Computability - Exercise 1

All answer s should be proved formally (unless noted otherwise)

Due - March 12

1. What is the language of the automaton below? (rememberotee pyour
answer formally.)

Figure 1: The automatod

2. Describe a deterministic finite automaton (a.k.a. DF&J),each of the fol-
lowing languages. A drawing can be considered a descriptiohonly if it
is exact and contains all the information needed to create from ifdhmal
definition of the automaton.

No need to prove formally the correctness of your consiouncti
All languages are over the alphab¥et= {0,1}.

(a) The language that contains all words that end with 0111.
(b) The language that contains all words that begin with 0111
(c) The language that contains all words that contain 01l sagbword.

(d) The language that contains all words that do not contaitlCas a
subword.

3. The binary representation of a number is a word of the &lph@, 1}. The
value of the words = s; ... s,, denotedv(s), is defined as follows: For

the empty word,u(¢) = 0. For a longer word, the definition is induc-
tive v(s1...8p-18n) = 2-v(S1...8n—-1) + Sn. Note that this means that
n

v(s1...8,) = > 2" s
i=1
Describe a DFA that recognizes binary words that their vatoe 3 is O.

. LetS be aset. Arelatioly C S x S is apartition relation, if there exists
some partition of5 into a set of subsetsS; };c; (wherel is a set of indices),
such that:

(a) the sefS is covered by the subsets (i.8.= U .5;).
icl
(b) the subsets are disjoint, (i.e., for eveyy € I for whichi # j it holds
thatS; N Sj = @)

(c) forall sy, ss € S it holds thats; E's, iff there exists an index € I for
which sy, so € S;. Equivalently,EZ = | S; x S;.
i€l
Arelation £ C S x S is aninverse function relation, if there exists some set
T and a functionf : S — T such that: for alk, s, € S it holds thats; E'so

iff f(s1) = f(s2). Equivalently,F; = th(f‘l(t) x f7H(t)).

Prove that a relation is an equivalence relation iff it is aipan relation,
and that a relation is a partition relation iff it is an inverfsinction relation.

Comment: As you shall prove, every equivalence relationparition re-
lation. The sets5; in the partition are called thequivalence classes of the
equivalence relation.

. optional (“reshut”)
Prove that there exists a non-regular language over thaladpf0, 1}. Hints:

(a) Prove that the set of all languages over the alphghét} is not count-
able.

(b) Prove that the set of all deterministic finite automatardtie alphabet
{0,1} is countable.

1 290 NIN9 — NYNVIN

1 NoNY
111 NDIN-NN X DY IPORY NPIRDIAN 090N YD NN A 7y NTHRN NaVN

NN UDVIND N=0 TN W = Wi... Wy N9 DN INND 2D 1 DY MSPITINRI NN
;28”2

N2M-NND 111 AR NYDD NN ON g3

WiiWp=11 191 120-nN5 111 IR N5 NN NN ON Qo

D=1 N Wy 1=0 52X wy=1 191 ND"-NN5 111 IR NS5 NN NN ON Q)
0=0 " w,=0 121 N2H-NN5 111 NX NIND NPNR NYMIN DX

90 b2

Wi...Wy NINNN D900 NIWINN DI DY NPYN DNINN ,INNDY T8I DININNY 20 10OV
YINNN 2NN XNNI VMVIND PNNNRIP” INKD 1IN ,NPPIN NN MDD n=0 NIy : D02
.qo NNY
NOOID 925 Wi W 1V IN IN NDN-NND 111 AN NOD NYMIN DN ,TPUNT TDSPYTIN TYS
99521 , W, INMIP A0 32 R¥N) VMIVIND ,TPNPYITINRD NNIN 97y INY ,NDMNI-NND 111 NN
IN N9M-NND 111 AN DYDY NIDNNY IN W, INAIP NN DY INY NI VMIVIND 13N
L TISPYTIRD NN 97V 19D . Wi oWy =11 11912 XY N5 NND 111 X RO NN Wi... Wi |
VMVIND (1 NPND 2PNY) W, NNIP INNRDY 2 A¥NA 7PN VDIVIND Wi... Wy | IRIP INNRD
.3 230D MY
N20-NND 111 IX AYD NPX Wi... Wy DY 1991 ,0DM-NND 111 AN N5 NPNX W ,NINN
(YD L 32 NI IPN VNIVIND Wi... Wy IRMIP INKRD 7PIPYTHIRD DNIN 97y)90
1) WATID Qo D MY RIN I R¥NDND MWY UMOVIRNY AN DN N w,=0 OX -
Wi...Wp 1 DNMP INNXD LDSPYIPND DNdD 97y X n=1 W w, ;=01 w,;=1 ox -
.q1 ANNY MY VMVIND Wy NP INNKD)3T .o ANN M VMIVIND
1997 ,(0) YNIN NN NOMOPN Wi... Wit PP .n=2 N W, =0 N90n3 N W wp=11 OX -
2Y VMVIND Wy NINIP INRY LININ .1 AN 7P VMVIRD INNIP INND
UITID [ANND

2 NONVY
.1 NYRYN NNOIND MNYT NORYA MNINN .NVNY DXIPNI DINXINND DIYPIANN DOVNIVIND
N

OO0

01

=212 VNIVIND HY NDYHVWN VYIVIN INT . T

3 NONY
: 3-2 PONNN 1OIYY NN O Ny DFA

0 1
4 E 1 0
— e
1 0
«— «—

DYPNN Si A8NI NVNON W= aa,...a, NPNN DY DN VMOVIND DY NN 1NIWY
.v(w) =i(mod3)

DY MISPITIND 1NN

v(€) =0 N1,S) 2802 P VMIVIND £ NP INN .n=0 : DD

-Y D .S ANNI NSP) VMVIND L, 4., ; DN NIPY INND ;n-1 My M M)
YN, v(a,...a,) =2v(a,...a,) +a, DD i =v(a,a,...qa,) (mod3)
wa,..a,)=2v(a,..a,)+a,=2-i+v(a,)(mod3)

21N 2NN NNONDN NXIN JIRY IR DIPIVIRD DIPNN NYY NP Ta

4 NONY

DPIYN DN NIN NHN MDPY ON XN E

E-5 nooxnnn nponn nx man ,m>»pw ond ESSXS mo) <==
MM X YW MPpwn npvnn NP owa) XY [x], N8apd L [x], ={y|xEy} T

MWATN 9Y NN S YW NN XoNW IR, P = {[x] L lxe S} %P
.xe[x]; € Py, xEx 199 p2opun E : S = J[x], »

xgS
yz€[x]y,ze[y], oopw n»bwa oy :[x] N[y], =3 w [x] #[y], ox 2
.XEy ,nv2o0n70) momon . xEz, yEz 955
NN 9, xEz DYV, YEW [DITHNNN IR . we[y], YYIY NN
YPNO NN, [Y] D[x]; o mTdwNa (Y], < [x], VY. wex],
ye[x], »,0N-2NXINVINI) x €[x], N, xEy DN .ININT DNPI NY ¥ IND .)
YOPIN oY WY L zEy ,zEx W ,x,ye[z], DN — JONM .([x], DNITHIN)
.XEy 52p3 ny2>ov7m

:MPY 0N E-w X 5902 7 TINY 290 Nion ond E no ==>
,(€) DY wn PO XY ,x e S v T S NP (a)-n,xe S My NYOPHN
. xEx
MY X,y S, MURIN PPON) (€) 299 N .xEy -¥ o x,y €S My :1Ivno
. YEX ,(c) 5¥ »win o1 Y)95 .1 INVHIN
-¥ 79 1,] ©MP L(MUNRIN ON) (C) 290 . xEY, VvEZ X, y,z€ S MY : NPV
()5 o5 .S, :Sj ,MXAPN SNYA W y-w nvn b rad. x,yeSl.,y,zeSj
.xEz (w0 1non)

02190 P8PNd oM E nnx npion on Xin B

12191 MPEPND DN KINY IR NN O E non <==
2N2 M TINNY 295 E -5y moawvinn npwonn {5}, wN, 1S > {S)., T

-1 NN (b) NNONMY ,NNDND NN NPIZNN ON DY (a) NNONN 2N NI f-w 25 D)
Bk)Y

N ((c) DV NURIN PN X,y €S, -W 0 S'e{S;},, DOP N xEy x,yeS 935

@)= f(0) =S, nmx

PN DR KINW NN 12197 7P8PNS o E o)y ==>
PN xEy -w 1o, f:S > Tspno T nxiap no»p X ,noon mspns o E

NP I, () ={x|xeS, f(x)=t} ,teT My P™M.x,yeS 939, f(x)= f()
195 tOvw mmpnn
LDYNIND DY MWD NPDN INIY IR, P = { f()|te T} 9y YONO)

,X €S D0OW NWAYT MINPNON NN INPNON MINDHDN yan .S =U ()
tel

Sf(s)=t w1 tel mm

xe f (), xe f'(t) ~wnovamy:)N f () =D Wt #t, DX 2
DPNO DR £ =1, ,7PSPNON NPW-TIN IR, f(X) =1, DA DIN f(x) =1, N

ON WIS . x,ye f(H)eP wx, f(x)=t o3, f(x)=f(¥) N ,xEy OX)
XEy 99 f(x) = £(¥) m8pnon nyow-1nm N, x, y e £ (1)

5 NIONY
D01 99) NP SIDN NN TOY 1) :IN-Na Nap X0 {0,109 29 oowy ,mwNA
S¥1n MOVYN NP .TPIMNPIOPY MITIDN THX ININD D) TUND TNNRN 29 DY (NPININ
N NNIAP P 9 YN anxnn M {0,117 Y npinn nHap nwynd nvn {0,1} 27NN

0 MY MToN NN ONM L {01} 5w PN 939 1141 0 YW AVPMOPNAN MITON NNIPY
DYIAPHN MMPNI 1-) ,NOWD MOMY NOY DOIND (MOIMPIOPD) DD Ipnn mnipna
[0,1] yopa o»wnnn 090001 Y7NN NPNYN NNMP 1D DY N> DY MOIMYN D¥DINd

IMNT L(NTIPIN INN) DY MINDIN NI NN DIXRN 190N Y30 1970 NPNOIN MITOD
.Y MYOLN IXRINDY,N?IN-N NN YOPI DOYNNN NP 2D NNPI]

¥ 1 OYa0 1901 937 :1IN-N1 NN {0,1} 27KN Sy 0»NON DXVMLIND DD NP 90N
(F,qo,0 NN 9IN2Y NMIVAN DY YD T901N ¥ YD) DXIANN N HY DOVMVIN DY IND 190N
MNY ,TAN 28N DY DOVMIVIND NN TPYNRI MNIY 1D T DY DOVMIVIND YD NN NNND IVIN

INDD 19,0028

NN ONY YWY DXVNMIVIN DN 1T NITOA . A,A,,... 17702 DFA 1 55 nX 9705 107)99
VY Y2PN NINY NOYN DX P VMIVIN YNNI N2, NITO HY NITO-NN2 VXIND N ,NOVY
ALA,,. .. DYTDA MAD WNNY DXVMIVINDD TN DI DPY NOVNN

A32Y NITON-NNA DWW DIVNIVINY HY MOV NITOL NNY V)

NOY DIV NN IV TN L(NITON-NN N9 DY) DMNYI NN KD NAY GRY NI, TNN TN
NPIDNIN MAYN NP DY .(NMNX Dapny DFA v ma517 nav 535 1ow) Ny am o)
.M NI

40,1} 2780 Hyn 799137-KD NOY NPND NN NN

Computability - Exercise 2
All answers should be proved formally

Due March 19

1. For a language L C 3%, let
Pref(L) = {x : there exists y such that zy € L},

and
Suff(L) = {z: there exists y such that yx € L}.

Show that if L is regular then so are Pref(L) and Suf f(L).

2. For a word w = wyws - - - wy, the reverse of w, denoted w’ is the word

w written in reverse order, i.e., wy, - - - wowi. For a language L C 3%,
let LT = {wf|w € L}.
Show that if L is regular then so is L%.

