
Computability - Exercise 1
All answers should be proved formally (unless noted otherwise)

Due - March 12

1. What is the language of the automaton below? (remember to prove your
answer formally.)

1 1 1

0

0

0,1
0

q0 q1 q2
q3

Figure 1: The automatonA

2. Describe a deterministic finite automaton (a.k.a. DFA), for each of the fol-
lowing languages. A drawing can be considered a description, but only if it
is exact and contains all the information needed to create from it theformal
definition of the automaton.

No need to prove formally the correctness of your construction.
All languages are over the alphabetΣ = {0, 1}.

(a) The language that contains all words that end with 0111.

(b) The language that contains all words that begin with 0111.

(c) The language that contains all words that contain 0111 asa subword.

(d) The language that contains all words that do not contain 0111 as a
subword.

3. The binary representation of a number is a word of the alphabet{0, 1}. The
value of the words = s1 . . . sn, denotedv(s), is defined as follows: For
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the empty word,v(ǫ) = 0. For a longer word, the definition is induc-
tive v(s1 . . . sn−1sn) = 2 · v(s1 . . . sn−1) + sn. Note that this means that

v(s1 . . . sn) =
n∑

i=1

2n−i · si.

Describe a DFA that recognizes binary words that their valuemod 3 is 0.

4. LetS be a set. A relationE ⊆ S × S is apartition relation, if there exists
some partition ofS into a set of subsets{Si}i∈I (whereI is a set of indices),
such that:

(a) the setS is covered by the subsets (i.e.S =
⋃

i∈I

Si).

(b) the subsets are disjoint, (i.e., for everyi, j ∈ I for which i 6= j it holds
thatSi ∩ Sj = ∅).

(c) for all s1, s2 ∈ S it holds thats1Es2 iff there exists an indexi ∈ I for
whichs1, s2 ∈ Si. Equivalently,E =

⋃

i∈I

Si × Si.

A relationE ⊆ S ×S is aninverse function relation, if there exists some set
T and a functionf : S → T such that: for alls1, s2 ∈ S it holds thats1Es2

iff f(s1) = f(s2). Equivalently,E =
⋃

t∈T

(f−1(t) × f−1(t)).

Prove that a relation is an equivalence relation iff it is a partition relation,
and that a relation is a partition relation iff it is an inverse function relation.

Comment: As you shall prove, every equivalence relation is apartition re-
lation. The setsSi in the partition are called theequivalence classes of the
equivalence relation.

5. optional (“reshut”)
Prove that there exists a non-regular language over the alphabet{0, 1}. Hints:

(a) Prove that the set of all languages over the alphabet{0, 1} is not count-
able.

(b) Prove that the set of all deterministic finite automata over the alphabet
{0, 1} is countable.
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    1 פתרון תרגיל –חישוביות 
  
  

    1שאלה 
 . 111 מילהה-  הבינאריות שאינן כוללת את תתמילים היא כל הAי "השפה המזוהה ע

האוטומט נמצא , n≥0באורך  w = w1…wn לאחר קריאת מילה כי n באינדוקציה עלנוכיח 
  :במצב

  .מילה-  כתת111 אם המילה כוללת את q3  .א
 .wn-1wn=11 וכן מילה- כתת111 את ת אם המילה אינה כוללq2  .ב
 .n=1 או wn-1=0 אבל wn=1 וכן מילה- כתת111 את ת אם המילה אינה כוללq1  .ג
  .n=0 או wn=0 וכן מילה- כתת111ת את אם המילה אינה כולל q0  .ד

  
  .w1…wnמהוים חלוקה של כל האפשרויות למילים מהצורה  , שימו לב שהתנאים בצד שמאל

 מצב התחיליהאוטומט נמצא ב" קריאתה" לאחר אכןו,  הריקהמילה כלומר הn=0עבור : בסיס
 . q0שהוא

 כבר כוללת w1…wn-1 אז או שמילה- כתת 111 המילה כוללת את  אם, ראשית: צעד אינדוקציה
בגלל  ו,wnלפני קריאת  q3מט נמצא בטו האו,פ הנחת האינדוקציה"אז עו, מילה- כתת111את 

 אך מילה- כתת111המילה כוללת את ש ו א,wn אחרי קריאת  ישאר שםמבנה האוטומט הוא
w1...wn-1 בהכרח אז ו ,מילה כתת 111 אינה כוללת אתwn-2wn-1=11 . הנחת האינדוקציהפ "עלכן, 

האוטומט , )1שחייב להיות  (wn ולאחר קריאת ,q2 האוטומט יהיה במצב w1…wn-1 קריאת לאחר
   .q3יעבור למצב 

 מילה- כתת111 אינה כוללת את w1…wn-1ולכן גם , מילה-  כתת111 אינה כוללת את w, אחרת
  :כעת. q3  האוטומט אינו נמצא בw1…wn-1 לאחר קריאת הנחת האינדוקציהפ " ע,ולכן

  ).ד(כנדרש , q0 יעבור ל  עשוי להמצא בו הואהאוטומטשמכל מצב   אזwn=0אם  -
 w1…wn-1קריאת   לאחר ,הנחת האינדוקציהפ " ע,אז, n=1 או wn-1=0 ו wn=1  אם -

 .q1  האוטומט יעבור למצבwn לאחר קריאת , לכן.q0האוטומט יהיה במצב 
 ולכן ,)ג( מקיימת את תנאי w1…wn-1לכן . n=2 או wn-2=0 אז בהכרח wn-1wn=11אם  -

 האוטומט יעבור  wnשאחרי קריאת , מכאן .q1האוטומט יהיה במצב לאחר קריאתה 
  .כנדרש, q2למצב 

  
  

  2שאלה 
  .1הוכחות בשאלה דומות להוכחה משאלה ה. תואים באיורים למטההמבוקשים מהאוטומטים 

 . א
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  . ב

  
  
  . ג

  
  .'ג- זהו אוטומט השלילה של האוטומט שבנינו ב.ד

  
    3שאלה 
DFA 3- בינאריות שערכן מתחלק במילים שמזהה:  

10

1 0

  

  

1
s0   

0
s1 s2   
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 המקיים siמסתיימת במצב  ל על המילה" הריצה של האוטומט הנ:טענה

v w.  

 1 2... nw a a a=
( ) (mod3)i≡

  . nבאינדוקציה על  :הוכחה
)(0  .כן וא, S0 האוטומט יהיה במצב εחרי קריאת  א.n=0: בסיס =εv

1 1... na aלאחר שקרא ; n-1 נכונות עבור נניח  - כך ש, siוטומט נמצא במצב הא, −את 

1 2 1( ... ) (mod3)ni v a a a nמההגדרה. ≡−  ,1) a− 1  ולכן , + 1( ... ) 2 ( ...n nv a a v a a=

1 1 1( ... ) 2 ( ... ) 2 ( ) (mod3)n n n na v a a a i v a−v a = + = ⋅ + .  

  . מראה שאכן הריצה מסתיימת במצב הרצוי האפשרייםמקריםה תשבדיקת ש
  
  

    4שאלה 
  
Eמ הוא יחס חלוקה" הוא יחס שקילות אמ.  
  

  . E-ונבנה את החלוקה המתאימה ל, יחס שקילות E⊆S×Sנניח > ==

]נגדיר  נתבונן . xמחלקת השקילות של ) בשם המקורי( נקרא xלקבוצה . [

  .  העונה על הדרישותS חלוקה של היאונראה ש, Sבוצ הבק

{ }|Ex y xEy=[ ]E
[ ]{ }|

E
P x x= ∈

[ ]E
x S

S x
∉

=U ]  .לכן , xExלכן ,  רפלקסיביE:  . א ]Ex x P∈ ∈

]אם . ב ] [ ]E E
x y≠  ,נניח בשלילה : ]אז ,

כלומר 

שקיים 

,xEz yEz .ותמסימטריה וטרנזטיבי ,.  

] [ ]E E
x y∩ =∅[ ] , [ ]E Ez x z y∈ ∈

xEy
[ ]E wנניח עכשיו  y∈ .אז מההגדרה ,yE ,ומטרנזיטיביות , wxEz

[ ]E Ey x⊆[ ]E Ey x⊇
, ולכן מההגדרה, 

[ ]באופן דומה . [ ]  .וזאת סתירה, [ ]w x∈ .לכן E  נוכיח

 -ו, )'א-כמו שהראנו ב (אז , xEyאם . כאן יש שני כיוונים להראות. ג

]מהגדרת ( ]
 

x .( ם  א–וההיפך]E, [x y z∈ , אזzEx ,zEy , ואז עם רפלקסיביות

  .xEyוטרנזיטיביות נקבל 

[ ]Ex x∈[ ]Ey x∈

E

  
  : יחס שקילותE-נראה ש.  כפי שהוגדר בתרגיל יחס חלוקהE נניח ==<

iSix - כך שקיימת ) a(-מ, עבור : רפלקסיביות S∈ , ואז מהכיוון השני של(c) ,

xEx.  

x S∈

,xEy - כך שר עבו: סימטריה i עבור  ) הכיוון הראשון ((c)אז לפי . 

  ., )c(לפי הכיוון השני של , לכן. iאיזשהו 

x y S∈
yEx

,x y S∈

, עבור: טרנזיטיביות ,x y z S∈ ,,xEy yEz . לפי)c) (קיימים , )הכיוון הראשוןi,jכך ש  - 

, , ,i jx y S y z S∈ S מופיע בשתי הקבוצy-היות ש, bלפי .∋ S . לכן  לפי)c (

, )הכיוון השני(

i, ות j=
xEz.  

  
Eמ " הוא יחס חלוקה אמEיחס פונקציה הפוכה .  
  

  . יחס חלוקה ונראה שהוא יחס פונקציה הפוכהEנניח > ==

{יר  I }כאשר, נגד } : { i if S S ∈→i iS  I∈ידי-  החלוקה המושרית על Eכפי שהוגדרה בתרגיל  .  

- היא חד) b(ומתכונה , של יחס החלוקה היא מלאה) a(מתכונה :  מוגדרת היטבf -נשים לב ש
  .ערכית

x,לכל  y S∈ מ קיים" אמ Iון של מהכיוון הראש ( -  כך ש)c (( וזה

) מ"אמ )f x f y= = S .  

xEy' { }i iS S ∈∈, ix y S∈
( ) i
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 4

:
  . יחס פונקציה הפוכה ונראה שהוא יחס חלוקהEנניח == <
E אז קיימת קבוצה , פונקציה הפוכה יחסT ציהופונקf S T→ ,מ " אמ -כך ש

( ) ( )f x f y= ,ל לכ,x y S∈.ר  נגדיר עבוt T∈ ,{ }1( ) | , ( )f t x x= ∈ S f x t=− , כלומר קבוצת

  .f לפי tהמקורות של 

xEy

}  . ונראה שזאת חלוקה העונה על התנאים, נסתכל על  }1( ) |P f t t T−= ∈
1( )

t T

−

∈

=U tS. א f .הפונקציה דורשת שלכל הגדרת . נובע ממלאות הפונקציה ,

tיהי T ש∋ה   כך-  .  

x S∈

( )f s t=
t. ב t 1אם  1אז , ≠2 1

1 2( ) ( )f t− −f t :שלילה שנניח ב- ) ,

)1אז  )f x t= ה  . וזאת סתירהערכיות הפונקצי- אז מחד,  אבל גם ,

∩ =∅1 1
1 2( ), (x f t x f t− −∈ ∈

1 2t t= 2( )f x t=
(אז xEyאם . ג  ,( ) (f x f y= ,מן נס( )f x t= , 1אז, ( )x y f t− P .אם , מצד שני

1, (x y f − t∈ ,ה ערכיות הפונקצי- אז מחד( ) ( )f x f y= ולכן . 
∈ ∈

)xEy
  
  

    5שאלה 

 מיליםכל ה (ניתן לסדר את איברי הקבוצה: מנייה- היא קבוצה בתנשים לב כי , ראשית
קבוצת השפות מעל . תלקסיקוגרפי באותו אורך מסודרות מילים כאשר  האורך על פי)הבינאריות

