of the string � , and its length is
it most

� �	�
��� � � � � �  	 � � � �	�
��� � � � .
(b) . 7 � - � � � 3��I� � � �	� � ��� � � � � � � � � 
 � � ��
> 7 � , and in each one of

the strings � and � , exactly half the symbols are 1 and half are 0
 

Answer:
� � - �

Clearly the difference in the description complexity of every two strings
of length � - cannot be more than � � - � because for every � ,

� �	� � Q� � � � � .
We show that there is a string of length � - with exactly - 1’s, and
Kolmogorov complexity � � - � . The number of such strings is � 7 ���� ������ ��� . Therefore we need this number of different strings to describe
all the strings of length � - with exactly - 1’s. It follows that at least
one of these descriptions must be of length ����� � ��� � ��� � � � � - � . Let �
be a string with this Kolmogorov complexity. Let � be the string

� � 
 � .
Clearly,

@ � � � � � ������� - � . Therefore,

. 7 � - � � � �	� �<� � � � � � � � - ��� � ������� - � � � � - �
Version B For each one of the following functions, answer whether it is� � 
�� , � ������� - � , or

� � - � .
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(a) . 5 � - � � � 3��I� � � �	� � � � ��� ��� � A�� �	� ��� � � � 
�� � ��
> �  
Where � ��� � A�� �	� � is the string � where each bit appears twice.
Example: � ��� � A�� � 
 � � � � 
 
 � � � �
Answer:

� � 
��
First we show that

� ��� ��� � A�� �	� ��� Q � �	� � � � (for some constant � ).
Let � � � 	 � � � be the minimal description of the string � . Define the
machine

� 
, that on every input � , outputs � ��� � A�� � � � . Now define the

machine
�� 

that on every input, first runs
�

and then
��

. Clearly,� � �   	 � � � is a description of the string � ��� � A�� �	� � , and its length is
it most

� �	� � � � � �� 	 � � � �	� � � � .
Similarly we show that

� �	� � Q � ��� ��� � A�� �	� ��� � � . Let � � � 	 � � �
be the minimal description of the string � ��� � A�� �	� � . Define the machine��

, that on every even length input � , it outputs every second (even) bit
of � . Now define the machine

�  
that on every input, first runs

�
and

then
� 

. Clearly, � � �   	 � � � is a description of the string � , and its
length is it most

� ��� ��� � A�� �	� ��� � � � �  	 � � � ��� ��� � A�� �	� ��� � � .
(b) . 7 � - � � � 3��I� � � �	� � � � � � � � � � � � 
�� � ��
> � , and in each one of the

strings � and � , exactly 3 of the symbols are 1
 

Answer:
� ������� - �

The Kolmogorov complexity of every string of length - and exactly
three 1’s, is at most � ������� - � , because we only have to tell the machine
the number - and the positions of the three 1’s, which takes another
� ������� - � . Therefore, the difference in the description complexity of
every two such strings cannot be more than � ������� - � .
We show that there is a string of length - with exactly three 1’s, and
Kolmogorov complexity greater than � � ��� - . The number of such
strings is � � 9 � � � � - 9 � 	 - 7 . Therefore we need at least - 7 dif-
ferent strings to describe all the strings of length - with exactly three
1’s. It follows that at least one of these descriptions must be of length����� � - 7 � ��� ����� - . Let � be a string with this Kolmogorov complexity.
Let � be the string


 9 � ��� 9 . Clearly,
@ � � � Q ����� - � � . Therefore,

. 7 � - � � � �	� �<� � � � � � � ����� - � ������� - � � � � � ������� - �
5. (13 points)

Version A Let � be the following language. � � � �
	 5 � 	 7 � � 	 5 and
	 7

are formulas in , � �!-/. and exactly one of
	 5 , 	 7 is satisfiable

 
. Answer

the following questions.
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(a) Is � 
 � � ?
Unlikely, since � is co-NP-hard. We show a reduction from , � �<�S� .
Let � be a variable. We define a tautology

	�� � � 6�� � (or in , � �?-/. :�	��� ��� � � 6 � � ��� � ��� � � � ). Now, given a formula
	

in , � �!-/. , it
is clear that

	
is unsatisfiable (belongs to , �;� �S� ) iff

�
	 � 	�� � 
 � .