3. Consider the following finite language (over ¥ = {0,1}):
L, ={ww | we{0,1}"}.

(a) Prove that every nondeterministic finite automaton for L, must
contain at least 2" states.

(b) Show a nondeterministic finite automaton for L,, with O(n) states.
Where L, is the complement of L,,.

4. Draw an equivalent deterministic finite automaton for the following
automaton (see Figure 1).

€

‘ a @

a,b

S|

Figure 1: Determinize me!

If you use the determinization construction taught in class (with or
without omitting unreachable states) there is no need to provide a
proof.
5. (optional)
For a language L (over X)), define the language L1 (over X) as follows:
Li = {w: Jy such that |w| = |y| and wy € L}
2

Prove that if L is regular then so is L 1.

Computability - Solution of Exercise 2

1. Preliminary: The extended transition functién: ¢ x ¥* — @ is defined
by induction on the length of its input word:

0"(q,€) = q

Forw = xa, where|z| = |w| — 1 anda € X,

6" (¢, w) = 0(0" (¢, v), a)

(a) For aregular languag, the languageé’ref(L) is regular. Letd =
(@,%,9,q, F) be aDFAthat accepts. We defined,,.; = (Q, X, dpref, g0, F')
that acceptref (L), whereF’ = {q € Q|Fw € ¥* s.t. 6*(q,w) €
F}.

Forxz € Pref(L), there is ay such thatry € L. The statef*(qo, =)
must be inF”’, sinced*(qo, zy) € F. Thereforegr € L(Apcy).

Forz € L(Aper), 6*(q0,z) € F', hence there exists@ such that
zw € L. Thereforex € Pref(L).

(b) Constructing an automaton is trivial, what follows is an alternative
proof. For a regular languagk, the languageSw ff(L) is regular.
Itis easy to see thaPref (L) = Suff(L).
The left-hand-side is regular, since regular languages are closed und
both the reverse operation (question 2), and under the prefix operation
(the above item).

2. LetA = (Q,X,Qo, 9, F) be a DFA acceptind.. We build an NFAA’ =
(Q,%, F,671, Qo) acceptingL? as follows: the initial states of’ are the
accepting statesof A. The transition function oft’ is 5! the inverse relation
of § defined asé~!(s,0) = {r € Q : §(r,0) = s}. The accepting states of
A’ are theinitial states of A.

Letw = wy - wy - - - w, be aword inL. Look at the run ofA onw. This is
a sequence of states, r1,...,r, whererg € Qq, riv1 = 6(r;,0i41), and

1

rn isin F (why?). Thereforey,,r,_1,...,ro is computation ofd’ on input
U)R.
On the other hand, if{, ..., r} is an accepting run oft’ on inputw, then

r'n

rlorl ..., rhis an accepting run oft on inputw®. ThusL(A’) = Lf

ny'n—17

andL" is regular.

3. (a) Assume towards contradiction that there exists an NFA(Q, X, Qo, 0, F')
such that its languagk(A) is {ww | w € {0,1}"}, and|Q| < 2".
For each wordw € {0,1}", the wordww is in L, and is therefore
accepted by some rurf’, v, ..., 7, vy, ..., vy, of A Note that
there are2” words in{0,1}". Therefore, sincé))| < 2", there must
be two different wordsv andw in {0, 1}" for which ¥ = r%. This
means thaty’, r{’,...,ry = ., 74, ,...,7y, IS an accepting run of
A onwu. Note, however, thabu is not in the language of, and we
reach a contradiction.

(b) The languagd.,, is the union of two cases: first, it might be that the
word is not of lengtt2n. Second, it might be that the word is of length
2n but is not of the typevw. In the second case, it is always the case
that there exists two letters at distancehat are different (which is
impossible if the word is of the forrvw). We therefore choose non-
deterministically between twO(n) size automata. The first; checks
that a word is of length different thedm and the second, checks that
there are two letters in distanesethat are different. Note that, will
accept also words of length different then but we do not care. The
construction ofd; and A; is easy and we leave it as an exercise.

4. See the deterministic automaton in Figure 4.

5. We construct an NFA for the Ianguag%. SinceL is regular, there is a DFA
A =(Q,%,0,sp, F)thataccepts it. Define the NFA = (Q’, 3, &', sj,, F'),
as follows:

Q=QxQxQ

Qo = {(s0,s,9)|s € Q}

F'={(s,s,q)lg € F\ s € Q}

'((s,q,7),a) = {(6(s,a),q,0(r,))|b € X}

Intuitively, the NFA A’ runs in parallel on two tracks. The first track (which

is represented by the first element of each state) simulatesn the starting
state. The second track (which is represented by the third element of each
state) simulates! from some state (which we nondeterministically guess).

Figure 1: I'm deterministic!

The second element of each state is fixed throughout the run path ardlis us
to remember the state from which we started the second track. We accept if
and only if we have a computation path on the first track that staggamd

on reading the inpub it terminates in the state that was guessed at the start

of the run. At the same time we have a computation path (that we choose
nondeterministically) on the second track, that startsand terminates in an
accepting state. We can then conclude that there exmitsh thatvy € L.

Formally, we want to show thdi(A’) = L%.

(=) Assumethatv € L(A’). Then, there is an accepting r(y, ¢, 0), .-, (Sn, ¢,)
of A’ onw. By the definition ofd’, we have that, = ¢, s,, = ¢, andr,, € F.
Consider the second track of the run, by definition; = 6(r;, b;) for some

b; € ¥ (0 <i < n). Definey = bgb;...b,_1. Then,wy € L. Indeed, by
running A on wy we terminate in the statg, € F'. Also, |w| = |y| because

for each step on the first track we make a step on the second. Therefore
w € L%.

(<) Assume thatv € L.. That is, there existg such thatwy € L and
2

|w| = |y|. Denote the accepting run dfonwy by 7071 . . . 7| Tjw|+1 - - - T2}

Then the following sequence is an accepting rualobn w:

(10> Tyws|s TYw|) (P15) s To 1) -+ + (P Tl T2Juw])-

Computability - Exercise 3

All answers should be proved formally

Due Monday, March 26

1. For each of the following languages over the alphabet {0,1}, write a
regular expression for the language. No need to prove your answer
(but make sure you are correct).

(a) All words of odd length. (hint: is it easier to think of even?)
(b) All words in which the number of 1’s is strictly smaller then 5.

(c) All words that do not contain neither 00 not 11 as a subwords.

2. Are the following languages regular? If ,in your proof, you choose to
describe an automaton or a regular expression, there is no need to
prove the correctness of the construction.

All the languages are over ¥ = {0, 1}

(a) L={1" | n>0)

(b) L={0m1"|0<m <n <1000}

(¢) L ={w | The number of 01 substrings in w equals the number
of 10 substrings in w}

(d) L={{ww | we ¥*}

(e) For a fixed natural n > 0, the language L, = {ww | w € ¥"}

3. Define deterministic infinite automaton in the same way that DFA’s
are defined, with the only difference that the set of states can be
infinite, and so is the set of accepting states. What languages are
accepted by deterministic infinite automata?

4. In this question (taken from the exam in 2006) we define a new type of
automata: universal automata. The definition of universal automaton
is very similar to that of a nondeterministic automaton. The only

difference is that a word w is accepted by a universal automaton A iff
all the runs of A on w are accepting (rather then if there exists a run
that is accepting).

For example: look at the universal automaton A in Figure 1:

Figure 1: Example: A a universal automaton

Note that bbb ¢ L(A) because goqoqoqo is a non-accepting run of A on
bbb.

(a) What is L(A)?

(b) Prove or refute: for every language L C ¥* it holds that L is
regular iff L is accepted by some universal automaton

. (Optional question)

Prove that a DFA with n states accepts an infinite language iff it
accepts a word w such that n < |w| < 2n (where |w| is the length of
w).

. (Optional question)

Show that the language L = {a'b’c* | 4,5,k > 0 and if i > 1 then
j = k} satisfies all the conditions of the pumping lemma. Prove that
L is not regular. Does this fact contradict the pumping lemma?

399910 PN — MPNIVIN

1 NoNY
(0+1)(00+01+10+11)° N
0 (1+£)0 (1+£)0" (1+E)0" (1+6)0 a
(0+&)(10)" + (1+&)(01)" 3

2 NHNY

W=12 0L onpb pYsv : monn nno mysnna nnmn .masm N9 L :{12" n> 0} N
AN . 2° <|XyyZ < 27" AN, DMWNIN DN NN MW NN DIPN PITD DNY DN
P9 A nran 12 reon 12717 mmw oo mw 995 : Myhill-Nerode myxsnxa

DR MPHNN NOIN Y
O™ P o L :{Om1“ |l0Sm<n< 1000} A

L :{w| The number of 01 substrings in w equals the number of 10 substringsin vv} 2
0(0+1)" 0+1(0+12)" 1+ 0+1+ £ :»5M N MV2an Oy NHNTY , MM L
, W= 0101 oonp1o p 935 : M9 Nnd MYSNNI NN .9 RY L :{vwv| wl Z*} A

May xyyz=0P"™OP1OL N ,0WNIN NN ONIN MW NX DPN PIVY DY DIRIND)
MY M»pw mponna jn 0",0™ , n# m 535 : Myhill-Nerode mysnxa nnowm .m>0
DPY MPYNN NOPNR W 199,10 791 80 0"1 qwnd

P9 199, M0 NN L :{ww| wl Z”} nawn,N=0 yap 5yav 190N Ny .0

3NNV
A0 DYANNN NIIAPY NWIITN T2ADN MVLITIVLON NITIND NN NITHINN

L nowymna. LOZ naw 9o 9aph 519> £180 HY 39DPN 1901 DY SODIPNIOT DIIVIN
2NN € ,0718070 N¥AP NN T IWND, A= <Z* ,2,0,E, L> ;TP NNIN DAY VMVIND
.0(w,a) =w.a - ,0%apnn Ddasnn NP L P ndnnnn

4 nHNY
b o anim?aonn{ab}?un oomn 23 R
(atb) a(atb) b (ath)” + (atb) b (atb) a(atb)” :™171a11 "0"an

O 11N U NKRk N1 A

uMmuIR 02 R0 DFA 22w 11271 ,nmK anmw DFA 07'p IR 1711 Lor -
AR 0O 2213 vNYIR 0,221

11'RIW N2 ANIT 1172 21w DFA 17 1127 117,221 un1uIR 1M (i
?W 0°2XN NX12P X141 23N 22 120,00 YN10IR NIR 1121 .NFA 111D
,NFA 712D 17122 M2 101721 012017 "2 NN 23107, 119NN UN101Xi
T12712) 022pN Til 0'2XNi1 22 1120 MNP0 22 T 0722PNi 072N
(72PN 23N N2 0P OXR N?22pn &' 1X12p 12w NFA 112D 12172
JIM12127 ®™0 TR 2213 UNMUIR T 20 "1i1°T7 NINT N9W OX ,127

S NINY
N<|W < 2n nYn Yapn xn nHK MR Now Yapn DFA

.MM NNY NNIN NN D2 DN DOP DINPIN NV

Y 2390 NAIY 1N .20 W 1T N DY NOAPNN DXL TN N-D DT TIIND N0 NYIAPNN DN
.19V DD NDYN W 1991 NMINID
TINA NP ¥ 1IFY,IMNINTD MNIN DI N YW IR DD NOIN ¥ NIV DN IV T8N

2N-1D Y1) TN NDMIN DRY I, 019 DHyn VIV VIV W 11D NI DI DY N¥AI .N-HD 91T
955 ¥ VIV LIYNI AN NINP NP DY NYAPN NN HAPDY NXINN DIYNN NN VNIVNY 1N

5YT) TIINA PYTY NN NVRYNN INKY ,2N-1D 917X TIIND NN 19N DX 19900380 NINYD

N0 LAPNNY TY TOINN DY MIND JN, 201 DY) TN PITY INY NISPN NDHN DX .N-1D
289 TN

6 NONRY
P=1 0y ,M9NN NN ONIN NN NNMPN NIV 2D NI TPYN
; DMPN MY ¥ .1 MNan 995 TN ,ab'ct nsn nawa N9 >n
ON I, [XY[<1=p, |y[>0 o»pnn .nYmn Inw > Z-) y=a,X=¢ 1N :i>1 (i)
DAY NN PYTY NYAPNNN NP &N 190N NN "N
DONINN DOV N2 .NDMN INY 7PN Z-) ,INVYRIN MIND PP Y X=¢ N2 :1=0 (in)
.DMMPNN
,0”¥20 i 955 : Myhill-Nerode vawnn maw> nyan 1w Ny .o PN L v 13n

SODIN MPPYN MPYNN 1901 1NN ,MNY MP>PY MPYNNa MmNy ad-1 ab' o¥9nn
,1P91)9 NN PNV NOWY oY YNTD1N MNIN TINN I NNY : MM NNYY NPNDA 92 TH RO
.PY900 NN NN INT TN

1.