ע ועל בין קבוצה זו " ישנה התאמה חח.0} הינה למעשה קבוצת החזקה של  ב"הא

 0ת הסדרה שבה נתאים א, }ק של '"לכל ת: 1-  ו0לקבוצת הסדרות האינסופיות של 
 במקומות המקבילים 1- ו, למילים שלא שייכות לשפה) לקסיקוגרפית(במקומות המקבילים 
 0]מהמספרים הממשיים בקטע  ע" חחקיימת העתקה, יתר על כן. למילים השייכות לשפה
 ראינו). נקודהאחרי ה(יצוג הבינארי שלו ילכל מספר נתאים את ה: ל"לסדרות אינסופיות כנ

  .ענה נובעתומכאן הט, מנייה-  כי קבוצת הממשיים בקטע אינה בתבכיתה

*{0,1}

{0,1}*,1}
*0,1}

,1]

  
יש  nלכל מספר טבעי : מניה- היא בת{0,1}ב "קבוצת כל האוטומטים הסופיים מעל הא, בנוסף

). F,q0,δכי יש מספר סופי של אפשרויות לבחור את ( מצבים nמספר סופי של אוטומטים על 
שני ,  שנמנה ראשית את האוטומטים עם מצב אחדאוטומטים על ידי כך למנות את כל האפשר
  . וכן הלאה, מצבים

  
בסדרה זו מופיעים אוטומטים שיש להם אותה . …,A1,A2  בסדרהDFAניתן לסדר את כל ה , לכן
בה מופיע אוטומט רק אם השפה שהוא מקבל שונה , סדרה של סדרה זו-ניתן להביט בתת, שפה

  . …,A1,A2ד מהאוטומטים שהופיעו לפניו בסדרה מהשפה שקיבל כל אח
  .הסדרה שבנינו- נביט עתה בסדרת השפות של שאוטומטים המופיעים בתת

ברור שכל שפה , מצד שני). הסדרה-על פי בניית תת(ברור שאף שפה לא מופיעה פעמיים , מצד אחד
השפות הרגולריות קבוצת , לכן).  שמקבל אותהDFAשכן לכל שפה רגולרית יש (רגולרית מופיעה 

  .בת מניה
  .{0,1}ב "רגולרית מעל הא- חייבת להיות שפה לא, מכאן

  
  



Computability - Exercise 2

All answers should be proved formally

Due March 19

1. For a language L ⊆ Σ∗, let

Pref(L) = {x : there exists y such that xy ∈ L},

and
Suff(L) = {x : there exists y such that yx ∈ L}.

Show that if L is regular then so are Pref(L) and Suff(L).

2. For a word w = w1w2 · · ·wn, the reverse of w, denoted wR is the word
w written in reverse order, i.e., wn · · ·w2w1. For a language L ⊆ Σ∗,
let LR = {wR|w ∈ L}.
Show that if L is regular then so is LR.

3. Consider the following finite language (over Σ = {0, 1}):

Ln = {ww | w ∈ {0, 1}n}.

(a) Prove that every nondeterministic finite automaton for Ln must
contain at least 2n states.

(b) Show a nondeterministic finite automaton for Ln with O(n) states.
Where Ln is the complement of Ln.

1



4. Draw an equivalent deterministic finite automaton for the following
automaton (see Figure 1).

a

a, b
a

b

2

3

1

ǫ

Figure 1: Determinize me!

If you use the determinization construction taught in class (with or
without omitting unreachable states) there is no need to provide a
proof.

5. (optional)

For a language L (over Σ), define the language L 1

2

(over Σ) as follows:

L 1

2

= {w : ∃y such that |w| = |y| and wy ∈ L}

Prove that if L is regular then so is L 1

2

.

2



Computability - Solution of Exercise 2

1. Preliminary: The extended transition functionδ∗ : Q × Σ∗ → Q is defined
by induction on the length of its input wordw:

δ∗(q, ǫ) = q

Forw = xa, where|x| = |w| − 1 anda ∈ Σ,

δ∗(q, w) = δ(δ∗(q, x), a)

(a) For a regular languageL, the languagePref(L) is regular. LetA =
〈Q, Σ, δ, q0, F 〉 be a DFA that acceptsL. We defineApref = 〈Q, Σ, δpref , q0, F

′〉
that acceptsPref(L), whereF ′ = {q ∈ Q|∃w ∈ Σ∗ s.t. δ∗(q, w) ∈
F}.

For x ∈ Pref(L), there is ay such thatxy ∈ L. The stateδ∗(q0, x)
must be inF ′, sinceδ∗(q0, xy) ∈ F . Therefore,x ∈ L(Apref ).
For x ∈ L(Apref ), δ∗(q0, x) ∈ F ′, hence there exists aw such that
xw ∈ L. Therefore,x ∈ Pref(L).

(b) Constructing an automaton is trivial, what follows is an alternative
proof. For a regular languageL, the languageSuff(L) is regular.
It is easy to see that[Pref(LR)]R = Suff(L).
The left-hand-side is regular, since regular languages are closed under
both the reverse operation (question 2), and under the prefix operation
(the above item).

2. Let A = 〈Q, Σ, Q0, δ, F 〉 be a DFA acceptingL. We build an NFAA′ =
〈Q, Σ, F, δ−1, Q0〉 acceptingLR as follows: the initial states ofA′ are the
accepting states of A. The transition function ofA′ is δ−1 the inverse relation
of δ defined as:δ−1(s, σ) = {r ∈ Q : δ(r, σ) = s}. The accepting states of
A′ are theinitial states of A.

Let w = w1 · w2 · · ·wn be a word inL. Look at the run ofA on w. This is
a sequence of statesr0, r1, . . . , rn wherer0 ∈ Q0, ri+1 = δ(ri, σi+1), and

1



rn is in F (why?). Therefore,rn, rn−1, . . . , r0 is computation ofA′ on input
wR.

On the other hand, ifr′
0
, . . . , r′n is an accepting run ofA′ on inputw, then

r′n, r′n−1
, . . . , r′

0
is an accepting run ofA on inputwR. ThusL(A′) = LR

andLR is regular.

3. (a) Assume towards contradiction that there exists an NFAA = 〈Q, Σ, Q0, δ, F 〉
such that its languageL(A) is {ww | w ∈ {0, 1}n}, and|Q| < 2n.

For each wordw ∈ {0, 1}n, the wordww is in L, and is therefore
accepted by some runrw

0
, rw

1
, . . . , rw

n , rw
n+1

, . . . , rw
2n of A. Note that

there are2n words in{0, 1}n. Therefore, since|Q| < 2n, there must
be two different wordsw andu in {0, 1}n for which rw

n = ru
n. This

means thatrw
0
, rw

1
, . . . , rw

n = ru
n, ru

n+1
, . . . , ru

2n is an accepting run of
A on wu. Note, however, thatwu is not in the language ofA, and we
reach a contradiction.

(b) The languageLn is the union of two cases: first, it might be that the
word is not of length2n. Second, it might be that the word is of length
2n but is not of the typeww. In the second case, it is always the case
that there exists two letters at distancen that are different (which is
impossible if the word is of the formww). We therefore choose non-
deterministically between twoO(n) size automata. The firstA1 checks
that a word is of length different then2n and the secondA2 checks that
there are two letters in distancen that are different. Note thatA2 will
accept also words of length different then2n but we do not care. The
construction ofA1 andA2 is easy and we leave it as an exercise.

4. See the deterministic automaton in Figure 4.

5. We construct an NFA for the languageL 1

2

. SinceL is regular, there is a DFA

A = 〈Q, Σ, δ, s0, F 〉 that accepts it. Define the NFAA′ = 〈Q′, Σ, δ′, s′
0
, F ′〉,

as follows:

Q′ = Q × Q × Q

Q0 = {(s0, s, s)|s ∈ Q}
F ′ = {(s, s, q)|q ∈ F, s ∈ Q}
δ′((s, q, r), a) = {(δ(s, a), q, δ(r, b))|b ∈ Σ}

Intuitively, the NFAA′ runs in parallel on two tracks. The first track (which
is represented by the first element of each state) simulatesA from the starting
state. The second track (which is represented by the third element of each
state) simulatesA from some state (which we nondeterministically guess).
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{1, 2} {1, 2, 3}

{2, 3}∅

a

a

ba,b

b a
b

Figure 1: I’m deterministic!

The second element of each state is fixed throughout the run path and is used
to remember the state from which we started the second track. We accept if
and only if we have a computation path on the first track that starts ins0 and
on reading the inputw it terminates in the states, that was guessed at the start
of the run. At the same time we have a computation path (that we choose
nondeterministically) on the second track, that starts ins and terminates in an
accepting state. We can then conclude that there existsy such thatwy ∈ L.

Formally, we want to show thatL(A′) = L 1

2

.

(⇒) Assume thatw ∈ L(A′). Then, there is an accepting run(s0, q, r0), ..., (sn, q, rn)
of A′ onw. By the definition ofA′, we have thatr0 = q, sn = q, andrn ∈ F .
Consider the second track of the run, by definition,ri+1 = δ(ri, bi) for some
bi ∈ Σ (0 ≤ i < n). Definey = b0b1...bn−1. Then,wy ∈ L. Indeed, by
runningA onwy we terminate in the statern ∈ F . Also, |w| = |y| because
for each step on the first track we make a step on the second. Therefore,
w ∈ L 1

2

.

(⇐) Assume thatw ∈ L 1

2

. That is, there existsy such thatwy ∈ L and

|w| = |y|. Denote the accepting run ofA onwy byr0r1 . . . r|w|r|w|+1 . . . r2|w|.
Then the following sequence is an accepting run ofA′ onw:
(r0, r|w|, r|w|), (r1, r|w|, r|w|+1) . . . (r|w|, r|w|, r2|w|).

3



Computability - Exercise 3

All answers should be proved formally

Due Monday, March 26

1. For each of the following languages over the alphabet {0, 1}, write a
regular expression for the language. No need to prove your answer
(but make sure you are correct).

(a) All words of odd length. (hint: is it easier to think of even?)

(b) All words in which the number of 1’s is strictly smaller then 5.

(c) All words that do not contain neither 00 not 11 as a subwords.

2. Are the following languages regular? If ,in your proof, you choose to
describe an automaton or a regular expression, there is no need to
prove the correctness of the construction.

All the languages are over Σ = {0, 1}

(a) L = {12
n

| n ≥ 0}

(b) L = {0m1n | 0 ≤ m ≤ n ≤ 1000}

(c) L = {w | The number of 01 substrings in w equals the number
of 10 substrings in w}

(d) L = {ww | w ∈ Σ∗}

(e) For a fixed natural n ≥ 0, the language Ln = {ww | w ∈ Σn}

3. Define deterministic infinite automaton in the same way that DFA’s
are defined, with the only difference that the set of states can be
infinite, and so is the set of accepting states. What languages are
accepted by deterministic infinite automata?

4. In this question (taken from the exam in 2006) we define a new type of
automata: universal automata. The definition of universal automaton
is very similar to that of a nondeterministic automaton. The only

1



difference is that a word w is accepted by a universal automaton A iff
all the runs of A on w are accepting (rather then if there exists a run
that is accepting).

For example: look at the universal automaton A in Figure 1:

q qq Aq

a,b

b

b

a

a

q2

  q1

 q0

Figure 1: Example: A a universal automaton

Note that bbb 6∈ L(A) because q0q0q0q0 is a non-accepting run of A on
bbb.

(a) What is L(A)?

(b) Prove or refute: for every language L ⊆ Σ∗ it holds that L is
regular iff L is accepted by some universal automaton

5. (Optional question)
Prove that a DFA with n states accepts an infinite language iff it
accepts a word w such that n ≤ |w| ≤ 2n (where |w| is the length of
w).