(b) Is � 
 ��� � � ?
Unlikely, since � is NP-hard. We show a reduction from , � � �S� . Let� be a variable. We define a contradiction

	�� � ��� � � (or in , � �?-/. :�	��� � �	� � � 6 �	�
� � ��� � � ). Now, given a formula
	

in , � �?-/. , it
is clear that

	
is satisfiable (belongs to , �;� �S� ) iff

�
	 � 	 � ��
 � .

(c) Is � 
 ��� � � � � ?
Yes. For a given formula

	
, we can check in

�(� ��� � �
whether

	
is

satisfiable (by trying all possible assignments one after another, using
the same memory). Thus, we can perform the satisfiability check for
both formulas and accept iff the results are opposite.

Version B The same question, where � is defined as � � � �
	 5 � 	 7 � � 	 5
and

	 7 are formulas in , � �?-/. and either both
	 5 , 	 7 are satisfiable or both

are unsatisfiable. The answer is the same, and the reductions are similar to
ones in Version A, where we pair an input formula with a contradiction for
the reduction from , �;� �S� , and with a tautology for the reduction from, �;� �S� .

6. (13 points)

Version A Under the assumption that , � ���>A4�>C �
 ��� � � , are the following
true?

(a) , �;�<�%� 
 ��� � � ? No.
There is a polynomial reduction from , � ���BA4�>C to , � �<�%� , thus if we
assume that , � �<�%� 
 ��� � � , then , � ���BA4�>C should also be in ��� � �
by the reduction to , ���<�%� and then solving , � �<�%� in ��� � � , and
this contradicts the assumption.

(b) , �;�<�%� �
 � ? Yes.
If , � ���BA �>C �
 ��� � � , then � � �� �?� � � , and thus

� �� � � (since
�

is closed under complementation). Thus, � � -complete problems are
not in

�
, and in particular , � �<�%� �
 � . Now, if , �;� �S� if in

�
,

then also , � �<�S� 
 � (because
�

is closed under complementation),
and we got a contradiction.
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(c)
P � � 
 � � ? No.

If , � ���BA4�DC �
 ��� � � , then � � �� �?� � � , and thus � � �� ��� ��� � �
(since

�(� ��� � �
is closed under complementation). Therefore,

��� ��� � �
-

complete problems are not in � � , and since
P � �

is
��� ��� � �

-
complete, it is not in � � .

Version B Under the assumption that
"#���$� � �S�&" �
 ��� � � , are the

following true?

(a)
�
	��� ��� �;�
	 � �
 � ? Yes.

If
"#���$� ���%�&" �
 ��� � � , then � � �� ��� � � , and thus

� �� � �
(since

�
is closed under complementation). Thus, � � -complete prob-

lems are not in
�

, and in particular
�
	��� ��� �;�
	 � �
 � . Now, if�
	��� � � �;� 	��

if in
�

, then also
�
	��� ��� � � 	�� 
 � (be-

cause
�

is closed under complementation), and we got a contradiction.

(b)
P � � 
 � � ? No.

If , � ���BA4�DC �
 ��� � � , then � � �� �?� � � , and thus � � �� ��� ��� � �
(since

�(� ��� � �
is closed under complementation). Therefore,

��� ��� � �
-

complete problems are not in � � , and since
P � �

is
��� ��� � �

-
complete, it is not in � � .

(c) , �;�<�%� 
 ��� � � ? No.

There is a polynomial reduction from , � ���BA4�>C to , � �<�%� , thus if we
assume that , � �<�%� 
 ��� � � , then , � ���BA4�>C should also be in ��� � �
by the reduction to , ���<�%� and then solving , � �<�%� in ��� � � , and
this contradicts the assumption.

7. (12 points) Let � be some fixed alphabet. The operation of shuffle is impor-
tant in the study of concurrent systems. If � , � 
 �	� , then � � � � is the set
of all strings that can be made by shuffling � and � together like a deck of
cards, that is, mixing the letters of � with the letters of � , while keeping the
order of their appearance in the original words. For example,

3 � � � � � ����3 � � � � 3 � � � � 3 � � �D� � 3 � � � � 3�� ��� � ��3 �� 
The shuffle of two languages

�
and

�
, denoted

��� � �
, is the set of strings

obtained by shuffling a string from
�

with a string from
�

:� � � � � �
� 
 �
� 
 �

� � � �
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A class � of languages is closed under shuffle if for all
� ��� 
 � , we have��� � � 
 � . Are the following classes closed under shuffle?