Computability - Exercise 4
All answers should be proved formally

Due Monday, April 16

(a) Specify the Myhill-Nerode equivalence classes of the language L1 = {017 | i > j}.
(You do not have to prove that these are the equivalence classes, but do be careful not
to miss anything). Is L; regular?

(b) Is Ly = {w € {0,1}* | the number of 0’s in w is greater then the number of 1’s in w}

regular? (remember to prove your answer).
Hint: You may use the language 0*1%.

. Describe the (Myhill-Nerode) equivalence classes of the language L = (0+1)*010(0+ 1)* and

draw a deterministic finite automaton (a.k.a. DFA) for L, based on these classes. (No proof
required)

(based on a question from last year’s midterm exam)

Let C = {Ly,La,...,Ly,} be a finite set of regular languages over an alphabet ¥. Suppose
that for each one of the languages in the set, the number of Myhill-Nerode equivalence classes
is k. For m > 0, let L™ denote the language

L™ = {w € ¥* : w belongs to exactly m languages from C'}

Give a tight bound for the number of Myhill-Nerode equivalence classes of L™.

A tight bound is a function f : IN x IN x IN — IN, such that for all n,k, and m, there is no
set C' = {Ly,..., Ly} for which the DFA for L™ needs more than f(n,m, k) states (that is, f
is an upper bound), and there exists a set C' = {Ly,..., L, } for which an automaton for L™
needs at least f(n,k,m) states (that is, f is also a lower bound).

Justify your answer (without a formal proof).

. For each of the following languages over ¥ = {0,1}, write a context-free grammar with the

minimal number of variables that generates the language (without further proof).

(a) {w | w=w?} (wf denotes the reverse of w).

(b) {w | w# w'}.

(¢) {w | the number of 0’s in w equals to the number of 1’s}.

(optional)

Let G be a context-free grammar in Chomsky normal form that contains k£ variables. Show
that, if G’ generates some string using a derivation with at least 2¥ steps, then L(G) is infinite
(that is, contains infinitely many words).

Computability - Exercise 4 - Solution

1. (a) The equivalence classes of L are as follows.

e For every i > 0, the set {0%} is an equivalence class.
e For every k > 0, the set {0°17 : j > 0,5 —j = k} is an
equivalence class.
e All other words, i.e., all the words not in L7 except for e,
form an equivalence class.
Since L1 has infinitely many equivalence classes, it is not regular.
(b) The language 0*1* is regular (in fact, it is given by regular expres-
sion). Recall that the class of regular languages is closed under
intersection. Observe that the language L1 is the intersection of
0*1* and Lo. Thus, if Lo is regular then so is L1, and we have
reached a contradiction. Therefore, Lo is not regular.

2. The language L has 4 equivalence classes:

Figure 1: A DFA for L

e Words that contain 010 as a subword.

e Words that do not contain 010 as a subword, and their longest
suffix that is also a prefix of 010 is of length 0 (e.g., words that
end with 11).

e Words that do not contain 010 as a subword, and their longest
suffix that is also a prefix of 010 is of length 1 (e.g., words that
end with 00).

e Words that do not contain 010 as a subword, and their longest
suffix that is also a prefix of 010 is of length 2 (e.g., words that
end with 001).

3. The bound for the number of equivalence classes of L™ is k™.
The equivalence classes of L™ are the product of the equivalence classes
of the languages in C. Note that the number does not depend on m.
The parameter m just determines which classes are accepting.

To prove the upper bound formally, construct the product automaton
from the minimal DFA’s for each language. Each state in the product
is an n-tuple and the accepting states of the product automaton are
the states that have exactly m accepting elements.

The lower bound is a bit trickier for technical reasons. The problem
is in ensuring that the various languages are “independent” in the
following sense: we would like to ensure that knowing that a word s €
3% is in class czl of ~1, does not give any information on the class of s in
~r,. To ensure such “independence”, we work with an alphabet that is
a Cartesian product of n alphabets, and let L; care only about the ¢-th
coordinate. In addition, to make sure the length of the word does not
convey information, we pick L;’s in which for any (large enough) length
of word j, there are words of length j both in L; and outside L;. For
example, let L),..., L), C {0,1}* be languages over {0,1} each with
k equivalence classes such that for all sufficiently large j we have L} N
{0,1}% # (0 and L;N{0,1}* # {0,1}*. We define L; to be the language
of words over ¥ = {0,1}" in which for every word = € ¥* we have
x € L; iff the projection of = on the i-th coordinate is in L,. It is not
hard to see that the new languages L1, ... L, are “independent” even
if L},..., L] were not. The formal proof is to define the equivalence
classes of L™ as the Cartesian product of the equivalence classes of each
language, and show separating words between each two of them. (Once
the alphabet construction is understood, this is just easy technical
writing.)

4. (a) S — 050]151|0|1]e
(b) S — 0S0[1S1|0A1|140
A — 0A[1A|e
(¢) S — 0S1|150|SS|e

5. Let G be in Chomsky normal form, such that it has k variables. Sup-
pose that G generates the word w using 2¥*! derivation steps. The
parse tree of w is a binary tree since the derivations are of the form
A — BC. As a binary tree with 27! nodes, it must have a height of a
least £+ 1. On the longest path there must be a variable that appears
twice. The rest of the proof continues along the lines of the proof of
the pumping lemma for CFLs.

Computability - Exercise 5
All answers should be proved formally

Due Wednesday, April 25

In this exercise, whenever you describe an automaton (either NFA or PDA) for a language,
there is no need to prove the correctness of the construction. The same holds for the language of
regular expressions or context-free grammars.

1. Describe a CFG for the language of regular expressions over ¥ = {0,1}. Assume that the
expressions that are built from binary operators such as 4+ or - are parenthesized.

For example, this language contains words such as:

0+ (1+¢)*), ((0-0)-1%), and so on.

Note that the language of the CFG is over a larger alphabet ¥’ = {0,1,-,+,%,0,(,), “c”}, and
be careful not to mix “c” (the symbol from ') with e (the empty word).

2. Draw a pushdown automaton, and describe a context-free grammar for the language
L={a'tc:i<jorj<k}.

3. (a) Describe the language of the following grammar

S — AlB
A — 00Ale
B — 000B|e

(b) Is the language regular?

4. Prove that if C' is a context-free language and R is a regular language, then C'N R is context-
free.

5. (optional)

Prove that the following languages are context-free.

(a) {z#y | v,y € {0,1}" and = # y}
(b) {zy | z,y € {0,1}", |z] = |y| and = # y}

Computability - Solution 5

1. The CFG contains the following derivation rules (S is the initial variable).

S=0]0[1] " [(S+9)[(59)](57)

2. Grammar:

e S— XbC | AY ¢
o X —aXb| Xb]|e
e C—Ccle
e A— Aa|e
oY —»bYC |Yc|e
PDA:
a,t—a b,a—¢ b,t—¢
- } Q f— ¢
PEE=F b, g Wlpgprap oo™
E‘,-F—" L . 1 LY i y
- A e e
= o - e
T I.: i)
b — Eh-l -—--E : ! s ". s ,
; ey f—r R —
| A = 4 &
\ - ..-. g
H.;E_i bj['_'hb ‘E]b s E

3. (a) L=1{0%10% |i,j >0}
(b) The language regular, (00)*1(000)*

4. Let Ay = (Q1,%,T1,Q4d1, F1) be a PDA for C and let Ay = (Q2,%, Q3,5 F2) be a DFA for
R.

As in the case of the intersection between two NFA’s, we define the product automaton.

(a) The state space is Q1 x Q2 (i.e., states are ordered pairs (¢*, ¢%)).
(b) The input alphabet is X.

()
(d)
(e)

The tape alphabet is I';.
The initial states set is Q} x Q3.

The transition relation changes the first coordinate of the state according to §; and the
second coordinate according to d2. The stack operations are set by d; alone.

The € transitions of §; that do not read symbols, are performed changing the first
coordinate, but leaving the second coordinate unchanged.

The accepting states set is I} x Fb.

Ly =A{a#ty | x,y € {0,1}" and = # y}

We describe informally a PDA recognizing L;. There are two ways in which x might
be different from y. First, it might be the case that their lengths differ (i.e., |z| #
lyl). If |x| = |y| then there must be an index ¢ for which z; # y;. The PDA chooses
nondeterministically to check either the first case or the second case.

To check the first case, A push to the stack until A sees a #. After the #, A starts
popping. It is not hard to see that |z| = |y| iff the word ends exactly when the stack is
empty.

To check the second case, A start reading symbols, pushing them to the stack. At some
stage A chooses nondeterministically to check some letter o (this means guessing that
x; = o). At that stage A moves to a state g, that “remembers” . Note that at this
stage the stack is at depth ¢ — 1. Now, A continues to read symbols, this time without
pushing them, until it sees a #. After seeing a #, A starts popping symbols, and when
the stack is empty A is about to read y;. Since A “remembers” o it can easily compare
y; to o and accept if y; # o.

Lo ={zy | z,y € {0,1}*, || = |y| and x # y} The grammar is:

i. S— AB | BA

ii. A— 040 | 0AL | 140 | 141 |0

iii. B—0B0|0B1|1B0|1B1|1
Explanation: Choose zy € Ls. Then there exists an ¢ for which x; # y;. Assume
w.lo.g. that ; = 0 (and y; = 1). Denote the length of |z| and |y| by n. We have
xy = T1...2-10%41 ... Tpy1 .- Yim11Yiv1---Yn. We can look at the same word in
another way: First we have a word wy, of length (i — 1)+ 1+ (¢ — 1) = 2¢ — 1, in which

middle letter is 0. After that comes a word wy of length n — 2¢ 4+ 1 in which the middle
letter is 1.

Computability - Exercise 6

Due June 11

1. We define a Turing Machine (TM for short) with 2-dimensional tape
as a standard TM with the only difference that the tape has cells with
names of the form (i, 7) for every i,j > 1 (i, € N). In each step the
machine can move left, right, up or down, unless it is on the boundary
of the tape. Thus, 6 : Q@ xI' = Q xI' x {L, R,U, D}. For example, if
there is a transition rule: §(q,a) = (¢’,b,U), and the reading head is
currently in cell (7, 7) reading a and the machine is in state ¢, then we
change the a to b, we move to state ¢’ and the reading head moves to
cell (7,7 + 1). If we are in the bottom row (respectively left column)
then moving down (respectively left) means that we stay in the same
cell. The input is given in the bottom row.

Define formally this model of TM and show that it is equivalent to
standard TM’s.

2. Define formally the model of pushdown automata with two stacks, and
prove that it is equivalent to standard TM’s.

3. Describe (in details, but don’t define formally) the TM that accepts
the language

L = {w € {ab,c}* | w contains equal number of a’s, b’s, and ¢’s}.

4. (optional) Prove that deterministic TM’s (with one tape) that are
not allowed to write on the area on which the input is written (but
allowed to write on the area beyond), are equivalent to deterministic
finite automata.