6. (Optional question)
Show that the language L = {aibjck | i, j, k ≥ 0 and if i ≥ 1 then
j = k} satisfies all the conditions of the pumping lemma. Prove that
L is not regular. Does this fact contradict the pumping lemma?
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Computability - Exercise 4

All answers should be proved formally

Due Monday, April 16

1. (a) Specify the Myhill-Nerode equivalence classes of the language L1 = {0i1j | i > j}.
(You do not have to prove that these are the equivalence classes, but do be careful not
to miss anything). Is L1 regular?

(b) Is L2 = {w ∈ {0, 1}∗ | the number of 0’s in w is greater then the number of 1’s in w}
regular? (remember to prove your answer).
Hint: You may use the language 0∗1∗.

2. Describe the (Myhill-Nerode) equivalence classes of the language L = (0+1)∗010(0+1)∗ and
draw a deterministic finite automaton (a.k.a. DFA) for L, based on these classes. (No proof
required)

3. (based on a question from last year’s midterm exam)
Let C = {L1, L2, . . . , Ln} be a finite set of regular languages over an alphabet Σ. Suppose
that for each one of the languages in the set, the number of Myhill-Nerode equivalence classes
is k. For m ≥ 0, let Lm denote the language

Lm = {w ∈ Σ∗ : w belongs to exactly m languages from C}

Give a tight bound for the number of Myhill-Nerode equivalence classes of Lm.
A tight bound is a function f : IN × IN × IN → IN, such that for all n,k, and m, there is no
set C = {L1, . . . , Ln} for which the DFA for Lm needs more than f(n, m, k) states (that is, f

is an upper bound), and there exists a set C = {L1, . . . , Ln} for which an automaton for Lm

needs at least f(n, k, m) states (that is, f is also a lower bound).
Justify your answer (without a formal proof).

4. For each of the following languages over Σ = {0, 1}, write a context-free grammar with the
minimal number of variables that generates the language (without further proof).

(a) {w | w = wR} (wR denotes the reverse of w).

(b) {w | w 6= wR}.

(c) {w | the number of 0’s in w equals to the number of 1’s}.

5. (optional)
Let G be a context-free grammar in Chomsky normal form that contains k variables. Show
that, if G generates some string using a derivation with at least 2k steps, then L(G) is infinite
(that is, contains infinitely many words).

1



Computability - Exercise 4 - Solution

1. (a) The equivalence classes of L1 are as follows.

• For every i ≥ 0, the set {0i} is an equivalence class.

• For every k > 0, the set {0i1j : j > 0, i − j = k} is an
equivalence class.

• All other words, i.e., all the words not in L1 except for ǫ,
form an equivalence class.

Since L1 has infinitely many equivalence classes, it is not regular.

(b) The language 0∗1∗ is regular (in fact, it is given by regular expres-
sion). Recall that the class of regular languages is closed under
intersection. Observe that the language L1 is the intersection of
0∗1∗ and L2. Thus, if L2 is regular then so is L1, and we have
reached a contradiction. Therefore, L2 is not regular.

2. The language L has 4 equivalence classes:

01

1

1 0

0

0,1

Figure 1: A DFA for L

• Words that contain 010 as a subword.

• Words that do not contain 010 as a subword, and their longest
suffix that is also a prefix of 010 is of length 0 (e.g., words that
end with 11).

• Words that do not contain 010 as a subword, and their longest
suffix that is also a prefix of 010 is of length 1 (e.g., words that
end with 00).

• Words that do not contain 010 as a subword, and their longest
suffix that is also a prefix of 010 is of length 2 (e.g., words that
end with 001).

1



3. The bound for the number of equivalence classes of Lm is kn.
The equivalence classes of Lm are the product of the equivalence classes
of the languages in C. Note that the number does not depend on m.
The parameter m just determines which classes are accepting.

To prove the upper bound formally, construct the product automaton
from the minimal DFA’s for each language. Each state in the product
is an n-tuple and the accepting states of the product automaton are
the states that have exactly m accepting elements.

The lower bound is a bit trickier for technical reasons. The problem
is in ensuring that the various languages are “independent” in the
following sense: we would like to ensure that knowing that a word s ∈
Σ∗ is in class c1

i of ∼L1
does not give any information on the class of s in

∼L2
. To ensure such “independence”, we work with an alphabet that is

a Cartesian product of n alphabets, and let Li care only about the i-th
coordinate. In addition, to make sure the length of the word does not
convey information, we pick Li’s in which for any (large enough) length
of word j, there are words of length j both in Li and outside Li. For
example, let L′

1
, . . . , L′

n ⊆ {0, 1}∗ be languages over {0, 1} each with
k equivalence classes such that for all sufficiently large j we have L′

i ∩
{0, 1}k 6= ∅ and L′

i∩{0, 1}k 6= {0, 1}k. We define Li to be the language
of words over Σ = {0, 1}n in which for every word x ∈ Σ∗ we have
x ∈ Li iff the projection of x on the i-th coordinate is in L′

i. It is not
hard to see that the new languages L1, . . . Ln are “independent” even
if L′

1
, . . . ,  L′

n were not. The formal proof is to define the equivalence
classes of Lm as the Cartesian product of the equivalence classes of each
language, and show separating words between each two of them. (Once
the alphabet construction is understood, this is just easy technical
writing.)

4. (a) S → 0S0|1S1|0|1|ǫ

(b) S → 0S0|1S1|0A1|1A0
A → 0A|1A|ǫ

(c) S → 0S1|1S0|SS|ǫ

5. Let G be in Chomsky normal form, such that it has k variables. Sup-
pose that G generates the word w using 2k+1 derivation steps. The
parse tree of w is a binary tree since the derivations are of the form
A → BC. As a binary tree with 2k+1 nodes, it must have a height of a
least k + 1. On the longest path there must be a variable that appears
twice. The rest of the proof continues along the lines of the proof of
the pumping lemma for CFLs.
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Computability - Exercise 5

All answers should be proved formally

Due Wednesday, April 25

In this exercise, whenever you describe an automaton (either NFA or PDA) for a language,
there is no need to prove the correctness of the construction. The same holds for the language of
regular expressions or context-free grammars.

1. Describe a CFG for the language of regular expressions over Σ = {0, 1}. Assume that the
expressions that are built from binary operators such as + or · are parenthesized.

For example, this language contains words such as:
(0 + (1 + ε)∗), ((0 · 0) · 1∗), and so on.

Note that the language of the CFG is over a larger alphabet Σ′ = {0, 1, ·, +,∗ , ∅, (, ), “ε”}, and
be careful not to mix “ε” (the symbol from Σ′) with ε (the empty word).

2. Draw a pushdown automaton, and describe a context-free grammar for the language

L = {aibjck : i < j or j < k}.

3. (a) Describe the language of the following grammar

S → A1B

A → 00A|ǫ
B → 000B|ǫ

(b) Is the language regular?

4. Prove that if C is a context-free language and R is a regular language, then C ∩R is context-
free.

5. (optional)

Prove that the following languages are context-free.

(a) {x#y | x, y ∈ {0, 1}∗ and x 6= y}

(b) {xy | x, y ∈ {0, 1}∗, |x| = |y| and x 6= y}

1



Computability - Solution 5

1. The CFG contains the following derivation rules (S is the initial variable).

S → ∅ | 0 | 1 | “ε′′ | (S + S) | (SS) | (S∗)

2. Grammar:

• S → XbC | AY c

• X → aXb | Xb | ε

• C → Cc | ε

• A → Aa | ε

• Y → bY C | Y c | ε

PDA:

3. (a) L = {02i103j | i, j ≥ 0}

(b) The language regular, (00)∗1(000)∗

4. Let A1 = 〈Q1, Σ, Γ1, Q
1

0
δ1, F1〉 be a PDA for C and let A2 = 〈Q2, Σ, Q2

0
, δ,F2〉 be a DFA for

R.

As in the case of the intersection between two NFA’s, we define the product automaton.

(a) The state space is Q1 × Q2 (i.e., states are ordered pairs 〈q1, q2〉).

(b) The input alphabet is Σ.

1



(c) The tape alphabet is Γ1.

(d) The initial states set is Q1

0
× Q2

0
.

(e) The transition relation changes the first coordinate of the state according to δ1 and the
second coordinate according to δ2. The stack operations are set by δ1 alone.

The ǫ transitions of δ1 that do not read symbols, are performed changing the first
coordinate, but leaving the second coordinate unchanged.

(f) The accepting states set is F1 × F2.

5. (a) L1 = {x#y | x, y ∈ {0, 1}∗ and x 6= y}

We describe informally a PDA recognizing L1. There are two ways in which x might
be different from y. First, it might be the case that their lengths differ (i.e., |x| 6=
|y|). If |x| = |y| then there must be an index i for which xi 6= yi. The PDA chooses
nondeterministically to check either the first case or the second case.

To check the first case, A push to the stack until A sees a #. After the #, A starts
popping. It is not hard to see that |x| = |y| iff the word ends exactly when the stack is
empty.

To check the second case, A start reading symbols, pushing them to the stack. At some
stage A chooses nondeterministically to check some letter σ (this means guessing that
xi = σ). At that stage A moves to a state qσ that “remembers” σ. Note that at this
stage the stack is at depth i − 1. Now, A continues to read symbols, this time without
pushing them, until it sees a #. After seeing a #, A starts popping symbols, and when
the stack is empty A is about to read yi. Since A “remembers” σ it can easily compare
yi to σ and accept if yi 6= σ.

(b) L2 = {xy | x, y ∈ {0, 1}∗, |x| = |y| and x 6= y} The grammar is:

i. S → AB | BA

ii. A → 0A0 | 0A1 | 1A0 | 1A1 | 0

iii. B → 0B0 | 0B1 | 1B0 | 1B1 | 1

Explanation: Choose xy ∈ L2. Then there exists an i for which xi 6= yi. Assume
w.l.o.g. that xi = 0 (and yi = 1). Denote the length of |x| and |y| by n. We have
xy = x1 . . . xi−10xi+1 . . . xny1 . . . yi−11yi+1 . . . yn. We can look at the same word in
another way: First we have a word wA, of length (i− 1) + 1 + (i− 1) = 2i− 1, in which
middle letter is 0. After that comes a word wb of length n − 2i + 1 in which the middle
letter is 1.
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Computability - Exercise 6

Due June 11

1. We define a Turing Machine (TM for short) with 2-dimensional tape
as a standard TM with the only difference that the tape has cells with
names of the form (i, j) for every i, j ≥ 1 (i, j ∈ N). In each step the
machine can move left, right, up or down, unless it is on the boundary
of the tape. Thus, δ : Q × Γ → Q × Γ × {L, R, U, D}. For example, if
there is a transition rule: δ(q, a) = (q′, b, U), and the reading head is
currently in cell (i, j) reading a and the machine is in state q, then we
change the a to b, we move to state q′ and the reading head moves to
cell (i, j + 1). If we are in the bottom row (respectively left column)
then moving down (respectively left) means that we stay in the same
cell. The input is given in the bottom row.

Define formally this model of TM and show that it is equivalent to
standard TM’s.

2. Define formally the model of pushdown automata with two stacks, and
prove that it is equivalent to standard TM’s.

3. Describe (in details, but don’t define formally) the TM that accepts
the language

L = {w ∈ {a,b,c}∗ | w contains equal number of a’s, b’s, and c’s}.

4. (optional) Prove that deterministic TM’s (with one tape) that are
not allowed to write on the area on which the input is written (but
allowed to write on the area beyond), are equivalent to deterministic
finite automata.

Hint: use Myhill-Nerod theorem.
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Computability - Solution of Exercise 6

1. A two dimensional Turing machine is 7 a tupleM = 〈Σ,Γ, Q, q0, δ, qacc, qrej〉,
whereΣ is an input alphabet,Γ is the tape alphabet,Q is a set of states,q0 is
an initial state,δ : Q × Γ → Q × Γ × {L,R,U,D} is a transition function,
qacc is an accepting state, andqrej is a rejecting state. A configuration of the
machine is a 4 tuple〈A, i, j, q〉 whereA is a finite square matrix of sizen×n

for somen > 0, the elements ofA are taken fromΓ. The indicesi, j ≤ n

stand for the place of the reading head, andq stands for the state of the ma-
chine. Intuitively, the machine works (potentially) on thefirst quadrant and
all cells that do not appear inA are presumed to contain blank.