(a) REG
Answer: yes
Let

����� 
 ���� , and � L � ��� the corresponding DFA’s. We define
(informally) a NFA

�
for

� � � �
.
�

is a cartezian product of the
automata � L and ��� . That is, the states of

�
are pairs

��� � �  � , where�
is a state of � L and

� 
is a state of ��� . The transition relation of�

is defined as follows.
��� � �  � 
�� � � ��� 5 � �  5 � �	�/� iff either

� � � 5
and

�  5 �
� � � � 5 �	�/� or
�  � �  5 and

� 5 �
� L � � �	�/� . That is, on each
step,

�
non-deterministically chooses which automaton to follow, and

keeps the state of the other automaton unchanged. If at the end both
automata are in accepting states,

�
accepts, otherwise it rejects (recall

the cartezian product automaton we constructed to prove that
�� �

is closed under intersection). Now if an input � is in � 5 � � � 7 where� 5 
 � and � 7 
 � , then there is a nondeterministic choice that picks
the correct automaton in each step. And since � 5 
 � and � 7 
 � , at
the end of the computation, both automata will be in an accepting state.

(b) P
Answer: no (under the assumption

� �� � � )
Let us look at the languages � � (over � ��� � ��
> ), and

� �N��� = � 3 ��� =
is a satisfiable , � �?-/. , and 3 is a satisfying assignment

 
. Clearly, both

languages are in
�

. Suppose that
�

is closed under shuffle. Then
there is a deterministic polynomial-time algorithm

�
, for � � � � � . We

describe a deterministic polynomial-time algorithm for , � �<�%� . On
input = , a , � �?-/. on - variables, the algorithm runs

�
on � = � � � 
�� � � .

The algorithm accepts if and only if
�

accepts. Now if = is satisfiable,
then its satisfying assignment (actually, all the satisfying assignments)
appear in the string � � 
�� � , shuffled with some string from � � , and

�
will accept. On the other hand, if = is unsatisfiable, then

�
will never

accept because = will never be part of a word in
�

.
There is one subtle point, we must define

�
such that the symbols in

the “ = ” part will not be in � � ��
> . Because otherwise, the shuffle can
take a non-satisfiable formula and add there symbols from � � to create
a satisfiable formula.
We conclude that if

�
is closed under shuffle then

� � � � .

(c) NP
Answer: yes
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This is similar (and simpler) to the case of
����

.
Let

����� 
 � � , and
� L �*� � the corresponding nondeterministic

TM’s. We define (informally) a nondeterministic TM
�

for
��� � �

.
On input � ,

�
chooses a separation of � into two shuffled words. It

then runs
� L

on the first and
� � on the second. If both accept then�

accepts.

8. (12 points) A language
�

separates two disjoint languages
�����

if
��� �

and
������

(see Figure 3). Prove that for all pairs of disjoint languages
�����

in �?� �� there is a language in


that separates them.

Hint: All languages in
��

have enumerators that print them.

�

�

�

Figure 3: A separating language

Solution:

Let
� L and

�
� , be the enumerators of

�
and

�
respectively. These enumer-

ators exist because of the definition of
�

and
�

, together with the hint.

Define the (deciding) machine
� E

as follows: on input � ,
� E

runs
� L and�

� on � step after step (i.e. one step for the first then one for the second
and so on), until one of them prints � . If

� L is the first to print � , then� E
rejects. If

�
� is the first, then

� E
accepts. Define the language

� �
� � � E � .
Since

�
and

�
are disjoint, it must hold that

�
	 � � �	� . Therefore, for
each string � , either

� L or
�
� (or both) print it at some stage. Therefore

� E
is a deciding machine and

� 
  . For every � 
 � , � 
 � 
 � , therefore
it will only be printed by

�
� and

� E
will accept it. On the other hand, For

every � 
 � , � 
 � 
 � , therefore it will only be printed by
� L and

� E
will reject it.

In other words,
��� �

, and
��� �

, hence
�

separates
�

and
�

.

11