Hint: use Myhill-Nerod theorem.

Computability - Solution of Exercise 6

1. Atwodimensional Turing machineis 7 atupleM = (3,T', Q, qo, 0, qace, Grej)»
where is an input alphabel; is the tape alphabef) is a set of stategy is
aninitial statey : Q xI' - Q x I' x {L, R, U, D} is a transition function,
dacc IS @N accepting state, anggl; is a rejecting state. A configuration of the
machine is a 4 tupléA, i, j, ¢) whereA is a finite square matrix of sizexn
for somen > 0, the elements ofi are taken from". The indices,j < n
stand for the place of the reading head, arsfands for the state of the ma-
chine. Intuitively, the machine works (potentially) on tirst quadrant and
all cells that do not appear iA are presumed to contain blank.

The initial configuration ofA/ with inputw = wy...w, is (Af,0,0,qo)
where Ay’ is a matrix which is all blank but the celldy o, Ao 1, ..., Ao n,
which containw. LetC' = (A, 1, j, ¢) be a configuration for whicbi(g, A; ;) =
(¢', o', x). The successor configuration@fis C’ = (A’,#', 5, ¢'), whereA’

is a matrix in which all the cells except perhagg; have the same content
as the corresponding cell iA. If the matrices are not of the same size then
cells that appear in one of the matrices but not the othemgoblank. The
cell 4; ; containso. Finally, i andj’ depend one. If x = L, then? = 4,
andj’ = j — 1 unlessj = 0, in which casg/’ = 0. If z = R theni’ = 4,
and;j’ = j+ 1. If z = D, thens =i — 1 unlessi = 0 in which case’ = 0,
andj’ = j. If x = U, thens =i andj’ = j + 1. An accepting computation
of M onw € ¥* is a sequence of successive configurations where the first
configuration is an initial configuration df/ on w, and the state in the last
configuration isg.... A rejecting computation is defined analogously with
the last state being..;.

It is clear that a regular Turing machine is also a two dimamai Truing
machine. Therefore, to prove equivalence it is enough tevshat a reg-
ular Turing machine can simulate a two dimensional Turingmree. We
show that &-tape Turing machine can simulate a two dimensional Turing
machine. We saw in class that a 1-tape Turing machine canagrak-tape
Turing machine.

We represent a configuration of a two dimensional Turing rimecin the
following way: a special tape holds the matdxwhere the rows are written
one after the other separated by a special syrgholThus, the row 0 is
written first, then a# symbol is written, then the row 1 etc. To represent
blank in the matrix4 a special symbol is usedot the blank symbol of the
k-tape machine.

A second tape holds the numbemnd; (in binary representation) separated
by #. In addition, the state of the simulated machine is writtarachird
tape. We shall use some auxiliary tapes as needed.

It is easy to see that given an inpug . . . w,, (given according to the input
conventions of a regular Turing machine) one can write tpeasentation of
an initial configuration of a two dimensional Turing machifidis involves
writing 0,0 on head location tape, writing on the state tape, and writing
the representation of the initial matrix on the matrix tay&iting the initial
matrix involves counting the length of the input, copying thput and then
filling as many rows as needed by blanks (separating rows)o\All easily
done by &-tape Turing machine.

To move from the representation of one configuration to tipeesentation
of the successor configuration, theape machine has to locate the repre-
sentation of the®™® row and thej** cell in it, and then change it's content
and the contents of the head location and state tapes acgdalihe two
dimensional machine transition. The only subtlety is teertbat if the head
location is changed, the representation of the matrix malpmnger be large
enough to contain it. If this happens, a blank should be addle@ch row
and a new row should be added as well.

. For an alphabef\ we denote byA. the setA U {¢}. A 2 Stacks Push
Down Automata (2SPDA in short) is a 6-tuplé = (Q,%,T,0,Qo, F),
where @ is a set of statesy is an input alphabetl’ is a stack alphabet,
§:Q x X x T x Ty — 29xTexIc ig 3 transition relation() is a set of
initial states, and is a set of accepting states.

A configuration of a 2SPDA is an ordered triglg s1, s2) € @ x T'™ x T'*.
The set of initial configurations 9y x {e} x {e}. For a configuratiorC =
(g, w1, wy) ando € X, we say that a configuratiof’ = (¢, w}, w}) is ac
successor of if there existsr;,z € T'c and (¢, 2}, %) € §(q, 0,21, z2)
such that: there exists;, vy € I'* for which wy = z1v1 andwy = x9v9
while w} = 2}v; andw) = 24ys.

Arun of a 2SPDA on aword; ... w, € X" is a sequence of configurations
ro...r, Whererg is an initial configuration, and for al € {1,...n} it

2

holds that; is aw; successor of;_1. A run of a 2SPDA is accepting if the
state of the last configuration is . A 2SPDA accepts a word € X* if
there exists an accepting run of it an

As for the equivalence, it is easy to see that a 2SPDA can hdaied by a
Turing with 2 tapes, (one for each stack). We saw in classsthett a Turing
machine can be simulated by a 1-tape Turing machine.

We are left to show that a Turing machine can be simulated ROA. A

configuration of a Turing machine can be characterized byeathte, and
two strings: the left string is what is to the left of the headhjle the right

string is the symbol the head is on, and the string to it'strigie ignore

the infinite suffix of blanks). Such a configuration will be regented in the
2SPDA in the following way: The left string will be kept in ors¢ack (the
left stack), while the right string will be kept in the othdask (the right
stack). The state of the Turing machine will be "kept” in thats of the
2SPDA (this can be done since there are only finitely mangstatVe now
have to show that the 2SPDA can get to the initial configunaéind that it
can get from one configuration to its successor.

For the initial configuration, the 2SPDA reads the input @lpushing every
symbol read to the left stack. Afterwards, uskigansitions it pops the con-
tents of the left stack and push it to the right stack. (Thiseuwaer is needed
to have the string lie in the right stack in the correct ojd8imulating one

transition of the Turing machine is easy as the movementeoh#ad can be
simulated by popping from one stack and pushing to the other.

. Intuitively, the machine “erases” (by replacing with &sjal symbol) one,
oneb, and one iteratively, until nothing is left.

Denote our machine by/. We assume that the left end of the tape is marked
by a special sigi$ (we saw in class how to do that). The alphabetX: has
another special symbg}k that we will use later (and a blank of course). The
initial state of the maching’, goes left until the left end of the tape. The it
moves tog;, that searches for am Intuitively ¢, will go right until it sees
ana and rewrite it with an#. However, we want to record whether or not
we saw & or ac while searching for an. Therefore ifg,, sees & or ac it
turns intog’2. The statey’? goes right until it reaches anand if so, replaces

it with a #. If ¢” reaches blank (i.e. the right end) théf accepts. "2
reaches a blank, thalf rejects.

If either ¢” or ¢”2 finds ana and replaces it with ag, then it turns into;ll,.
The statey, goes left until it reaches the left end, and turns igftoThe state
q; goes right in search of & If ¢; reaches & it replaces it with a# and

3

turns intog’. Otherwise, ifg; reaches a blank thel rejects. The state!,
behaves asé except that when it reaches the left end it turns igjio The
stateq;, behaves ag; except that it searches forca(rather than a), and
when it finds one it turns intg), (rather theny.).

. A Turing machine can simulate a finite automaton withoutimg at all.
Therefore it is left to show that such a Turing machine aceptegular
language, and can be simulated by a finite automaton.

To prove the language is regular we will use the Myhill-Nexdideorem, and
show there are only finitely many equivalence classeso

Let s € ¥* be a string. When the machine starts to work on an input that
begins withs, there are three possibilities: First it might be that the ma
chine will never read a symbol cell efsince it will enter an accepting state.
Second, it might be that the machine will never read a symbtdide ofs
because of some infinite loop. Third it might be that the gtrivill read a
symbol ouside of. We define a functiorf : ¥* — QU{_L} in the following
way: in the first casg (s) = gaceepe- 1N the second casg(s) = L. In the
third case set the value g¢fto be the state in which the machine is in when
it first reads a symbol outside ef

In a similar fashion, suppose the machine entefi®m the left, in statey.
There are three possibilities: the machine might accepthivhs, it might
enter a loop whithins, or it might leaves in stateq’. For eachy € Q we
define a functiory, : £* — Q U {_L}, in the first case sef;(s) = qaccept-

In the second case sgf(s) = L. In the third case sef,(s) = ¢'. If for two
string sy, s2 € X* it holds that bothf (s1) = f(s2) and for allg € @ it holds
thatg,(s1) = g4(s2), then it must be that these strings are right invariant in
the Myhill-Nerode sense.

Since there are only finitely many posibilities to chooseugalfor each of
these|@| + 1 functions, it follows that there are only finitely many Myhil
Nerode equivalence classes, so the language it regular.

Computability - Exercise 7
All answers should be proved formally

Due Monday, June 18

(a) Show that the class of decidable languages (denoted R) is closed under the operations:
union, concatenation and complementation.

(b) Show that the class of recognizable languages (denoted RE) is closed under the opera-
tions: union, intersection and Kleene star (*).

. Show that for every enumerator E (including those which may print a few times the same
word), there exists an enumerator E’ that prints each word only once, such that L(E) = L(FE").

. Show that a language is decidable by a TM if and only if there is an enumerator that enumer-
ates it in the lexicographic order (where short words come before longer words, and within
the same length, words are sorted according to the lexicographic order).

. Let Ly be a language. Prove that L € RFE iff there exists Lo € R such that
Ly = {x : Jy such that < x,y >€ La}.

. Show that for every infinite (that is, contains infinitely many words) language L € RE there
exists an infinite language L’ € R such that L' C L.

. We define a new class of languages F X7 to be the following class: a language L C ¥* is in
E X7, if there exists a deterministic TM M such that for every x € 3*: if x € L then M never
stops running on input x. If, on the other hand, ¢ L then M running on input z rejects in
elel” steps or less. Which of the following claims is true (prove your answer even if the claim
is false).

(a) EX7C coRE\ RE
(b) EXTC RE\ R
(c) EX7TCR.

1.

(a)

Computability - Exercise 7 - Solution

Union: For two languages L1, Ly € R, let M; and Ms be the TM’s that decide L; and
Lo, respectively. We describe a TM M that decides the language L = Ly U Ly. M is a
machine with two tapes. On an input z, M first copies x to the second tape. It then
simulates the run of M; on x on the first tape and the run of Ms on x on the second
tape, one step at a time. If M; or My (or both) accept, M accepts. If both reject, M
rejects. Since both M; and My are deciders, eventually they both halt, thus M is a
decider too, and its language is clearly L U Lo.

Remark: It is not necessary here to simulate one step at a time, but it is necessary to
do so in the case where L1, Ly € RE, as follows in part (b).

Concatenation: Given languages L1, Ly € R and their corresponding (deciding) TM’s
M7 and My, we describe a machine M that decides the concatenation of L1 and Ls. On
an input z of size n, for each one of the n 4+ 1 possible ways to split « to y, z such that
x=y-z (e, e 2,21 To...Tpy .., T]...Ty_1 Ty, & -€) In its turn, M simulates M;
on y and if it accepts, M simulates My on z. If both M; and My accepts, M accepts.
Otherwise, M tries the next possible way to split z. If for all the possible ways M;
rejected y or My rejected z, M rejects. Clearly, L(M) = Ly - Ly. Moreover, since M
and Ms are deciders, each one of the simulations eventually halts, and since M carries
out at most 2(n + 1) simulations, it eventually halts, thus M is a decider.
Complement: Given a language L and a TM M that decides it, Define M the same as
M, with the only difference, that its accepting state is the rejecting state of M, and its
rejecting state is the accepting state of M. Since M is a decider, M is clearly a decider

too. In addition, it is easy to see that L(M) = L.