The initial configuration ofM with input w = w0 . . . wn is 〈Aw
0
, 0, 0, q0〉

whereAw
0

is a matrix which is all blank but the cellsA0,0, A0,1, . . . , A0,n,
which containw. LetC = 〈A, i, j, q〉 be a configuration for whichδ(q,Ai,j) =
(q′, σ′, x). The successor configuration ofC is C ′ = 〈A′, i′, j′, q′〉, whereA′

is a matrix in which all the cells except perhapsAi,j have the same content
as the corresponding cell inA. If the matrices are not of the same size then
cells that appear in one of the matrices but not the other contain blank. The
cell Ai,j containsσ. Finally, i′ andj′ depend onx. If x = L, theni′ = i,
andj′ = j − 1 unlessj = 0, in which casej′ = 0. If x = R theni′ = i,
andj′ = j + 1. If x = D, theni′ = i − 1 unlessi = 0 in which casei′ = 0,
andj′ = j. If x = U , theni′ = i andj′ = j + 1. An accepting computation
of M on w ∈ Σ∗ is a sequence of successive configurations where the first
configuration is an initial configuration ofM on w, and the state in the last
configuration isqacc. A rejecting computation is defined analogously with
the last state beingqrej.

It is clear that a regular Turing machine is also a two dimensional Truing
machine. Therefore, to prove equivalence it is enough to show that a reg-
ular Turing machine can simulate a two dimensional Turing machine. We
show that ak-tape Turing machine can simulate a two dimensional Turing
machine. We saw in class that a 1-tape Turing machine can simulate ak-tape
Turing machine.
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We represent a configuration of a two dimensional Turing machine in the
following way: a special tape holds the matrixA where the rows are written
one after the other separated by a special symbol#. Thus, the row 0 is
written first, then a# symbol is written, then the row 1 etc. To represent
blank in the matrixA a special symbol is used,not the blank symbol of the
k-tape machine.

A second tape holds the numbersi andj (in binary representation) separated
by #. In addition, the state of the simulated machine is written on a third
tape. We shall use some auxiliary tapes as needed.

It is easy to see that given an inputw0 . . . wn (given according to the input
conventions of a regular Turing machine) one can write the representation of
an initial configuration of a two dimensional Turing machine. This involves
writing 0,0 on head location tape, writingq0 on the state tape, and writing
the representation of the initial matrix on the matrix tape.Writing the initial
matrix involves counting the length of the input, copying the input and then
filling as many rows as needed by blanks (separating rows by#). All easily
done by ak-tape Turing machine.

To move from the representation of one configuration to the representation
of the successor configuration, thek-tape machine has to locate the repre-
sentation of theith row and thejth cell in it, and then change it’s content
and the contents of the head location and state tapes according to the two
dimensional machine transition. The only subtlety is to note that if the head
location is changed, the representation of the matrix may nolonger be large
enough to contain it. If this happens, a blank should be addedto each row
and a new row should be added as well.

2. For an alphabet∆ we denote by∆ǫ the set∆ ∪ {ǫ}. A 2 Stacks Push
Down Automata (2SPDA in short) is a 6-tupleA = 〈Q,Σ,Γ, δ,Q0, F 〉,
whereQ is a set of states,Σ is an input alphabet,Γ is a stack alphabet,
δ : Q × Σǫ × Γǫ × Γǫ → 2Q×Γǫ×Γǫ is a transition relation,Q0 is a set of
initial states, andF is a set of accepting states.

A configuration of a 2SPDA is an ordered triple(q, s1, s2) ∈ Q × Γ∗ × Γ∗.
The set of initial configurations isQ0 × {ǫ} × {ǫ}. For a configurationC =
(q, w1, w2) andσ ∈ Σǫ we say that a configurationC ′ = (q′, w′

1
, w′

2
) is aσ

successor ofC if there existsx1, x2 ∈ Γǫ and(q′, x′

1
, x′

2
) ∈ δ(q, σ, x1, x2)

such that: there existsv1, v2 ∈ Γ∗ for which w1 = x1v1 andw2 = x2v2

while w′

1
= x′

1
v1 andw′

2
= x′

2
y2.

A run of a 2SPDA on a wordw1 . . . wn ∈ Σn is a sequence of configurations
r0 . . . rn wherer0 is an initial configuration, and for alli ∈ {1, . . . n} it

2



holds thatri is awi successor ofri−1. A run of a 2SPDA is accepting if the
state of the last configuration is inF . A 2SPDA accepts a wordw ∈ Σ∗ if
there exists an accepting run of it onw.

As for the equivalence, it is easy to see that a 2SPDA can be simulated by a
Turing with 2 tapes, (one for each stack). We saw in class thatsuch a Turing
machine can be simulated by a 1-tape Turing machine.

We are left to show that a Turing machine can be simulated by a 2SPDA. A
configuration of a Turing machine can be characterized by a the state, and
two strings: the left string is what is to the left of the head,while the right
string is the symbol the head is on, and the string to it’s right (we ignore
the infinite suffix of blanks). Such a configuration will be represented in the
2SPDA in the following way: The left string will be kept in onestack (the
left stack), while the right string will be kept in the other stack (the right
stack). The state of the Turing machine will be ”kept” in the state of the
2SPDA (this can be done since there are only finitely many states). We now
have to show that the 2SPDA can get to the initial configuration and that it
can get from one configuration to its successor.

For the initial configuration, the 2SPDA reads the input while pushing every
symbol read to the left stack. Afterwards, usingǫ transitions it pops the con-
tents of the left stack and push it to the right stack. (This maneuver is needed
to have the string lie in the right stack in the correct order.) Simulating one
transition of the Turing machine is easy as the movement of the head can be
simulated by popping from one stack and pushing to the other.

3. Intuitively, the machine “erases” (by replacing with a special symbol) onea,
oneb, and onec iteratively, until nothing is left.

Denote our machine byM . We assume that the left end of the tape is marked
by a special sign$ (we saw in class how to do that). The alphabetΓ \ Σ has
another special symbol# that we will use later (and a blank of course). The
initial state of the machineql

a goes left until the left end of the tape. The it
moves toqr

a that searches for ana. Intuitively qr
a will go right until it sees

ana and rewrite it with an#. However, we want to record whether or not
we saw ab or ac while searching for ana. Therefore ifqr

a sees ab or ac it
turns intoqr2

a . The stateqr2
a goes right until it reaches ana and if so, replaces

it with a #. If qr
a reaches blank (i.e. the right end) thenM accepts. Ifqr2

a

reaches a blank, thanM rejects.

If either qr
a or qr2

a finds ana and replaces it with an#, then it turns intoql
b.

The stateql
b goes left until it reaches the left end, and turns intoqr

b . The state
qr
b goes right in search of ab. If qr

b reaches ab it replaces it with a# and
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turns intoql
c. Otherwise, ifqr

b reaches a blank thenM rejects. The stateql
c

behaves asql
b except that when it reaches the left end it turns intoqr

c . The
stateqr

c behaves asqr
b except that it searches for ac (rather than ab), and

when it finds one it turns intoql
a (rather thenql

c).

4. A Turing machine can simulate a finite automaton without writing at all.
Therefore it is left to show that such a Turing machine accepts a regular
language, and can be simulated by a finite automaton.

To prove the language is regular we will use the Myhill-Nerode theorem, and
show there are only finitely many equivalence classes to≡L.

Let s ∈ Σ∗ be a string. When the machine starts to work on an input that
begins withs, there are three possibilities: First it might be that the ma-
chine will never read a symbol cell ofs since it will enter an accepting state.
Second, it might be that the machine will never read a symbol outside ofs
because of some infinite loop. Third it might be that the string will read a
symbol ouside ofs. We define a functionf : Σ∗ → Q∪{⊥} in the following
way: in the first casef(s) = qaccept. In the second casef(s) = ⊥. In the
third case set the value off to be the state in which the machine is in when
it first reads a symbol outside ofs.

In a similar fashion, suppose the machine enterss from the left, in stateq.
There are three possibilities: the machine might accept whithin s, it might
enter a loop whithins, or it might leaves in stateq′. For eachq ∈ Q we
define a functiongq : Σ∗ → Q ∪ {⊥}, in the first case setgq(s) = qaccept.
In the second case setgq(s) = ⊥. In the third case setgq(s) = q′. If for two
strings1, s2 ∈ Σ∗ it holds that bothf(s1) = f(s2) and for allq ∈ Q it holds
thatgq(s1) = gq(s2), then it must be that these strings are right invariant in
the Myhill-Nerode sense.

Since there are only finitely many posibilities to choose values for each of
these|Q| + 1 functions, it follows that there are only finitely many Myhill-
Nerode equivalence classes, so the language it regular.
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Computability - Exercise 7

All answers should be proved formally

Due Monday, June 18

1. (a) Show that the class of decidable languages (denoted R) is closed under the operations:
union, concatenation and complementation.

(b) Show that the class of recognizable languages (denoted RE) is closed under the opera-
tions: union, intersection and Kleene star (∗).

2. Show that for every enumerator E (including those which may print a few times the same
word), there exists an enumerator E′ that prints each word only once, such that L(E) = L(E′).

3. Show that a language is decidable by a TM if and only if there is an enumerator that enumer-
ates it in the lexicographic order (where short words come before longer words, and within
the same length, words are sorted according to the lexicographic order).

4. Let L1 be a language. Prove that L1 ∈ RE iff there exists L2 ∈ R such that
L1 = {x : ∃y such that < x, y >∈ L2}.

5. Show that for every infinite (that is, contains infinitely many words) language L ∈ RE there
exists an infinite language L′ ∈ R such that L′ ⊆ L.

6. We define a new class of languages EX7 to be the following class: a language L ⊆ Σ∗ is in
EX7, if there exists a deterministic TM M such that for every x ∈ Σ∗: if x ∈ L then M never
stops running on input x. If, on the other hand, x /∈ L then M running on input x rejects in
e|x|

7

steps or less. Which of the following claims is true (prove your answer even if the claim
is false).

(a) EX7 ⊆ coRE \ RE

(b) EX7 ⊆ RE \ R

(c) EX7 ⊆ R.

1



Computability - Exercise 7 - Solution

1. (a) Union: For two languages L1, L2 ∈ R, let M1 and M2 be the TM’s that decide L1 and
L2, respectively. We describe a TM M that decides the language L = L1 ∪ L2. M is a
machine with two tapes. On an input x, M first copies x to the second tape. It then
simulates the run of M1 on x on the first tape and the run of M2 on x on the second
tape, one step at a time. If M1 or M2 (or both) accept, M accepts. If both reject, M

rejects. Since both M1 and M2 are deciders, eventually they both halt, thus M is a
decider too, and its language is clearly L1 ∪ L2.
Remark: It is not necessary here to simulate one step at a time, but it is necessary to
do so in the case where L1, L2 ∈ RE, as follows in part (b).

Concatenation: Given languages L1, L2 ∈ R and their corresponding (deciding) TM’s
M1 and M2, we describe a machine M that decides the concatenation of L1 and L2. On
an input x of size n, for each one of the n + 1 possible ways to split x to y, z such that
x = y · z (i.e., ε · x, x1 · x2 . . . xn, . . . , x1 . . . xn−1 · xn, x · ε) in its turn, M simulates M1

on y and if it accepts, M simulates M2 on z. If both M1 and M2 accepts, M accepts.
Otherwise, M tries the next possible way to split x. If for all the possible ways M1

rejected y or M2 rejected z, M rejects. Clearly, L(M) = L1 · L2. Moreover, since M1

and M2 are deciders, each one of the simulations eventually halts, and since M carries
out at most 2(n + 1) simulations, it eventually halts, thus M is a decider.