Union: The construction is similar to the construction in the case of union in the
previous section. M accepts when either My or My accept. If both reject, M rejects,
and if none of the above happens (which is possible since M; and My are not deciders)
then M runs to infinity. For x € L we know that at least one of the machines M; and
M> eventually accepts, since L1, Lo € RE, and z is in one of these languages. Thus, M
recognizes L1 U Lo.

Intersection: The construction is the same as for the union, except that M accepts
only if both M7 and My accept, and if at least one of them rejects, M rejects. In any
other case M loops forever. For x € L, both M; and My eventually accept, thus M
recognizes L1 N Lo.

Star: Given a language L and a TM M that recognizes L, we describe a TM M’ that
recognizes L*. The construction is similar to the construction for concatenation in the
previous section. Here we try all the possible ways to split the input to substrings and we
simulate the machine M on each substring (for i steps, i = 1,2,3,...). More formally,
given an input x, for i =1,2,3,...:

For all possible ways to split = to substrings vi,...,yr, run M on each of the
substrings for 7 steps.

e If for some split, M accepted all the substrings y1, ..., yr, accept.
o If for all the ways to split x, M rejected at least one substring, reject.
e Move on to the next iteration.

If z € L* then there exists a way to split to substrings yj,...,y; such that y; €L
for all 1 < j < k. Thus, for every y; there is a number n; such that M accepts y;
after n; steps of computation. Let m = maxj<j<,n;. Since the number of ways to
split z is bounded, and in every iteration M’ runs M for ¢ steps on every substring,
every iteration eventually ends. When M’ gets to the m’th iteration in its run on =z,
for the split y7,...,y;, M would accept all the substrings within m steps, therefore M’
recognizes L*.

2. Let E be an enumerator. We modify E as follows. Before writing a word w to the output
tape, compare w to all the words previously written to the output tape. if w was already
written, do not write it again. In this way we obtain an enumerator E’ that prints every word
once, and L(E) = L(E')

3. Claim: L € R iff there exists an enumerator that enumerates L in a lexicographic order
(where short strings come before long ones).
(=) Let M be a TM that decides L. Define the enumerator F as follows. E goes through all
the strings in ¥* in the order described above, and for each such string it runs M on it. If M
accepts, E prints the string and goes to the next one. Otherwise, it goes to the next string
without printing. Since M is a decider, M eventually halts on every input, thus E eventually
simulates M on every input. Clearly, £ enumerates L in the required order.
(<) We distinguish between two cases. First, it might be that the language is finite. If this
is the case, then the language is trivially decidable and there is nothing to prove. We prove
the result for the case the language is infinite. Let F be the enumerator that enumerates L
in lexicographic order, where short strings are printed before longer ones. Since the language
is infinite, for every word w € ¥* if we run F for long enough, it will print a word which is
bigger then w in the lexicographic order.

The TM M works as follows: On input x it runs E either until it prints x or until it prints
a string bigger then x in the lexicographic order. If E prints x then M accepts. If, on the
other hand, F prints a word bigger then z without printing x, then M rejects.

4. (=) Let M; be a TM that recognizes L.
Define Ly = {< x,y >: M accepts = within y steps}.
We show that Ly € R by describing a TM M that decides Ls. Mo acts as follows :

e Checks whether the input is of the form < x,y >. Otherwise, rejects.

e Simulates M; on x for y steps. if M accepted, accepts. Otherwise, rejects.

It is easy to see that M, decides Lo.

The above implies that L1 = {z : Jy such that < z,y >€ Lo}. This is because if z € Ly,
there exists y such that M; accepts = after y steps, therefore < z,y >€ Ls. On the other

hand if € Ly, there is no y such that M; accepts x after y steps, so there is no y such that
< x,y >€ Lo.

(<) Let M3 be a TM that decides L. We describe a TM M; that recognizes Li. Given an
input x, M; acts as follows.

For all w € ¥*, in lexicographic order :

e simulate My on < x,w >.

e If My accepts, accept. Otherwise, move on to the next w.
If there exists y such that < x,y >€ Lo, then, since Ms is a decider, every simulation
eventually ends, so eventually M will simulate Ms on < z,y > and will accpet. On the other
hand, if there is no y such that < z,y >€ Lo then M; will never halt on x.
. Let L € RE, and let E be an enumerator that enumerates L.
Define L' = {w € L : E does not print any word larger than w before it prints w}.
L' C L, because L' contains only words in L.

L' is infinite. Assume by a way of contradiction that L’ is finite. Let w be the largest word in
L'. Tt follows that E does not print any word largest than w after it printed w. This implies
that L(F) is finite, since there is only a finite number of words that are not larger than w,
and this contradicts our assumption, that L is infinite.

L' € R. We describe an algorithm that decides L’. Given an input x:
Simulate E. For each word w printed by E:

o If w = x, accept.
o If |w| > |z|, reject.

e Otherwise, continue.

If z € L', then E does not print any word larger then z before . Thus, z is one of the first
2l#l+1 words printed by E. When the algorithm gets to x, it will accept. If x ¢ L', then since
L is infinite, F eventually prints a word z larger then x. When the algorithm gets to z, it
will reject.

. We prove that if L is in FX7 then it is decidable (i.e., L € R). This clearly implies that (a)
and (b) are false but (c) is true.

For L € EXT7 there exists a TM M as in the definition of EX7. We construct another TM
M’ which operates as follows: on input z, it runs M on z for elzl” steps. If M rejects (i.e.
x ¢ L) then M’ rejects as well. Otherwise, M’ accepts. Since we are assured that either M
will reject within el® i steps or it will run forever, we know that M’ accepts exactly the words
in L. Note that M’ always stops and therefore decides L.

Computability - Exercise 8

All answers should be proved formally

Due Monday, June 25
1. For each of the following languages decide whether it is in R, in RE but not in R, or not in RE.

(a) Ly = {(M) | M is a TM that passes the 100*" position in the tape during its run on the empty
input}.

(b) Ly ={(M) | M is a TM and there exists an input such that M halts on it in not more than 1000
steps }.

(¢) Ly ={(M) | M is a TM and L(M) is context free}.

(d) Ly ={(M) | M is a TM and M stops on any input}.

2. For each of the following languages state (and prove) whether it is in R, RE'\ R, coRE \ RE, or none
of them. Recall that L € coRE if L € RE.

(a) ALLry = {(M) | L(M) = %*}

)
(b) L = {(My, My) : L(My) N L(M3) = 0}.
(¢) L={(M) : M accepts some word after more than 100 steps of computation}.
(d) EQcra ={(G,H): G and H are CFGs and L(G) = L(H)}.

3. Let A, B and C be languages over Y. Prove that

(a) If A reduces to B then the complement of A reduces to the complement of B.
(b) At is not mapping reducible to Erpy.
Recall that Ery = {(M) | M is a TM and L(M) = 0}.
4. (a) Prove that for every two languages L1, Ly € R which are not X* or), it holds that Ly <,,, Ls.
(b) Let L1, Ly be two languages such that L <,,, Ly and Lo is regular. Does this imply that L; is a
regular language? Remember to prove your answer.
5. (optional) Let Ay, A1, A, ... be an infinite sequence of languages over alphabet X, such that for every
k > 1, there is a mapping reduction, fi, from Ay to Ap_1. That is, Ay < Ap_1.
Let us denote: B, = J,_o Ar and Boo = U Ak-
It is given that Ay € R.

For each one of the following languages, state the smallest class of languages that contains it from: R,
RE, or not in any of these classes.

That is, if you claim that the language is in some class, prove it. If you claim it is not in a class, give
an example for a sequence Ay, A1, As, ... that shows it.

(a) Ak.

1.

2.

(a)

(a)

Computability - Exercise 8 - Solution

L € R.

We describe a TM T with two tapes that decides L;: Given (M), T simulates M’s run
on the empty input. The second tape is used for recording the configurations of 7" during
its run. At each step, if M passes the 100’th position, 1" accepts. Otherwise, T" checks
whether this configuration was previously recorded. If so, T rejects; else, it records the
current configuration of M on the second tape, and goes on to the next step.

Notice that T rejects if and only if M’s run on the empty input has entered an infinite
loop using only the first 100 positions on the tape, that is, returned to a configuration
that was recorded before. Moreover, since the number of configurations which use only
the first 100 positions on M’s tape is bounded by 100 - |Q| - |T|*®, T runs only a finite
number of steps on any input.

Ly € R.

Observe that in order to determine whether there exists a word on which a TM halts
after at most 1000 steps, it is sufficient to look at words of length at most 1000, since
M cannot pass the 1000’th position on the tape within 1000 steps.

Using this understanding, we describe a TM T" which decides Lo: Given (M), T' simulates
1000 steps of M’s run on every possible word of length at most 1000. T accepts if and
only if M halts on one of these words.

Ls ¢ RE.

We prove this by showing a reduction from A7y, (this is sufficient since A7y ¢ RE).
Given (M, w), the reduction outputs (T'), where T is the following turing machine: Given
an input x, T simulates M on w, and accepts if and only if M accepts w and z is of the
form a™b"™c".

If (M, w) € Ay, then M does not accept w, and L(T) =) which is a CFL, so (T) € Ls.
If (M, w) ¢ Arpr, then M accepts w, so T accepts exactly the words of the form a™b"c",
ie., L(T) = {a"b"c" : n € N}, which is not a CFL; thus (T") ¢ Ls.

Ly ¢ RE.

We prove this by showing a reduction from Ay, (this is sufficient since Ary; ¢ RE).
Given (M, w), the reduction outputs (T"), where T is the following turing machine: Given
an input x, T simulates |z| steps of M’s run on w. If M accepted, T enters an infinite
loop. Otherwise, T accepts.

If (M, w) € Arpr, then regardless of z, M never accepts w in |z| steps, so T always halts
and accepts; thus (T) € Ly. If (M, w) ¢ Agpr, then M accepts w after k steps, so 1T’s
run doesn’t halt on any = with |z| > k; thus (T') ¢ Ly.

ALLpy ={< M > | L(M) = $*}. ALLyy € RE U coRE.

We show a reduction both from A7js and from Apyy.

The reduction from Arp: On an input ((M),w) to Arps, the output of the reduction
will be the machine M,,, that on (any) input x, runs M on the string w, and accepts if
M accepts w. If M accepts w then M, accepts every input. Otherwise it doesn’t accept
any input.

The reduction from A7y On an input ((M),w) to Arys, the output of the reduction
will be the machine M, that on input = runs M on w for |z| steps. If within this time
M doesn’t accept w then M, accepts z, otherwise it rejects. If M doesn’t accept w,
then for every x, M,, will not see M accepting w within |z| steps (because it just never
happens) and it will accept x. Therefore L(M,,) = ¥*. Otherwise, M accepts z after
some k steps. Then by definition M, will see M accepting x for every x such that
|z| > k, and M,, will reject such z’s. It follows that L(M,,) # X*.

L ={< M > < My>: L(M)NL(Mz) =0} Lisnotin REUcoRE. We proved
that ALL7ps is not in RE Uco — RE. Here we prove that L is not in RE Uco — RE by
reduction from ALLp to L. Take Ms to be the input for AL Ly, and M7 as a machine
that accepts all inputs. L(M;) N L(My) = X* N L(Ms) = L(Ms) = 0 iff My € ALLpyy.

L ={< M >: M accepts some word with more than 100 steps of computation}. L €
RE\ R

Let wy,ws,... be an enumeration of all the words in ¥*. To see that L is in RE we
describe a recognizing algorithm: For all ¢ > 0 run M for i steps on the words wy, ..., w;.
If one of these words is accepted by within 7 steps, and is accepted in more then 100
steps of computation, then M € L. Otherwise move to the next ¢. Clearly if some word
wy, is accepted by M, then we will eventually accept it. On the other hand, if no word
is accepted by more then 100 steps then M will not be accepted (our procedure will run
forever).

To see that L is not in R we show a reduction from Azp;. On an input ((M),w) to
A7, the output of the reduction will be the machine M,,, that on input x, enters a
loop of 101 iterations, and then runs M on w and answers as M does. If M accepts w
then M, will accept every string in more than 100 steps. Otherwise it will not accept
any string.

EQcrc ={(G,H) | G and H are CFGs and L(G) = L(H)} € coRE \ RE.

First, ALLcrc = {< G > | L(M) = ¥*} reduces to EQcr¢ since we can feed EQcrg
with the pair (G, H), where G is the input to ALLcpg, and H such that it generates
¥*. It is known that ALLcpg ¢ RE, therefore, we conclude that EQorg ¢ RE.

To see that EQcrg € coRE, consider a machine that checks for each word w € X%,
whether both G and H generate w.

Let f be the reduction from A to B. We claim that f is also the reduction from A to B:
reA=z2¢ A= f(z)¢ B= f(z) € B.

Similarly,
rgA=r€eA= f(z)e B= f(z) ¢ B.

We showed that Aryr € RE \ R. It follows that Arys € coRE, as a language that is
both in RE and coRFE is in R. We also showed that Epy; € coRE. Therefore, it can’t
hold that Arys <, ETas because that would imply that Apyr € coRE.

4. (a)

(b)

Let Ly, Ly be two arbitrary languages in R which are not ¥* or (). Let z, and z, be
two fixed inputs to Lo, such that z, € Ly and x, € Lo. Then the reduction f from L;
to Lo will do as follows: on an input w to L; it will run the machine M; that decides
L;. Since L1 € R such M, exists. Then if M; accepts w the reduction will output z,
otherwise it will output x,,. It follows that w € L1 < f(w) € Lo.

The answer is no. A trivial counterexample is L1 = {a™b"|n > 0} and Ly = a. L1 <, Lo
by the previous section. From a more meaningful point of view, if the statement were
true, it would entail R = REG as both) and ¥* € REG.

5. Let Ag, A1, Ao, ... be an infinite sequence of languages over alphabet X, such that Ag > Ay >

Ay >

..., and Ay € R.

For each one of the following languages we state the smallest class of languages that contains
it from: R, RE, or not in any of these classes.

(a)
(b)

A, € R. We show this by induction. The base case: A; < Ag and Ag € R and so
A1 € R. Now, A; < A;_1 and by induction hypothesis A; 1 € R and so A; € R.

B, = Uj_oAr € R. The language B, is a finite union of r languages in R, namely
A1, Ag, ... A, As a finite union of languages in R also B, is in R. (We can use
induction to show that such finite union is decidable: clearly By = A1 U Ay € R and
By, = By—1 U Ag € R, using the induction hypothesis that By, € R.)

We give an example to show that Bo = (Jp— Ax ¢ RE U coRE.

Let x € ¥* be some fixed word in ALLpp;. Let wi,wo, ... be an enumeration of all
the words in ¥*. For every i > 0 set A; as follows: if w; € ALLpys then A; = {w;},
otherwise A; = {x}.

For each ¢ > 0 language A; contains one word and is therefore in R. Therefore, by (4a),
for every 4 there is a reduction from A; to A;11.

However, By, = |Jg—y Ax = ALL7) and by (2a) this language is not in RE U coRE.

Computability - Exercise 9

Due Monday, July 2

1. (a) Prove that polynomial-time mapping reductions are transitive. That is, prove that if
14 <p Lo and Lo <p L3, then L <p Ls.
(b) (optional) Prove that polynomial-time mapping reductions are NOT symmetric. That
is, there exist languages L1, Ly such that Ly <, Lo, but La £, Ly.

(c) Prove that for every L;, Ly € P, that are neither () nor ¥*, it holds that L; <, L.

2. For a natural number k, we say that a formula ¢ is k-cnf if it is of the form A", (\/;?:1 K}),

where K? are literals (i.e. variables or their negation).

We define the language, k-SAT = {¢ : ¢ is a satisfiable k-cnf formula}.

(a) Prove that for every k > 3, k-SAT is NP-complete. Recall that 3-SAT is NP-complete.

(b) Prove that 2-SAT is in P.
Hint: Note that a V b is equivalent to —a — b and —=b — a.

3. We saw in class that SUBSET-SUM where the numbers are written in decimal is NP-complete.

(a) We define the binary version of subset sum (where all the numbers are given in binary)
by:
BSUBSET-SUM = {(ni,...ng,t) | ni1,...ng,t are given in binary and 3b;..., by €
{0, 1} such that Zle bin; =t}.
Is BSUBSET NP-complete? Is it in P?

(b) (optional) We define the unary version of subset sum (where all the numbers are given
in unary) by:
USUBSET-SUM = {(1™,... 17 1%) | Jb; ..., by € {0,1} such that 3% bn; =t}.
Is USUBSET NP-complete? Is it in P? (prove your answer).

(c) Define CLIQUEyyy; = {G : G is an undirected graph that contains a clique of size 2007.}
Is CLIQUEyyy7; NP-complete? Is it in P?

Comment: We didn’t give the option that a language is neither NP-complete nor in P. If
NP=#P then such languages exist, but proofs might be hard for an ex’.

4. A relation R = {(x,y) € ¥ x X} is called an NP-relation if both of the following hold:

(a) There exists some polynomial p(-) such that for all (z,y) € R it holds that |y| < p(|z]).
(That is the length of the second coordinate is polynomial in the length of the first
coordinate).

(b) There is a deterministic polynomial time machine that decides R.

For an NP-relation R, define L = {x € ¥* | there exists y € ¥* such that (z,y) € R}.
A language L is an NP-relation language iff there exists an NP-relation R such that L = Lg.

(a) Prove that a language is in NP iff it is an NP-relation language.

(b) We saw in class a model of a Turing machine with a special “guess” tape. A deterministic
Turing machine with a guess tape accepts an input x € X* iff there exists some y € X*
such that the machine accepts if it starts running when the input tape contains x and
the guess tape contains y. Note that the running time of such machine is measured in
terms of the length of the input (not the guess). Prove that NP is the class of languages
that are accepted in polynomial time by Turing machines with a guess tape.

1.

(a)

Computability - Exercise 9 - Solution

Let f be a polynomial time mapping reduction from L; to Lo, and let g be such a
reduction from Lo to L3. We claim that g o f is a polynomial time mapping reduction
from L1 to L3. We have

x €l < f(x) € Ly < go f(x) € Ls.

Moreover, we assume that the running time of f bounded by some polynomial p, and
the running time of g is bounded by g. Therefore, |f(z)| < p(|z|), and thus the running
time of g o f is at most ¢(p(|x|)), which is still a polynomial.

Let Ly = {0}, and Ly = ALLypp (L1 € P. Recall that Ly ¢ R). Let T be a Turing
machine that immediately accepts any input, and 7" a machine that immediately rejects
any input. Therefore, (T') € Lo , while (T”) ¢ Ls. Consider the following mapping from
Ly to Ly: 0 is mapped to (T"), and all other words are mapped to (T”). This is obviously
a polynomial time reduction. On the other hand, by Lemma 1 as follows in 2-(a) and
since Ly is not decidable, Ly £, L.

Let y € Lo, and ¢ ¢ Lo. For x € ¥*, define the function

Jy zels
f(a:)—{y, v ¢ Ly

f is a reduction, since x € L1 < f(x) € Lo. It also runs in polynomial time, since it can
be determined in polynomial time whether x € L;.

k-SATeNP, with a satisfying assignment as witness. For NP-hardness, we show a poly-

time reduction from 3SAT, that is known to be NP-hard. Given a 3CNF formula ¢ =

N, C;, where Cj = ljl- v lj2- Vv l?, the reduction outputs the k-CNF formula ¢’ = A%, C7,

where C]’- = ljl» V l]2- Vv l:; V..V l;’. Clearly, an assignment satisfies ¢ iff it satisfies ¢'.
N—_———

k—2times
2-SATEP. Given a 2CNF formula ¢ over the variables {x1, ..., z, }, we costruct a directed
graph G = (V, E), where:

V=Ax1,....,xn, X1, ..., T}

E = {(-l1,l),(~l2,1l1) : [y Vs is a clause in ¢}

For example, if we have the clause (x3V —z7) in ¢, then we will have a both the directed
edges (—x3, —x7) and (z7,x3). (Note that a V b is equivalent to —a = b and to —b = a).

We denote by a —— b the situation in which there exists a directed path from a to b.

Claim: ¢ ¢2-SAT < there exists 1 < i < n such that G contains both z; —— —z; and
Ly —— Tj.
Proof: Assume first that G contains both paths for some x;. Assume by way of con-
tradiction, that there’s also a satisfying assignment 7 for ¢. Assume w.l.o.g. that
m(x;) =T, 7(—x;) = F, and look on the directed path from z; to —z;. The path is logi-
cally equivalent to a sequence of logical implications, z; = v , ..., 2 = —x;. Thus, since
m(xz;) = T and all the implications are satisfied, it must be that m(—z;) = T' reaching
contradiction.
For the other direction, Assume now that for all 1 < i < n, either G does not contain a
path x; —— —z; or G does not contain a path —x; —— z; (of course it might be that
G contains neither). We construct a satisfying assignment 7 in the following way:
Fori=1,...,n:
o If m(z;) is already defined, move on to the next i.
e If G contains z; —— —x;, set w(z;) = F. Otherwise, set 7(z;) = T. Set w(—x;) =
-7 (x;).
o If m(x;) = T, then for every literal [reachable from x; on the graph, where 7(l) is
still unset, set 7(l) = T.
o If m(—x;) = T, then for every literal [reachable from —z; on the graph, where 7 (l)
is still unset, set w(l) =T.

We show now that 7 satisfies ¢, by showing that it satisfied all clauses. Let (I; V l2) be
a clause in . Assume without loss of generality, that [; is assigned value before 5. If
7(ly) = T, then we're done. Otherwise, there’s an edge (—ly,l3) in the graph. So once
[; is assigned F', lo would also be assigned a value, and 7(ly) = w(=l;) = T. Thus, the
clause is satisfied.

The claim above suggests the following algorithm to decide 2-SAT. Given a 2CNF for-
mula, construct G as above. For each 1 < ¢ < n, run BFS to check if there is a path
from x; to —x; and from —x; to x;. If there is an ¢ for which these two paths exist, reject.
Otherwise, accept.

It takes O(n+m) to construct the graph (where n is the number of variables and m is the
number of clauses), and O(n(n +m)) to search for the paths. Altogether, O(n(n+m)).

BSUBSET—-SUM is NP-complete. BSUBSET—SUM € NP: awitnessis by, ba,...,b
such that Ele bin; = t. We demonstrate that BSUBSET-SUM is NP-hard by showing
that SUBSET — SUM <, BUSBSET — SUM; this is sufficient since we have seen in
class that SUBSET-SUM is NP-hard.

Indeed, given an input for the SUBSET-SUM problem (where the numbers ny, ..., ng,t
are given in decimal), the reduction simply maps each n; and ¢ to their binary repre-
sentation. This can be done using the usual algorithm: at each stage, the next digit
of the binary representation is the current decimal number mod 2; the current decimal
number is divided by 2 (integer division). The running time of this algorithm is linear
in the size of the input, and the overhead in the size of the input is in a constant factor
(In10/1n2). Furthermore, it is clear that this is a reduction.

USUBSET—-SUM € P. A suitable (dynamic programming) polynomial time algorithm
was presented in the algorithms course. The algorithm builds a binary matrix M of size

k x t. The (i,7)'th cell contains 1 iff there is a subset of {ni,...,n;}, such that the
sum of the elements in the subset is j, and the subset includes n;. The matrix is filled
column-by-column, according to the formula

1 j=n;vIA<i—1st. M(I,j—mn;)=1
M(’L,j) — .] nl — 1 S (’] nl) .

0 else
There is a subset-sum iff there is exists [such that M(l,t) = 1. The running time is
polynomial in ¢ and k.