Complement: Given a language L and a TM M that decides it, Define M the same as
M , with the only difference, that its accepting state is the rejecting state of M , and its
rejecting state is the accepting state of M . Since M is a decider, M is clearly a decider
too. In addition, it is easy to see that L(M) = L.

(b) Union: The construction is similar to the construction in the case of union in the
previous section. M accepts when either M1 or M2 accept. If both reject, M rejects,
and if none of the above happens (which is possible since M1 and M2 are not deciders)
then M runs to infinity. For x ∈ L we know that at least one of the machines M1 and
M2 eventually accepts, since L1, L2 ∈ RE, and x is in one of these languages. Thus, M

recognizes L1 ∪ L2.

Intersection: The construction is the same as for the union, except that M accepts
only if both M1 and M2 accept, and if at least one of them rejects, M rejects. In any
other case M loops forever. For x ∈ L, both M1 and M2 eventually accept, thus M

recognizes L1 ∩ L2.

Star: Given a language L and a TM M that recognizes L, we describe a TM M ′ that
recognizes L∗. The construction is similar to the construction for concatenation in the
previous section. Here we try all the possible ways to split the input to substrings and we
simulate the machine M on each substring (for i steps, i = 1, 2, 3, . . . ). More formally,
given an input x, for i = 1, 2, 3, . . . :
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• For all possible ways to split x to substrings y1, . . . , yk, run M on each of the
substrings for i steps.

• If for some split, M accepted all the substrings y1, . . . , yk, accept.

• If for all the ways to split x, M rejected at least one substring, reject.

• Move on to the next iteration.

If x ∈ L∗ then there exists a way to split x to substrings y∗
1
, . . . , y∗k such that y∗j ∈ L

for all 1 ≤ j ≤ k. Thus, for every y∗j there is a number nj such that M accepts y∗j
after nj steps of computation. Let m = max1≤j≤k nj . Since the number of ways to
split x is bounded, and in every iteration M ′ runs M for i steps on every substring,
every iteration eventually ends. When M ′ gets to the m’th iteration in its run on x,
for the split y∗

1
, . . . , y∗k, M would accept all the substrings within m steps, therefore M ′

recognizes L∗.

2. Let E be an enumerator. We modify E as follows. Before writing a word w to the output
tape, compare w to all the words previously written to the output tape. if w was already
written, do not write it again. In this way we obtain an enumerator E′ that prints every word
once, and L(E) = L(E′)

3. Claim: L ∈ R iff there exists an enumerator that enumerates L in a lexicographic order
(where short strings come before long ones).
(⇒) Let M be a TM that decides L. Define the enumerator E as follows. E goes through all
the strings in Σ∗ in the order described above, and for each such string it runs M on it. If M

accepts, E prints the string and goes to the next one. Otherwise, it goes to the next string
without printing. Since M is a decider, M eventually halts on every input, thus E eventually
simulates M on every input. Clearly, E enumerates L in the required order.
(⇐) We distinguish between two cases. First, it might be that the language is finite. If this
is the case, then the language is trivially decidable and there is nothing to prove. We prove
the result for the case the language is infinite. Let E be the enumerator that enumerates L

in lexicographic order, where short strings are printed before longer ones. Since the language
is infinite, for every word w ∈ Σ∗ if we run E for long enough, it will print a word which is
bigger then w in the lexicographic order.

The TM M works as follows: On input x it runs E either until it prints x or until it prints
a string bigger then x in the lexicographic order. If E prints x then M accepts. If, on the
other hand, E prints a word bigger then x without printing x, then M rejects.

4. (⇒) Let M1 be a TM that recognizes L1.

Define L2 = {< x, y >: M1 accepts x within y steps}.

We show that L2 ∈ R by describing a TM M that decides L2. M2 acts as follows :

• Checks whether the input is of the form < x, y >. Otherwise, rejects.

• Simulates M1 on x for y steps. if M1 accepted, accepts. Otherwise, rejects.

It is easy to see that M2 decides L2.

The above implies that L1 = {x : ∃y such that < x, y >∈ L2}. This is because if x ∈ L1,
there exists y such that M1 accepts x after y steps, therefore < x, y >∈ L2. On the other

2



hand if x 6∈ L1, there is no y such that M1 accepts x after y steps, so there is no y such that
< x, y >∈ L2.

(⇐) Let M2 be a TM that decides L2. We describe a TM M1 that recognizes L1. Given an
input x, M1 acts as follows.

For all w ∈ Σ∗, in lexicographic order :

• simulate M2 on < x, w >.

• If M2 accepts, accept. Otherwise, move on to the next w.

If there exists y such that < x, y >∈ L2, then, since M2 is a decider, every simulation
eventually ends, so eventually M1 will simulate M2 on < x, y > and will accpet. On the other
hand, if there is no y such that < x, y >∈ L2 then M1 will never halt on x.

5. Let L ∈ RE, and let E be an enumerator that enumerates L.

Define L′ = {w ∈ L : E does not print any word larger than w before it prints w}.

L′ ⊆ L, because L′ contains only words in L.

L′ is infinite. Assume by a way of contradiction that L′ is finite. Let w be the largest word in
L′. It follows that E does not print any word largest than w after it printed w. This implies
that L(E) is finite, since there is only a finite number of words that are not larger than w,
and this contradicts our assumption, that L is infinite.

L′ ∈ R. We describe an algorithm that decides L′. Given an input x:

Simulate E. For each word w printed by E:

• If w = x, accept.

• If |w| > |x|, reject.

• Otherwise, continue.

If x ∈ L′, then E does not print any word larger then x before x. Thus, x is one of the first
2|x|+1 words printed by E. When the algorithm gets to x, it will accept. If x /∈ L′, then since
L is infinite, E eventually prints a word z larger then x. When the algorithm gets to z, it
will reject.

6. We prove that if L is in EX7 then it is decidable (i.e., L ∈ R). This clearly implies that (a)
and (b) are false but (c) is true.

For L ∈ EX7 there exists a TM M as in the definition of EX7. We construct another TM
M ′ which operates as follows: on input x, it runs M on x for e|x|

7

steps. If M rejects (i.e.
x /∈ L) then M ′ rejects as well. Otherwise, M ′ accepts. Since we are assured that either M

will reject within e|x|
7

steps or it will run forever, we know that M ′ accepts exactly the words
in L. Note that M ′ always stops and therefore decides L.
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Computability - Exercise 8

All answers should be proved formally

Due Monday, June 25

1. For each of the following languages decide whether it is in R, in RE but not in R, or not in RE.

(a) L1 = {〈M〉 | M is a TM that passes the 100th position in the tape during its run on the empty
input}.

(b) L2 = {〈M〉 | M is a TM and there exists an input such that M halts on it in not more than 1000
steps }.

(c) L3 = {〈M〉 | M is a TM and L(M) is context free}.

(d) L4 = {〈M〉 | M is a TM and M stops on any input}.

2. For each of the following languages state (and prove) whether it is in R, RE \R, coRE \RE, or none
of them. Recall that L ∈ coRE if L ∈ RE.

(a) ALL
TM

= {〈M〉 | L(M) = Σ∗}

(b) L = {〈M1,M2〉 : L(M1) ∩ L(M2) = ∅}.

(c) L = {〈M〉 : M accepts some word after more than 100 steps of computation}.

(d) EQ
CFG

= {〈G,H〉 : G and H are CFGs and L(G) = L(H)}.

3. Let A,B and C be languages over Σ. Prove that

(a) If A reduces to B then the complement of A reduces to the complement of B.

(b) A
TM

is not mapping reducible to E
TM

.
Recall that E

TM
= {〈M〉 | M is a TM and L(M) = ∅}.

4. (a) Prove that for every two languages L1, L2 ∈ R which are not Σ∗ or ∅, it holds that L1 ≤
m

L2.

(b) Let L1, L2 be two languages such that L1 ≤
m

L2 and L2 is regular. Does this imply that L1 is a
regular language? Remember to prove your answer.

5. (optional) Let A0, A1, A2, . . . be an infinite sequence of languages over alphabet Σ, such that for every
k ≥ 1, there is a mapping reduction, f

k
, from A

k
to A

k−1. That is, A
k
≤ A

k−1.

Let us denote: B
r

=
⋃

r

k=0
A

k
and B∞ =

⋃∞
k=0

A
k
.

It is given that A0 ∈ R.

For each one of the following languages, state the smallest class of languages that contains it from: R,
RE, or not in any of these classes.

That is, if you claim that the language is in some class, prove it. If you claim it is not in a class, give
an example for a sequence A0, A1, A2, . . . that shows it.

(a) A
k
.

(b) B
r
.

(c) B∞.
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Computability - Exercise 8 - Solution

1. (a) L1 ∈ R.
We describe a TM T with two tapes that decides L1: Given 〈M〉, T simulates M ’s run
on the empty input. The second tape is used for recording the configurations of T during
its run. At each step, if M passes the 100’th position, T accepts. Otherwise, T checks
whether this configuration was previously recorded. If so, T rejects; else, it records the
current configuration of M on the second tape, and goes on to the next step.

Notice that T rejects if and only if M ’s run on the empty input has entered an infinite
loop using only the first 100 positions on the tape, that is, returned to a configuration
that was recorded before. Moreover, since the number of configurations which use only
the first 100 positions on M ’s tape is bounded by 100 · |Q| · |Γ|100, T runs only a finite
number of steps on any input.

(b) L2 ∈ R.
Observe that in order to determine whether there exists a word on which a TM halts
after at most 1000 steps, it is sufficient to look at words of length at most 1000, since
M cannot pass the 1000’th position on the tape within 1000 steps.

Using this understanding, we describe a TM T which decides L2: Given 〈M〉, T simulates
1000 steps of M ’s run on every possible word of length at most 1000. T accepts if and
only if M halts on one of these words.

(c) L3 /∈ RE.
We prove this by showing a reduction from ATM (this is sufficient since ATM /∈ RE).
Given 〈M, w〉, the reduction outputs 〈T 〉, where T is the following turing machine: Given
an input x, T simulates M on w, and accepts if and only if M accepts w and x is of the
form anbncn.

If 〈M, w〉 ∈ ATM , then M does not accept w, and L(T ) = ∅ which is a CFL, so 〈T 〉 ∈ L3.
If 〈M, w〉 /∈ ATM , then M accepts w, so T accepts exactly the words of the form anbncn,
i.e., L(T ) = {anbncn : n ∈ N}, which is not a CFL; thus 〈T 〉 /∈ L3.

(d) L4 /∈ RE.
We prove this by showing a reduction from ATM (this is sufficient since ATM /∈ RE).
Given 〈M, w〉, the reduction outputs 〈T 〉, where T is the following turing machine: Given
an input x, T simulates |x| steps of M ’s run on w. If M accepted, T enters an infinite
loop. Otherwise, T accepts.

If 〈M, w〉 ∈ ATM , then regardless of x, M never accepts w in |x| steps, so T always halts
and accepts; thus 〈T 〉 ∈ L4. If 〈M, w〉 /∈ ATM , then M accepts w after k steps, so T ’s
run doesn’t halt on any x with |x| ≥ k; thus 〈T 〉 /∈ L4.

2. (a) ALLTM = {< M > | L(M) = Σ∗}. ALLTM 6∈ RE ∪ coRE.
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We show a reduction both from ATM and from ATM .

The reduction from ATM : On an input (〈M〉, w) to ATM , the output of the reduction
will be the machine Mw, that on (any) input x, runs M on the string w, and accepts if
M accepts w. If M accepts w then Mw accepts every input. Otherwise it doesn’t accept
any input.

The reduction from ATM : On an input (〈M〉, w) to ATM , the output of the reduction
will be the machine Mw that on input x runs M on w for |x| steps. If within this time
M doesn’t accept w then Mw accepts x, otherwise it rejects. If M doesn’t accept w,
then for every x, Mw will not see M accepting w within |x| steps (because it just never
happens) and it will accept x. Therefore L(Mw) = Σ∗. Otherwise, M accepts x after
some k steps. Then by definition Mw will see M accepting x for every x such that
|x| ≥ k, and Mw will reject such x’s. It follows that L(Mw) 6= Σ∗.