(¢c) CLIQU Eyy07 € P. In order to prove this, we present an algorithm which determines
whether a given graph contains a clique of size 2007 in polynomial time. The algorithm
simply scans all possible choices of 2007 vertices from V| and accepts if and only if one
of these sets of vertices is a clique. Since 2007 is a constant, each of the clique-tests

can be executed in constant time. The number of tests to be performed is bounded by

(a007) < n*".

4. The proof of (b) is a repetition of the proof given in Recitation 6 for the equivalence of the
computing powers of deterministic and nondeterministic Turing machines. (Of course one
must note that everything remains polynomial).

We prove (a). Let L be a language in NP, then there exists a nondeterministic polynomial
time machine M that decides L. For an input x there is a witness y that corresponds to the
guesses made during the accepting computation of M on z. Let

R ={(z,y) € ¥* | x € L and y encodes the guesses made during the accepting computation
of M on x}. Clearly R is an NP relation and L = L.

On the other hand, let L = Ly for some NP-relation R. Then, there exists some polynomial
p such that |y| < p(|z|) for all (z,y) € R, and a deterministic machine M that decides R.
We construct a nondeterministic machine M’ that on input z first guesses a y of length
p(|z]) or less, and then runs M on (z,y). Clearly M’ is (nondeterministic) polynomial time
machine. The machine M’ accepts x iff there exists some y such that (z,y) € L. That is
L(M)=Lr=L

Computability - Exercise 11

Due Monday, July 9

1. We proved in class that the language HAMPATH = {(G,s,t) | G is a directed graph that
contains a Hamiltonian path from s to ¢} is NP-complete. A Hamiltonian cycle is a cycle
(a path that begins and ends in the same vertex), that contains each vertex exactly once.

Prove that the following languages are NP-complete.

(a) HAM = {(G) | G is a directed graph that contains a Hamiltonian cycle}.
(b) 3HAMPATH = {(G) | G is a directed graph that contains a Hamiltonian path}.

2. Assume there exists a language L such that L <, (01)* and 3SAT <, L.

For each of the following propositions, determine whether the assumption above implies the
proposition, and justify your answer.

(a) L €P. (Where L¢ = ¥*\ L is the complement of L.)
(b) P=NP.
(c) (01)* <, L.

)

(d) L is NP-complete.

3. A class C of languages is closed under poly-time Karp reductions if for every two
languages L, L’ C ¥*, it holds that if L € C and L' <, L then L' € C.

For each of the following classes determine whether or not it is closed under poly-time Karp
reductions, and justify your answer.

(a) P
(b) DTIME(log(n))
(¢) DTIME(n?)

)

(d) EXP = |J DTIME(2"")
k>0

(e) (optional) (| DTIME(2")
6>0
4. The Class co-NP is the class of languages whose complement is NP.
Thus, co-NP= {L C ¥* | (¥*\ L) € NP}

(a) Give formal definitions for co-NP hard languages and for co-NP complete languages.
Note, the definitions should not refer directly to the class NP.

(b) Prove that a language L C ¥* is co-NP hard iff ¥* \ L is NP-hard.
(c) Prove that a language L C ¥* is co-NP complete iff ¥* \ L is NP-complete.

(d) For n > 0, a finite sequence of natural numbers @ = (a1, ..., a,) is half-sum breakable, if
there exists j < n and a subsequence (a;,, ..., a;;) such that Zi:l Qi = 3 D0 Q.
Let L = {a | @ is a finite sequence of natural numbers that is not half-sum breakable}.
Show that L is co-NP complete.

Note that in this case, as in every case in which nothing is said about the representation
of numbers, we assume that all the numbers are given in binary.

5. Show that PSPACEFE is closed under the operations union, complementation and Kleene star.

Computability 2007: Exercise 10 solution

Reminders:

e [€ NP if there exists a Turing machine V(z,y), with running time polynomial in |z|, such
that = € L iff 3y such that V(z,y) accepts. y is referred to as a 'proof’ or as a 'witness’ to
2’s membership in L.

e Lis NP-hard if for any L' € NP, L' <, L.

e [is NP-complete if it both a member of NP and is N P-hard.

e Proving NP hardness is done by either one of two ways: direct proof as in the Cook-Levin
theorem which proves that 3SAT is N P-complete. N P-hard. This is done for one language
(3SAT), and other languages are shown to be NP-hard via reduction. That is, if L is
NP-hard, and L <, L' then L' is N P-hard.

1. HAMPATH = {(G,s,t) | G is a directed graph that contains a Hamiltonian path from s to

£,
(a)

HAMCYCLE = {(G) | G is a directed graph that contains a Hamiltonian cycle }.
HAMCYCLE € NP: A proof of (G) € HAMCY CLE is the sequence of vertices that
comprise a Hamiltonian cycle in G. This can be verified in polynomial time.
HAMCYCLE is NP-hard: HAMPATH <, HAMCYCLE. Given (G, s,t), the re-
ductions creates a new graph G’ by adding a new vertex v to G, along with the edges
(t,v) and (v,s). A Hamiltonian cycle in G’ must traverse v and must do so through
above edges (t,v) and (v, s). The existence of such a Hamiltonian cycle in G’ therefore
implies the existence of a Hamiltonian path from s to t. Conversely, a Hamiltonian path
from s to t in G can be extended to a Hamiltonian cycle in G’.

JHAMPATH = {(G) | G is a directed graph that contains a Hamiltonian path }.
JHAMPATH € NP: A proof of (G,k) € IS is a sequence of vertices that comprise a
Hamiltonian path in G. This can be verified in polynomial time.

HAMCYCLE is NP-hard: HAMPATH <, 3HAMPATH. Given (G, s,t), the re-
ductions creates a new graph G’ by adding a new vertices u,v to G, along with the
edges (u,s) and (¢,v). A Hamiltonian path in G’ must begin with u and end with v.
Its existence implies the existence of a Hamiltonian path from s to ¢. Conversely, a
Hamiltonian path from s to ¢ in G can easily be extended to a Hamiltonian path in G’.

2. Given L, such that L <, (01)* and 3SAT <, L we can conclude:

(a)

L¢e P. First, L € P, as REG C P. Secondly, P is closed under complement.

(b)

()
(d)

P =NP. L€ P and 3SAT <, L and so 3SAT € P. Also, 3SAT is NP-hard and
so every language in NP (polynomially) reduces to it, and is therefore in P (reductions
are transitive).

(01)* <, L. From 3SAT <, L we learn that L is non-trivial (i.e., neither () nor ¥*).
The same is true for (01)*. Both languages are in P and hence reduce to one another.

L is NP-complete. 3SAT <, L so Lis NP-hard. L€ PC NP so L& NP.

3. The question is: does L' <, L and L € C implies that L' € C?

(a)

P is obviously closed under polynomial reductions. Assume that the reduction runs in
time O(n*) and that a machine that decides L runs in time O(n™) (where n is the length
of the input). The suggested polynomial time machine for L' computes the reduction
and then runs the algorithm for L. Running the reduction takes O(n*) time steps, and
therefore the output is at most O(n*) letters long. Let ¢ be the constant in the O(-)
definition, then the output is of length bounded by en*. Therefore running the machine
that decides L on the output takes at most O((cnf)™) = O(n¥™) time. The entire
procedure takes O(n* + n¥™) = O(n*™) time steps.

DTIME(log(n)) is not closed under polynomial reductions. Using the time hierarchy
theorem, there exists a language L’ decidable in time O(n?), but not in time o(n3/log(n?)
and particularly, not decidable in time O(log(n)). A polynomial time reduction can
decide if z € L and prepend one bit that signifies the result to x as its output. And now, a
logarithmic time algorithm can decide the language L = {x | the first symbol in x is 1 }.
Note: Machines operating in time logarithmic in n are very limited. Note that they
cannot even read the input (since that would take O(n) time). In fact, they can’t even
know how long they can run, since they can’t read the input. A proof showing that
DTIME(log(n)) = DTIME(1) can be constructed from this observation.

DTIME(n?) is not closed under polynomial reductions. Use the same argument as in
the previous section.

EXP is closed under polynomial reductions. As in the case of P, the machine that
first performs the reduction, and then decides whether the input of the reduction is in
the language we reduced to, takes exponential time. In this case, the reduction runs
O(n*) time, and produces an output of length at most O(n*). Now the exponential

k

time machine runs (in time O(Q(ml)) on input of length m = n” so it’s running time is

0(2(m"")) = 0(2(m™)) so the running time of the entire machine is still exponential.
(\ DTIM E(2”6) is closed under polynomial reductions.
6>0

Intuitively, since V& > 0, P C DTIME(2"), we have P C () DTIME(2""), and so, in
0>0
this class we can carry out the reduction without exceeding the time constraint (as in

the case of EXP).

Formally, we assume the existence of a reduction with a running time O(n*). Given
do >0, set = %0. L can be decided in time O(2™") (since it is the intersection and thus
in 0(2"6) for all §). Therefore, the machine that first runs the reduction and then the
machine deciding L, runs in time O(n¥ + 2(""") = 0(2(”k)%) = 0(2""), thus proving
the claim.

4.

(a)
(b)

A language L is co-NP hard if for every language L' € co — NP we have L' <, L. A
language L is co-NP complete if it both in co-NP and is co-NP hard.

Let L be a language whose complement L€ is NP-hard. For every L; € co — NP, we know
that L{ is in NP. Therefore L{ <, L¢. The reduction f is polynomial time computable
function such that z € L <= f(z) € L°. Therefore, z € Ly <= f(z) € L. Thus f
is also a reduction from L; to L implying that Ly <, L

Let L be a language whose complement L¢ is NP-complete. Then, L¢ is NP-hard and
therefore L is co-NP hard. Also L€ is in NP, and therefore L is in co-NP. Thus, L is
co-NP complete.

By the previous clauses it is enough to prove that L = {a | @ is a finite sequence of
natural numbers that is half-sum breakable} is NP-complete. It is easy to see that L
is in NP, the witness is the sub-sequence, and it easy to check in polynomial that the
subsequence sum is half of the total sum. As for hardness, we proved in the tirgul
that SUBSET-SUM is NP-hard, we will show a reduction SUBSET-SUM <, L. For
a=(ay,...,a,) and t input for SUBSET-SU M, we denote by s the sum of the sequence
s =y a; Let b=2006s—1[and ¢ = 2006s — (s —). The reduction computes b and ¢
and outputs a’ = (a1,...,an,b,c) (intuitively as input to L). Clearly the reduction can
be done in polynomial time. We shall now see that a’ is half-sum breakable iff there is
a subsequence of @ whose sum is exactly [.

Assume first that there is a subsequence @y of @ whose sum is exactly [. Then, the sum
of as and b is exactly 2006s. The sum of all the elements of @ that are not in a; and ¢
is exactly 2006s as well. Therefore, a’ is half-sum breakable.

Assume now that o is half-sum breakable. Note that the sum of the entire sequence
a’ = (30, ai) + b+ c) is exactly 2 x 2006s. Denote by a, a subsequence whose sum is
exactly half the total sum (namely 2006s). It is impossible that a/, contains both b and
¢ since the sum of those two elements is larger then 2006s. For the same reason it is
impossible that a/, contains neither b nor c.

Assume w.l.o.g. that a/, contains b and does not contain c. Then the sum of the a;’s in
a/. must be exactly [. Therefore @ contains a subsequence whose sum is exactly .

5. Union: Let L1, Ls € PSPACE, and let M, Ms be Turing Machines that decide them in

polynomial space. We can decide L = L1 U Lo in polynomial space, by first simulating My,
then Ms, and accepting if at least one of them accepts.

Complement: Let L € PSPACE, and let M be a TM that decides it in polynomial space.
Since M is deterministic, we can decide L€ in polynomial space by simulating M, and accept-
ing iff it rejects.

Kleene star: Let L € PSPACE, and let M be a TM that decide it in polynomial space. The
following non-deterministic TM decides L* in polynomial space: the machine guesses the par-
tition of the input word into substrings in L (the guess can be saved in polynomial space), and
then checks that each of them is indeed in L by simulating M. Since PSPACE=NPSPACE,
we get that L* € PSPACE.

Computability - Exercise 11 - not for submission

Note: Some of the questions refer to the classes L and NL that will be taught next week.

1. Prove that the following language is PSPACE-complete.

CONT = {(A;, A3) : Ay and Ay are NFAs and L(A;) C L(A2)}

2. Show that N L is closed under the operations union, intersection and star.

3. Prove that the following language is in N L.
FAR = {(G, s,t, k) : all paths from s to ¢ are of length at least k}

Note that if there is no path from s to ¢, then (G, s,t, k) € FAR for all k.

4. (a) Show that Appa = {(D,w) : D is a DFA and w € L(D)} is in L.
(b) Show that Axpa = {(N,w) : N is a NFA and w € L(N)} is N L-complete.
5. (optional) Let G = (V. E) be a directed graph on vertices from the set {0,1}". As this set is

of cardinality 2" the graph is too large to be given as an input. So instead we represent the
graph by a TM Mg that computes the function:

1 (u,v) e E
0 otherwise

Me(u,v) = {

That is, by querying Mg, we can determine whether a certain edge occurs in G.
Now consider the language:

Implicit — Connectivity = {(Mg, s,t) : Mg is a deterministic TM as above and uses at most
polynomial-space, s,t are vertices in GG, and there is a path from s to ¢t in G}

Show that this language is PSP AC E-complete.

1.

2.

3.
4.

Computability - Exercise 11 - Solution

On page 3.

Let M7 and M5 be two non deterministic log space machines that recognize the languages L
and Lo, respectively. First, we prove closure to union. To construct a machine for L U Lo,
simply use the first non deterministic bit to decide whether to run My or M. To construct
a machine for Lj N Lo, one can run M first, and only if it accepts run M. The space can be
reused so no extra space is needed.

To construct a machine for L] we need a slightly more complicated construction. A word
w € X" is in L7 iff it can be broken into subwords w = w; - wa - - - w,, such that for all ¢ the
subword w; is in L1. Our machine, which accepts L], will use the non determinism to guess
the length of the first subword w;, and simulate M on it. (Note there is a slight complication
here, our machine should remember the length of w; and even if M tries to move it’s input-
reading head from it, simulate M as if the input tape contains only w;). If M rejects w; our
machine will reject. Otherwise, our machine will check to see if w; already contains all the
input, or otherwise, continue to guess wy in a similar manner. The process ends either in
a rejection, or when all of the input w was covered by accepted subwords in which case we
accept.

On page 4.

(a) Following the computation of a DFA is easy, all one has to do is to keep in the memory
the current state (of size O(log(n))), the index of the symbol read (of size O(log(n))),
and the symbol read (of size O(1)). What one has to do is to go over the transition
table, and find the relevant transition (easily done using O(log(n)) auxiliary memory).
Repeat the process for all letters in the word, and finally check if the state at the end of
the run is accepting (again easily done using O(log(n)) auxiliary memory).

(b) First, to see that the language is in N L, note that the only difference from the determin-
istic case, is that when going over the transition table, the machine, does not necessarily
take the first suitable transition, but rather uses a non deterministic bit, to decide if to
take the transition, or search for another one. In case all the transition table was read,
and no transition was taken, the machine rejects.

Next, to see that the language Anpa is NL-hard, we reduce PATH to it. Given
(G, s,t), where G = (V, E) is a graph and s,t € V are vertices, we construct an NFA
A=(%,Q,Qo,0, F) and a word w such that w € L(A) iff there is a path in G from s to ¢.
We set 2 to be a one letter alphabet {a}. We set Q = V where Qo = {s}, and F = {t}.
As for §, for a state (i.e. vertex) w, other then ¢, we set d(u,a) = {v | (u,v) € E}. For
the state (vertex) ¢t we set 0(¢,a) = {t}. Finally, set w = a”. Clearly, all these simple

constructions can be made using logarithmic space. It is also easy to see that there is a
path from s to t iff there is an accepting run of A on a”.

5. We first show that Implicit-Connectivity € PSPACE. We use the fact that PSPACE=NPSPACE.
The following polynomial space algorithm decides the language. The algorithm first guesses
a length [of an st-path, and then guesses its [— 2 inner vertices.

e Guess a number [€ {2,3,...,2"}. Guess v; € {0,1}", and simulate Mg on the input
(s,v1). If Mg rejects then “reject”.

® | «— 2.
Repeat until 7 is equal to [— 1:

— Guess v; € {0,1}™. If Mg(vi—1,v;) rejects then “reject”.
— 4 —11+1.

o If Mg (v;—1,t) rejects then “reject”, otherwise “accept”.

The simulation of the polynomial space machine Mg takes polynomial space. Note that this
is almost the same algorithm used to show that PAT H € NL, only applied to a huge graph.

We next show that Implicit-Connectivity is PSPACE-hard. Let L be an arbitrary language
in PSPACE, and M|, a machine deciding L using no more then p(n) space. We show that
L <, Implicit-Connectivity.

The idea is very simple, the graph G (given implicitly) will represent the configuration graph
of My. Throughout the proof we use n to represent the size of the input given to My, and m
to represent the length of a binary description vertex in the Implicit-Connectivity graph.

Given a word w, where |w| = n, the possible configurations of M when running on w are of
length at most p(n). Each configuration can be represented as a sequence of p(n) cells where
each cell contains either a symbol from I' (i.e. a symbol My work alphabet) or a symbol from
I'x @ (i.e. asymbol and a state of M,). Therefore, each cell can be represented by a constant
number of bits (that does not depend on the input length), and the entire configuration can be
represented by a sequence of m = ¢yn bits. In addition we want to have one vector of m bits,
that does not represent a configuration, represent a special vector we will call “accepted”.

The machine Mg is a machine that given two vectors (u,v) answers 1 either if v is a con-
figuration successor to u in My, or if w is an accepting configuration and v is “accepted”.
Otherwise, the machine Mg answers 0. Note that it is easy to build, in polynomial time, such
a machine Mg that works in polynomial space. The vertex s is the initial configuration (of
M}, on w), and the vertex ¢ is “accepted”.

Note that the entire reduction (which consists mostly of constructing M), is easy and can
be done in polynomial time. It is also easy to see that My accepts w iff there is a path in G
from s to t.

TR - nawona 11 9o 93390 11ane

wp -PSPACE &7 CONT »2 7% nn mom

ALLNra <p CONT °2 81 ,'R 7°y02 wnnw

;X277 7732 CONT 5w <A1, Ax> 9P 3% , ALLNpa 20 <A> 5P 11002
A=A 1 ,(L(A)=2") 0¥n1 95 nx 2apna NFA T A

<A1,A;>eCONT n"nk <A>e ALLnpa 2 PR21,0nv

L(A) 2 n2om L(A}) 2 °RT2) L(A2)=L(A)=2* IR <A>e ALLNra OX

199 ,L(A)=X" "2 m1am :17 L(Az) 2 099 L(A) IX <A[,A;>eCONT ox
L(A)=L(Ay)=%"

-PSPACE 5w 73717277 °99W 27 1MW) 1m0 PXR1770 °0 NIRIT? NI 1190198 mns:
UMILINT DR DAY IR P17 .(ORI1D 1812 WY TOXPITII 9D 171D TR WP
1220 WY V9P DY N2vn 93 .112p 07V 190N YEIAY 1001 AT WM ,2°9°101 92 DR Dapnw
DI PRPITT 197 oMo

:CONTePSPACE >3 7ny nX"3

coNPSPACE=PSPACE a3 y211,197 .NPSPACE=PSPACE ,Savitch vawnn r1pon
.(OPI1°91D 1172°12 IO WR DR DOYOIN DAY 2T ,AI10010 11N2°TA 15w 2°YPION OX)

.CONT ecoNPSPACE >3 X172 p°o0n ,19°

DO1INI DVAIIN IW N2V AR, A0 NI ,N°001AVT KD 77X Y0977 7371 ,0190
Ab 070 DY N9apnan 75Wa NYoM AR Ay 07 OV nhapnna mown ALA,

272 HYDN NPVOPIMHIVT KD AN

A1 DR 79n00Y,(220PI0IRT 2w 022X717 27901 0130 TV, ,2W 2T12) w o Wi X
aRI P172M)17 2pwi DFA-7 2R "omonn" a110n7 ,A, 2237 .w DY (DPuonninT R 71182)
.DFA-2%2pn 231 °2°1n7 a8nin 71900 v

DR ITT Ay 21w DR P2%p A 2R 9apn 731007

7 HY NY2PNAT 75WA NI AR A 0T DY NPapNnT 75w 1OK ORY 1102 :NIS: NNt
MRIT? 2°2waw 2% 7w (W52 DRXNIW 797 WImP1a) apn 2w 7306?10 IR LA,

90 W 7°°07 1°9377 TOIX 7°°0T MIRDA? 9Pawa IR LIAR 22pn 2won pvoon NFA -2 93p
.(pwn DFA -1 99 73°17 DRI ,72°0 70IRD ,IR) 2°200n0

39501 D10 TN DUWMLIRT TR 70 DY N22APNNT 7771 937 19V ,P°00° 1INAW 797107 DT
RN 20239 DT MY -7 ANINA DApNN DA T DTN TI0R A2 700N ,002300

09P 27132 910910 N1AR N7 AW A10NIW W TR0 2713 (11907 NDIR% MmN

-7 09P MIR PRI IIMIR 237 71982 09 DIWD — 91D 10272 w1 A YW x9N0
1172°T2 D AN PU7v 1"y DFAR Y ax07 ,a9RWwa YW a7IPn PYoa md IRp w
TPTIPY TIPTIPR 21701 NRPXN 19V ,(NPOROXINDOPR 77X 21737 2199 02287 1900w MN?)
VP 2R 2237 NN PN DWRNWH UR ,IM20 NL-2 707 (20Tp 7P W %12p7 X)
SO0 RIT 12 DOWHNWAY 1119777 20 197, 9RORIND0PR 971 P2

XX (PDRONIIDOPR NI2°T WNT 77 IR) MWD 7123 1R 7pwi DFARW X7 2wn ampa
SR NFA -7 8002 wInsw 0 R0 0m0R 5w 38°7 N¥9Ron 7110n3

.FAReNL 2 ¥211 ,NL=coNL - 1151 .FARecoNL > o1
INRWNT PRI DR T
NOT-FAR = {(G,s,t,k) : there is a path from s to ¢ of length < £ }
("o rnIvT R27) an PR 1201 (FAR ecoNL 1213 19%) NOT-FAReNL °3 R
X237

.G -1 vy TIRTIR Wm1l -
19182 TONN1 , vz 20 vz 1Dd0 W1 ,vy 20 vy 120 WMl -
.On1T
229 ,0"70%¥ k -n ni1mod t TIRTIRY? NUAN DR -
.OmT o, t=% nuan X271 0nTTpY k-1 nuyta ORX

YT DR MAYT 70X aNIRORT 20N .0 -2 7732 DOTIPTIPT 1507 DX 1201 (130T 1INt
L,(TPTIPA 1507 2w SR NN — logn 1N2°T) 1INI Y12 DURYNI 12 TIPTIPA (19T K27
(n>K 7Y 730 N1 929w 7300 DW IR X -logn) 11TVRW DYTYET 1501 DW 1amn

X0 9219) WM AW 12D TR TNIT A2 E-D s - ¥R 21901 WO OR (AanIIahRT NIs:
AIAT DR 221 172y (100N R

3

	ex01.pdf
	ex01sol.pdf
	ex02.pdf
	ex02sol.pdf
	ex03.pdf
	ex03sol.pdf
	ex04.pdf
	ex04sol.pdf
	ex05.pdf
	ex05sol.pdf
	ex06.pdf
	ex06sol.pdf
	ex07.pdf
	ex07sol.pdf
	ex08.pdf
	ex08sol.pdf
	ex09.pdf
	ex09sol.pdf
	ex10.pdf
	ex10sol.pdf
	ex11.pdf
	ex11sol.pdf