(b) L = {< M1 >, < M2 > : L(M1) ∩ L(M2) = ∅}. L is not in RE ∪ coRE. We proved
that ALLTM is not in RE ∪ co−RE. Here we prove that L is not in RE ∪ co−RE by
reduction from ALLTM to L. Take M2 to be the input for ALLTM , and M1 as a machine
that accepts all inputs. L(M1) ∩ L(M2) = Σ∗ ∩ L(M2) = L(M2) = ∅ iff M2 ∈ ALLTM .

(c) L = {< M > : M accepts some word with more than 100 steps of computation}. L ∈
RE \ R

Let w1, w2, . . . be an enumeration of all the words in Σ∗. To see that L is in RE we
describe a recognizing algorithm: For all i ≥ 0 run M for i steps on the words w1, . . . , wi.
If one of these words is accepted by within i steps, and is accepted in more then 100
steps of computation, then M ∈ L. Otherwise move to the next i. Clearly if some word
wn is accepted by M , then we will eventually accept it. On the other hand, if no word
is accepted by more then 100 steps then M will not be accepted (our procedure will run
forever).

To see that L is not in R we show a reduction from ATM . On an input (〈M〉, w) to
ATM , the output of the reduction will be the machine Mw, that on input x, enters a
loop of 101 iterations, and then runs M on w and answers as M does. If M accepts w

then Mw will accept every string in more than 100 steps. Otherwise it will not accept
any string.

(d) EQCFG = {〈G, H〉 | G and H are CFGs and L(G) = L(H)} ∈ coRE \ RE.
First, ALLCFG = {< G > | L(M) = Σ∗} reduces to EQCFG since we can feed EQCFG

with the pair 〈G, H〉, where G is the input to ALLCFG, and H such that it generates
Σ∗. It is known that ALLCFG /∈ RE, therefore, we conclude that EQCFG /∈ RE.
To see that EQCFG ∈ coRE, consider a machine that checks for each word w ∈ Σ∗,
whether both G and H generate w.

3. (a) Let f be the reduction from A to B. We claim that f is also the reduction from A to B:

x ∈ A ⇒ x 6∈ A ⇒ f(x) 6∈ B ⇒ f(x) ∈ B.

Similarly,
x 6∈ A ⇒ x ∈ A ⇒ f(x) ∈ B ⇒ f(x) 6∈ B.

(b) We showed that ATM ∈ RE \ R. It follows that ATM 6∈ coRE, as a language that is
both in RE and coRE is in R. We also showed that ETM ∈ coRE. Therefore, it can’t
hold that ATM ≤m ETM because that would imply that ATM ∈ coRE.

2



4. (a) Let L1, L2 be two arbitrary languages in R which are not Σ∗ or ∅. Let xy and xn be
two fixed inputs to L2, such that xy ∈ L2 and xn 6∈ L2. Then the reduction f from L1

to L2 will do as follows: on an input w to L1 it will run the machine M1 that decides
L1. Since L1 ∈ R such M1 exists. Then if M1 accepts w the reduction will output xy

otherwise it will output xn. It follows that w ∈ L1 ⇔ f(w) ∈ L2.

(b) The answer is no. A trivial counterexample is L1 = {anbn|n ≥ 0} and L2 = a. L1 ≤m L2

by the previous section. From a more meaningful point of view, if the statement were
true, it would entail R = REG as both ∅ and Σ∗ ∈ REG.

5. Let A0, A1, A2, . . . be an infinite sequence of languages over alphabet Σ, such that A0 ≥ A1 ≥
A2 ≥ . . ., and A0 ∈ R.

For each one of the following languages we state the smallest class of languages that contains
it from: R, RE, or not in any of these classes.

(a) Ak ∈ R. We show this by induction. The base case: A1 ≤ A0 and A0 ∈ R and so
A1 ∈ R. Now, Ai ≤ Ai−1 and by induction hypothesis Ai−1 ∈ R and so Ai ∈ R.

(b) Br =
⋃r

k=0
Ak ∈ R. The language Br is a finite union of r languages in R, namely

A1, A2, . . . , Ar. As a finite union of languages in R also Br is in R. (We can use
induction to show that such finite union is decidable: clearly B2 = A1 ∪ A2 ∈ R and
Bk = Bk−1 ∪ Ak ∈ R, using the induction hypothesis that Bk−1 ∈ R.)

(c) We give an example to show that B∞ =
⋃

∞

k=0
Ak /∈ RE ∪ coRE.

Let x ∈ Σ∗ be some fixed word in ALLTM . Let w1, w2, . . . be an enumeration of all
the words in Σ∗. For every i > 0 set Ai as follows: if wi ∈ ALLTM then Ai = {wi},
otherwise Ai = {x}.

For each i ≥ 0 language Ai contains one word and is therefore in R. Therefore, by (4a),
for every i there is a reduction from Ai to Ai+1.

However, B∞ =
⋃

∞

k=0
Ak = ALLTM and by (2a) this language is not in RE ∪ coRE.
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Computability - Exercise 9

Due Monday, July 2

1. (a) Prove that polynomial-time mapping reductions are transitive. That is, prove that if
L1 ≤p L2 and L2 ≤p L3, then L1 ≤p L3.

(b) (optional) Prove that polynomial-time mapping reductions are NOT symmetric. That
is, there exist languages L1, L2 such that L1 ≤p L2, but L2 6≤p L1.

(c) Prove that for every L1, L2 ∈ P , that are neither ∅ nor Σ∗, it holds that L1 ≤p L2.

2. For a natural number k, we say that a formula ϕ is k-cnf if it is of the form
∧m

i=1

(∨k
j=1

ℓi
j

)
,

where ℓi
j are literals (i.e. variables or their negation).

We define the language, k-SAT = {ϕ : ϕ is a satisfiable k-cnf formula}.

(a) Prove that for every k > 3, k-SAT is NP-complete. Recall that 3-SAT is NP-complete.

(b) Prove that 2-SAT is in P.
Hint: Note that a ∨ b is equivalent to ¬a → b and ¬b → a.

3. We saw in class that SUBSET-SUM where the numbers are written in decimal is NP-complete.

(a) We define the binary version of subset sum (where all the numbers are given in binary)
by:
BSUBSET-SUM = {〈n1, . . . nk, t〉 | n1, . . . nk, t are given in binary and ∃b1 . . . , bk ∈
{0, 1} such that

∑k
i=1

bini = t}.

Is BSUBSET NP-complete? Is it in P?

(b) (optional) We define the unary version of subset sum (where all the numbers are given
in unary) by:
USUBSET-SUM = {〈1n1 , . . . 1n

k , 1t〉 | ∃b1 . . . , bk ∈ {0, 1} such that
∑k

i=1
bini = t}.

Is USUBSET NP-complete? Is it in P? (prove your answer).

(c) Define CLIQUE2007 = {G : G is an undirected graph that contains a clique of size 2007.}

Is CLIQUE2007 NP-complete? Is it in P?

Comment: We didn’t give the option that a language is neither NP-complete nor in P. If
NP6=P then such languages exist, but proofs might be hard for an ex’.

4. A relation R = {(x, y) ∈ Σ × Σ} is called an NP-relation if both of the following hold:

1



(a) There exists some polynomial p(·) such that for all (x, y) ∈ R it holds that |y| ≤ p(|x|).
(That is the length of the second coordinate is polynomial in the length of the first
coordinate).

(b) There is a deterministic polynomial time machine that decides R.

For an NP-relation R, define LR = {x ∈ Σ∗ | there exists y ∈ Σ∗ such that (x, y) ∈ R}.

A language L is an NP-relation language iff there exists an NP-relation R such that L = LR.

(a) Prove that a language is in NP iff it is an NP-relation language.

(b) We saw in class a model of a Turing machine with a special “guess” tape. A deterministic
Turing machine with a guess tape accepts an input x ∈ Σ∗ iff there exists some y ∈ Σ∗

such that the machine accepts if it starts running when the input tape contains x and
the guess tape contains y. Note that the running time of such machine is measured in
terms of the length of the input (not the guess). Prove that NP is the class of languages
that are accepted in polynomial time by Turing machines with a guess tape.

2



Computability - Exercise 9 - Solution

1. (a) Let f be a polynomial time mapping reduction from L1 to L2, and let g be such a
reduction from L2 to L3. We claim that g ◦ f is a polynomial time mapping reduction
from L1 to L3. We have

x ∈ L1 ⇔ f(x) ∈ L2 ⇔ g ◦ f(x) ∈ L3.

Moreover, we assume that the running time of f bounded by some polynomial p, and
the running time of g is bounded by q. Therefore, |f(x)| ≤ p(|x|), and thus the running
time of g ◦ f is at most q(p(|x|)), which is still a polynomial.

(b) Let L1 = {0}, and L2 = ALLTM (L1 ∈ P . Recall that L2 /∈ R). Let T be a Turing
machine that immediately accepts any input, and T ′ a machine that immediately rejects
any input. Therefore, 〈T 〉 ∈ L2 , while 〈T ′〉 /∈ L2. Consider the following mapping from
L1 to L2: 0 is mapped to 〈T 〉, and all other words are mapped to 〈T ′〉. This is obviously
a polynomial time reduction. On the other hand, by Lemma 1 as follows in 2-(a) and
since L2 is not decidable, L2 �p L1.

(c) Let y ∈ L2, and y′ /∈ L2. For x ∈ Σ∗, define the function

f(x) =

{
y x ∈ L1

y′ x /∈ L1

f is a reduction, since x ∈ L1 ⇔ f(x) ∈ L2. It also runs in polynomial time, since it can
be determined in polynomial time whether x ∈ L1.

2. (a) k-SAT∈NP, with a satisfying assignment as witness. For NP-hardness, we show a poly-
time reduction from 3SAT, that is known to be NP-hard. Given a 3CNF formula ϕ =
∧m

i=1
Cj , where Cj = l1j ∨ l2j ∨ l3j , the reduction outputs the k-CNF formula ϕ′ = ∧m

i=1
C ′

j ,

where C ′

j = l1j ∨ l2j ∨ l3j ∨ ... ∨ l3j
︸ ︷︷ ︸

k−2 times

. Clearly, an assignment satisfies ϕ iff it satisfies ϕ′.

(b) 2-SAT∈P. Given a 2CNF formula ϕ over the variables {x1, ..., xn}, we costruct a directed
graph G = 〈V, E〉, where:

V = {x1, ..., xn,¬x1, ...,¬xn}

E = {〈¬l1, l2〉 , 〈¬l2, l1〉 : l1 ∨ l2 is a clause in ϕ}

For example, if we have the clause (x3∨¬x7) in ϕ, then we will have a both the directed
edges 〈¬x3,¬x7〉 and 〈x7, x3〉. (Note that a ∨ b is equivalent to ¬a ⇒ b and to ¬b ⇒ a).

We denote by a →→ b the situation in which there exists a directed path from a to b.

1



Claim: ϕ /∈2-SAT ⇔ there exists 1 ≤ i ≤ n such that G contains both xi →→ ¬xi and
¬xi →→ xi.

Proof: Assume first that G contains both paths for some xi. Assume by way of con-
tradiction, that there’s also a satisfying assignment π for ϕ. Assume w.l.o.g. that
π(xi) = T, π(¬xi) = F , and look on the directed path from xi to ¬xi. The path is logi-
cally equivalent to a sequence of logical implications, xi ⇒ y , . . . , z ⇒ ¬xi. Thus, since
π(xi) = T and all the implications are satisfied, it must be that π(¬xi) = T reaching
contradiction.

For the other direction, Assume now that for all 1 ≤ i ≤ n, either G does not contain a
path xi →→ ¬xi or G does not contain a path ¬xi →→ xi (of course it might be that
G contains neither). We construct a satisfying assignment π in the following way:

For i = 1, . . . , n:

• If π(xi) is already defined, move on to the next i.

• If G contains xi →→ ¬xi, set π(xi) = F . Otherwise, set π(xi) = T . Set π(¬xi) =
¬π(xi).

• If π(xi) = T , then for every literal l reachable from xi on the graph, where π(l) is
still unset, set π(l) = T .

• If π(¬xi) = T , then for every literal l reachable from ¬xi on the graph, where π(l)
is still unset, set π(l) = T .

We show now that π satisfies ϕ, by showing that it satisfied all clauses. Let (l1 ∨ l2) be
a clause in ϕ. Assume without loss of generality, that l1 is assigned value before l2. If
π(l1) = T , then we’re done. Otherwise, there’s an edge 〈¬l1, l2〉 in the graph. So once
l1 is assigned F , l2 would also be assigned a value, and π(l2) = π(¬l1) = T . Thus, the
clause is satisfied.

The claim above suggests the following algorithm to decide 2-SAT. Given a 2CNF for-
mula, construct G as above. For each 1 ≤ i ≤ n, run BFS to check if there is a path
from xi to ¬xi and from ¬xi to xi. If there is an i for which these two paths exist, reject.
Otherwise, accept.

It takes O(n+m) to construct the graph (where n is the number of variables and m is the
number of clauses), and O(n(n + m)) to search for the paths. Altogether, O(n(n + m)).

3. (a) BSUBSET−SUM is NP-complete. BSUBSET−SUM ∈ NP : a witness is b1, b2, . . . , bk

such that
∑k

i=1
bini = t. We demonstrate that BSUBSET-SUM is NP-hard by showing

that SUBSET − SUM ≤p BUSBSET − SUM ; this is sufficient since we have seen in
class that SUBSET-SUM is NP-hard.

Indeed, given an input for the SUBSET-SUM problem (where the numbers n1, . . . , nk, t

are given in decimal), the reduction simply maps each ni and t to their binary repre-
sentation. This can be done using the usual algorithm: at each stage, the next digit
of the binary representation is the current decimal number mod 2; the current decimal
number is divided by 2 (integer division). The running time of this algorithm is linear
in the size of the input, and the overhead in the size of the input is in a constant factor
(ln 10/ ln 2). Furthermore, it is clear that this is a reduction.

(b) USUBSET−SUM ∈ P . A suitable (dynamic programming) polynomial time algorithm
was presented in the algorithms course. The algorithm builds a binary matrix M of size
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k × t. The (i, j)’th cell contains 1 iff there is a subset of {n1, . . . , ni}, such that the
sum of the elements in the subset is j, and the subset includes ni. The matrix is filled
column-by-column, according to the formula

M(i, j) =

{
1 j = ni ∨ ∃l ≤ i − 1 s.t. M(l, j − ni) = 1

0 else
.

There is a subset-sum iff there is exists l such that M(l, t) = 1. The running time is
polynomial in t and k.

(c) CLIQUE2007 ∈ P . In order to prove this, we present an algorithm which determines
whether a given graph contains a clique of size 2007 in polynomial time. The algorithm
simply scans all possible choices of 2007 vertices from V , and accepts if and only if one
of these sets of vertices is a clique. Since 2007 is a constant, each of the clique-tests
can be executed in constant time. The number of tests to be performed is bounded by(

n
2007

)
≤ n2007.

4. The proof of (b) is a repetition of the proof given in Recitation 6 for the equivalence of the
computing powers of deterministic and nondeterministic Turing machines. (Of course one
must note that everything remains polynomial).

We prove (a). Let L be a language in NP, then there exists a nondeterministic polynomial
time machine M that decides L. For an input x there is a witness y that corresponds to the
guesses made during the accepting computation of M on x. Let
R = {(x, y) ∈ Σ∗ | x ∈ L and y encodes the guesses made during the accepting computation
of M on x}. Clearly R is an NP relation and L = LR.

On the other hand, let L = LR for some NP-relation R. Then, there exists some polynomial
p such that |y| ≤ p(|x|) for all (x, y) ∈ R, and a deterministic machine M that decides R.
We construct a nondeterministic machine M ′ that on input x first guesses a y of length
p(|x|) or less, and then runs M on (x, y). Clearly M ′ is (nondeterministic) polynomial time
machine. The machine M ′ accepts x iff there exists some y such that (x, y) ∈ L. That is
L(M ′) = LR = L

3



Computability - Exercise 11

Due Monday, July 9

1. We proved in class that the language HAMPATH = {〈G, s, t〉 | G is a directed graph that
contains a Hamiltonian path from s to t} is NP-complete. A Hamiltonian cycle is a cycle
(a path that begins and ends in the same vertex), that contains each vertex exactly once.

Prove that the following languages are NP-complete.

(a) HAM = {〈G〉 | G is a directed graph that contains a Hamiltonian cycle}.

(b) ∃HAMPATH = {〈G〉 | G is a directed graph that contains a Hamiltonian path}.

2. Assume there exists a language L such that L ≤p (01)∗ and 3SAT ≤p L.

For each of the following propositions, determine whether the assumption above implies the
proposition, and justify your answer.

(a) Lc ∈P. (Where Lc = Σ∗ \ L is the complement of L.)

(b) P=NP.

(c) (01)∗ ≤p L.

(d) L is NP-complete.

3. A class C of languages is closed under poly-time Karp reductions if for every two
languages L, L′ ⊆ Σ∗, it holds that if L ∈ C and L′ ≤p L then L′ ∈ C.

For each of the following classes determine whether or not it is closed under poly-time Karp
reductions, and justify your answer.

(a) P

(b) DTIME(log(n))

(c) DTIME(n2)

(d) EXP =
⋃

k>0

DTIME(2nk

)

(e) (optional)
⋂

δ>0

DTIME(2nδ

)

4. The Class co-NP is the class of languages whose complement is NP.

Thus, co-NP= {L ⊆ Σ∗ | (Σ∗ \ L) ∈ NP}

1



(a) Give formal definitions for co-NP hard languages and for co-NP complete languages.
Note, the definitions should not refer directly to the class NP.

(b) Prove that a language L ⊆ Σ∗ is co-NP hard iff Σ∗ \ L is NP-hard.

(c) Prove that a language L ⊆ Σ∗ is co-NP complete iff Σ∗ \ L is NP-complete.

(d) For n ≥ 0, a finite sequence of natural numbers a = 〈a1, . . . , an〉 is half-sum breakable, if
there exists j ≤ n and a subsequence 〈ai1 , . . . , aij 〉 such that

∑j
k=1

ai
k

= 1

2

∑n
i=1

ai.

Let L = {a | a is a finite sequence of natural numbers that is not half-sum breakable}.
Show that L is co-NP complete.

Note that in this case, as in every case in which nothing is said about the representation
of numbers, we assume that all the numbers are given in binary.

5. Show that PSPACE is closed under the operations union, complementation and Kleene star.

2



Computability 2007: Exercise 10 solution

Reminders:

• L ∈ NP if there exists a Turing machine V (x, y), with running time polynomial in |x|, such
that x ∈ L iff ∃y such that V (x, y) accepts. y is referred to as a ’proof’ or as a ’witness’ to
x’s membership in L.

• L is NP -hard if for any L′ ∈ NP , L′ ≤p L.

• L is NP -complete if it both a member of NP and is NP -hard.

• Proving NP hardness is done by either one of two ways: direct proof as in the Cook-Levin
theorem which proves that 3SAT is NP -complete. NP -hard. This is done for one language
(3SAT ), and other languages are shown to be NP -hard via reduction. That is, if L is
NP -hard, and L ≤p L′ then L′ is NP -hard.

1. HAMPATH = {〈G, s, t〉 | G is a directed graph that contains a Hamiltonian path from s to
t}.

(a) HAMCY CLE = {〈G〉 | G is a directed graph that contains a Hamiltonian cycle }.
HAMCY CLE ∈ NP : A proof of 〈G〉 ∈ HAMCY CLE is the sequence of vertices that
comprise a Hamiltonian cycle in G. This can be verified in polynomial time.
HAMCY CLE is NP -hard: HAMPATH ≤p HAMCY CLE. Given 〈G, s, t〉, the re-
ductions creates a new graph G′ by adding a new vertex v to G, along with the edges
(t, v) and (v, s). A Hamiltonian cycle in G′ must traverse v and must do so through
above edges (t, v) and (v, s). The existence of such a Hamiltonian cycle in G′ therefore
implies the existence of a Hamiltonian path from s to t. Conversely, a Hamiltonian path
from s to t in G can be extended to a Hamiltonian cycle in G′.

(b) ∃HAMPATH = {〈G〉 | G is a directed graph that contains a Hamiltonian path }.
∃HAMPATH ∈ NP : A proof of 〈G, k〉 ∈ IS is a sequence of vertices that comprise a
Hamiltonian path in G. This can be verified in polynomial time.
HAMCY CLE is NP -hard: HAMPATH ≤p ∃HAMPATH. Given 〈G, s, t〉, the re-
ductions creates a new graph G′ by adding a new vertices u, v to G, along with the
edges (u, s) and (t, v). A Hamiltonian path in G′ must begin with u and end with v.
Its existence implies the existence of a Hamiltonian path from s to t. Conversely, a
Hamiltonian path from s to t in G can easily be extended to a Hamiltonian path in G′.

2. Given L, such that L ≤p (01)∗ and 3SAT ≤p L we can conclude:

(a) Lc ∈ P . First, L ∈ P , as REG ⊂ P . Secondly, P is closed under complement.
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(b) P = NP . L ∈ P and 3SAT ≤p L and so 3SAT ∈ P . Also, 3SAT is NP -hard and
so every language in NP (polynomially) reduces to it, and is therefore in P (reductions
are transitive).

(c) (01)∗ ≤p L. From 3SAT ≤p L we learn that L is non-trivial (i.e., neither ∅ nor Σ∗).
The same is true for (01)∗. Both languages are in P and hence reduce to one another.

(d) L is NP -complete. 3SAT ≤p L so L is NP -hard. L ∈ P ⊆ NP so L ∈ NP .

3. The question is: does L′ ≤p L and L ∈ C implies that L′ ∈ C?

(a) P is obviously closed under polynomial reductions. Assume that the reduction runs in
time O(nk) and that a machine that decides L runs in time O(nm) (where n is the length
of the input). The suggested polynomial time machine for L′ computes the reduction
and then runs the algorithm for L. Running the reduction takes O(nk) time steps, and
therefore the output is at most O(nk) letters long. Let c be the constant in the O(·)
definition, then the output is of length bounded by cnk. Therefore running the machine
that decides L on the output takes at most O((cnk)

m
) = O(nkm) time. The entire

procedure takes O(nk + nkm) = O(nkm) time steps.

(b) DTIME(log(n)) is not closed under polynomial reductions. Using the time hierarchy
theorem, there exists a language L′ decidable in time O(n3), but not in time o(n3/log(n3)
and particularly, not decidable in time O(log(n)). A polynomial time reduction can
decide if x ∈ L and prepend one bit that signifies the result to x as its output. And now, a
logarithmic time algorithm can decide the language L = {x | the first symbol in x is 1 }.
Note: Machines operating in time logarithmic in n are very limited. Note that they
cannot even read the input (since that would take O(n) time). In fact, they can’t even
know how long they can run, since they can’t read the input. A proof showing that
DTIME(log(n)) = DTIME(1) can be constructed from this observation.

(c) DTIME(n2) is not closed under polynomial reductions. Use the same argument as in
the previous section.

(d) EXP is closed under polynomial reductions. As in the case of P , the machine that
first performs the reduction, and then decides whether the input of the reduction is in
the language we reduced to, takes exponential time. In this case, the reduction runs
O(nk) time, and produces an output of length at most O(nk). Now the exponential

time machine runs (in time O(2(ml
)) on input of length m = nk so it’s running time is

O(2((ml
)
k
)) = O(2(mlk

)) so the running time of the entire machine is still exponential.

(e)
⋂

δ>0

DTIME(2nδ

) is closed under polynomial reductions.

Intuitively, since ∀δ > 0, P ⊂ DTIME(2nδ

), we have P ⊂
⋂

δ>0

DTIME(2nδ

), and so, in

this class we can carry out the reduction without exceeding the time constraint (as in
the case of EXP ).
Formally, we assume the existence of a reduction with a running time O(nk). Given
δ0 > 0, set µ = δ0

k
. L can be decided in time O(2nµ

) (since it is the intersection and thus

in O(2nδ

) for all δ). Therefore, the machine that first runs the reduction and then the

machine deciding L, runs in time O(nk + 2(nk
)
µ

) = O(2(nk
)

δ

k ) = O(2nδ

), thus proving
the claim.
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4. (a) A language L is co-NP hard if for every language L′ ∈ co − NP we have L′ ≤p L. A
language L is co-NP complete if it both in co-NP and is co-NP hard.

(b) Let L be a language whose complement Lc is NP-hard. For every L1 ∈ co − NP, we know
that Lc

1
is in NP. Therefore Lc

1
≤p Lc. The reduction f is polynomial time computable

function such that x ∈ Lc
1

⇐⇒ f(x) ∈ Lc. Therefore, x ∈ L1 ⇐⇒ f(x) ∈ L. Thus f

is also a reduction from L1 to L implying that L1 ≤p L

(c) Let L be a language whose complement Lc is NP-complete. Then, Lc is NP-hard and
therefore L is co-NP hard. Also Lc is in NP, and therefore L is in co-NP. Thus, L is
co-NP complete.

(d) By the previous clauses it is enough to prove that L = {a | a is a finite sequence of
natural numbers that is half-sum breakable} is NP-complete. It is easy to see that L

is in NP, the witness is the sub-sequence, and it easy to check in polynomial that the
subsequence sum is half of the total sum. As for hardness, we proved in the tirgul
that SUBSET -SUM is NP-hard, we will show a reduction SUBSET -SUM ≤p L. For
a = 〈a1, . . . , an〉 and t input for SUBSET -SUM , we denote by s the sum of the sequence
s =

∑n
i=1

ai. Let b = 2006s− l and c = 2006s− (s− l). The reduction computes b and c

and outputs a′ = 〈a1, . . . , an, b, c〉 (intuitively as input to L). Clearly the reduction can
be done in polynomial time. We shall now see that a′ is half-sum breakable iff there is
a subsequence of a whose sum is exactly l.

Assume first that there is a subsequence as of a whose sum is exactly l. Then, the sum
of as and b is exactly 2006s. The sum of all the elements of a that are not in as and c

is exactly 2006s as well. Therefore, a′ is half-sum breakable.

Assume now that a′ is half-sum breakable. Note that the sum of the entire sequence
a′ = ((

∑n
i=1

ai) + b + c) is exactly 2 ∗ 2006s. Denote by a′s a subsequence whose sum is
exactly half the total sum (namely 2006s). It is impossible that a′s contains both b and
c since the sum of those two elements is larger then 2006s. For the same reason it is
impossible that a′s contains neither b nor c.

Assume w.l.o.g. that a′s contains b and does not contain c. Then the sum of the ai’s in
a′s must be exactly l. Therefore a contains a subsequence whose sum is exactly l.

5. Union: Let L1, L2 ∈ PSPACE, and let M1, M2 be Turing Machines that decide them in
polynomial space. We can decide L = L1 ∪ L2 in polynomial space, by first simulating M1,
then M2, and accepting if at least one of them accepts.

Complement: Let L ∈ PSPACE, and let M be a TM that decides it in polynomial space.
Since M is deterministic, we can decide Lc in polynomial space by simulating M , and accept-
ing iff it rejects.

Kleene star: Let L ∈ PSPACE, and let M be a TM that decide it in polynomial space. The
following non-deterministic TM decides L∗ in polynomial space: the machine guesses the par-
tition of the input word into substrings in L (the guess can be saved in polynomial space), and
then checks that each of them is indeed in L by simulating M . Since PSPACE=NPSPACE,
we get that L∗ ∈ PSPACE.
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Computability - Exercise 11 - not for submission

Note: Some of the questions refer to the classes L and NL that will be taught next week.

1. Prove that the following language is PSPACE-complete.

CONT = {〈A1, A2〉 : A1 and A2 are NFAs and L(A1) ⊆ L(A2)}

2. Show that NL is closed under the operations union, intersection and star.

3. Prove that the following language is in NL.

FAR = {〈G, s, t, k〉 : all paths from s to t are of length at least k}

Note that if there is no path from s to t, then 〈G, s, t, k〉 ∈ FAR for all k.

4. (a) Show that ADFA = {〈D, w〉 : D is a DFA and w ∈ L(D)} is in L.

(b) Show that ANFA = {〈N, w〉 : N is a NFA and w ∈ L(N)} is NL-complete.

5. (optional) Let G = (V, E) be a directed graph on vertices from the set {0, 1}n. As this set is
of cardinality 2n the graph is too large to be given as an input. So instead we represent the
graph by a TM MG that computes the function:

MG(u, v) =

{
1 〈u, v〉 ∈ E

0 otherwise

That is, by querying MG, we can determine whether a certain edge occurs in G.

Now consider the language:

Implicit−Connectivity = {〈MG, s, t〉 : MG is a deterministic TM as above and uses at most
polynomial-space, s, t are vertices in G, and there is a path from s to t in G}

Show that this language is PSPACE-complete.

1



Computability - Exercise 11 - Solution

1. On page 3.

2. Let M1 and M2 be two non deterministic log space machines that recognize the languages L1

and L2, respectively. First, we prove closure to union. To construct a machine for L1 ∪ L2,
simply use the first non deterministic bit to decide whether to run M1 or M2. To construct
a machine for L1 ∩L2, one can run M1 first, and only if it accepts run M2. The space can be
reused so no extra space is needed.

To construct a machine for L∗

1
we need a slightly more complicated construction. A word

w ∈ Σn is in L∗

1
iff it can be broken into subwords w = w1 · w2 · · ·wn such that for all i the

subword wi is in L1. Our machine, which accepts L∗

1
, will use the non determinism to guess

the length of the first subword w1, and simulate M on it. (Note there is a slight complication
here, our machine should remember the length of w1 and even if M tries to move it’s input-
reading head from it, simulate M as if the input tape contains only w1). If M rejects w1 our
machine will reject. Otherwise, our machine will check to see if w1 already contains all the
input, or otherwise, continue to guess w2 in a similar manner. The process ends either in
a rejection, or when all of the input w was covered by accepted subwords in which case we
accept.

3. On page 4.

4. (a) Following the computation of a DFA is easy, all one has to do is to keep in the memory
the current state (of size O(log(n))), the index of the symbol read (of size O(log(n))),
and the symbol read (of size O(1)). What one has to do is to go over the transition
table, and find the relevant transition (easily done using O(log(n)) auxiliary memory).
Repeat the process for all letters in the word, and finally check if the state at the end of
the run is accepting (again easily done using O(log(n)) auxiliary memory).

(b) First, to see that the language is in NL, note that the only difference from the determin-
istic case, is that when going over the transition table, the machine, does not necessarily
take the first suitable transition, but rather uses a non deterministic bit, to decide if to
take the transition, or search for another one. In case all the transition table was read,
and no transition was taken, the machine rejects.

Next, to see that the language ANFA is NL-hard, we reduce PATH to it. Given
〈G, s, t〉, where G = (V, E) is a graph and s, t ∈ V are vertices, we construct an NFA
A = 〈Σ, Q, Q0, δ, F 〉 and a word w such that w ∈ L(A) iff there is a path in G from s to t.
We set Σ to be a one letter alphabet {a}. We set Q = V where Q0 = {s}, and F = {t}.
As for δ, for a state (i.e. vertex) u, other then t, we set δ(u, a) = {v | (u, v) ∈ E}. For
the state (vertex) t we set δ(t, a) = {t}. Finally, set w = an. Clearly, all these simple

1



constructions can be made using logarithmic space. It is also easy to see that there is a
path from s to t iff there is an accepting run of A on an.

5. We first show that Implicit-Connectivity ∈ PSPACE. We use the fact that PSPACE=NPSPACE.
The following polynomial space algorithm decides the language. The algorithm first guesses
a length l of an st-path, and then guesses its l − 2 inner vertices.

• Guess a number l ∈ {2, 3, . . . , 2n}. Guess v1 ∈ {0, 1}n, and simulate MG on the input
(s, v1). If MG rejects then “reject”.

• i← 2.

Repeat until i is equal to l − 1:

– Guess vi ∈ {0, 1}n. If MG(vi−1, vi) rejects then “reject”.

– i← i + 1.

• If MG(vl−1, t) rejects then “reject”, otherwise “accept”.

The simulation of the polynomial space machine MG takes polynomial space. Note that this
is almost the same algorithm used to show that PATH ∈ NL, only applied to a huge graph.

We next show that Implicit-Connectivity is PSPACE-hard. Let L be an arbitrary language
in PSPACE, and ML a machine deciding L using no more then p(n) space. We show that
L ≤p Implicit-Connectivity.

The idea is very simple, the graph G (given implicitly) will represent the configuration graph
of ML. Throughout the proof we use n to represent the size of the input given to ML and m

to represent the length of a binary description vertex in the Implicit-Connectivity graph.

Given a word w, where |w| = n, the possible configurations of ML when running on w are of
length at most p(n). Each configuration can be represented as a sequence of p(n) cells where
each cell contains either a symbol from Γ (i.e. a symbol ML work alphabet) or a symbol from
Γ×Q (i.e. a symbol and a state of ML). Therefore, each cell can be represented by a constant
number of bits (that does not depend on the input length), and the entire configuration can be
represented by a sequence of m = c1n bits. In addition we want to have one vector of m bits,
that does not represent a configuration, represent a special vector we will call “accepted”.

The machine MG is a machine that given two vectors (u, v) answers 1 either if v is a con-
figuration successor to u in ML, or if u is an accepting configuration and v is “accepted”.
Otherwise, the machine MG answers 0. Note that it is easy to build, in polynomial time, such
a machine MG that works in polynomial space. The vertex s is the initial configuration (of
ML on w), and the vertex t is “accepted”.

Note that the entire reduction (which consists mostly of constructing MG), is easy and can
be done in polynomial time. It is also easy to see that ML accepts w iff there is a path in G

from s to t.
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  .FAR∈NLנובע כי , NL=coNL -מכיוון ש. FAR∈coNLנוכיח כי  .3
 :קה המשלימהנגדיר את המחל

   NOT-FAR = {(G,s,t,k) : there is a path from s to t of length < k }  
) הלא דטרמיניסטי(נתבונן באלגוריתם ).  FAR∈coNLלכן כמובן  (NOT-FAR∈NLונראה כי 

  :הבא
  
  .G - בv1  נחש קודקוד-
והמשך באופן  ,  v2של v3  נחש שכן , v1 של v2 נחש שכן -

  .דומה
  .קבל,  צעדים k- בפחות מtעת לקודקוד  אם הג-
  .דחה, t - צעדים ולא הגעת לk-1 ביצעתאם   
  

במהלך האלגוריתם נצטרך לשמור את המידע . n -נסמן את מספר הקודקודים בגרף ב: ניתוח זיכרון
, ) הייצוג הבינארי של מספר הקודקוד– lognזיכרון (הקודקוד בו נמצאים ברגע נתון : הבא בזיכרון

  ).k>n הייצוג הבינארי של המונה שלכל היותר ימנה עד -logn( של מספר הצעדים שצעדנו מונה
  

כלומר ריצה ( בגרף הנתון אזי כמובן ישנו ניחוש t - לs - קצר  מולאם יש מסל: נכונות האלגוריתם
  .עבורו נקבל את הגרף) לא דטרמיניסטית
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