
1

Prof. Shlomo Kipnis 1 Fall 2007/2008

Introduction to Security

Prof. Shlomo Kipnis
October 22, 2007

Prof. Shlomo Kipnis 2 Fall 2007/2008

The World We Live In

Personal computers (home or office)

Data servers (databases and web serves)

Phone systems (terminals, switches, routers)

Cellular phones (voice, image, video, data)

Hand-held appliances (laptops, PDA, GPS)

Wireless communication (LAN, microwave, free air)

Information kiosks (data, service, bank ATMs)

Television systems (cable, satellite, free air)

Embedded systems (in cars, in home appliances)

Smart cards (identification, authorization, electronic cash)

Many other systems . . .

Prof. Shlomo Kipnis 3 Fall 2007/2008

What is Security?

On the one hand:
Making sure that bad things do not happen

Reducing the chances that bad things will happen

Lowering the impact of bad things

Providing means to recover from bad things

While on the other hand:
Allowing good things to happen

Managing the cost of the system

Examples:
Home security

Car Security

Prof. Shlomo Kipnis 4 Fall 2007/2008

Security Challenges

Securing a variety of different systems

Securing interfaces between different systems

Different security goals and needs

Attackers seek weakest link in the system

Security people must protect all links in the system

Maintaining system usability

Keeping security costs under control

Prof. Shlomo Kipnis 5 Fall 2007/2008

Threats & Attacks

Unauthorized access

System integrity loss

Denial of service

Computer viruses

Trojan horses

Information loss

Data leaks

Data manipulation

Data fraud

Data theft

Data destruction

Program manipulation

Prof. Shlomo Kipnis 6 Fall 2007/2008

Some Security Breaches

In 1988, a computer “worm” launched by Cornell
graduate student, Robbert Morris Jr., infected 1000’s
of computers, causing them to shut down

In 1994, $10.4 million dollar computer fraud by a
group from Russia against Citibank

In 1996, the USA DOJ and CIA home pages were
defaced by vandals

In 2000+, millions of attacks on governments,
corporations, financial institutions, etc. every year.
(Most are unsolved and are not reported.)

2

Prof. Shlomo Kipnis 7 Fall 2007/2008

Eavesdropping and Packet Sniffing

Description: Acquiring information without changing it

Means: Packet sniffers, routers, gateways, capturing
and filtering out packets

Threats: Sniffing can be used to catch various
information sent over the network

Login + Password

Credit card numbers

E-mails and other messages

Traffic analysis

Prof. Shlomo Kipnis 8 Fall 2007/2008

Snooping

Description: Acquiring information without modifying it

Means: Browsing documents on disk or main memory

Using legitimate privileges (insiders)

Hacking into a system (outsiders)

Stealing laptops

Monitoring keyboard strokes

Observing timing information (covert channels)

Threats:

Obtaining sensitive information (files with credit card numbers)

Discovering passwords, secret keys, etc.

Prof. Shlomo Kipnis 9 Fall 2007/2008

Tampering

Description: Modifying or destroying stored data

Means: Insiders misusing privileges or outsiders
breaking into system

Threats:

Change records – school grades, prison records, tax payers’
debts (NY $13 million property tax fraud)

Erase audit trails (by hacker)

Plant Trojan-horses for password gaining, and other uses

Prof. Shlomo Kipnis 10 Fall 2007/2008

Spoofing

Description: Impersonating other users or computers to
obtain privileges

Means:

Account stealing, password guessing, social engineering

IP spoofing: E-mail forging, false IP From address, hijacking
IP connections

Threats:

Forged messages (Dartmouth’s “exam is cancelled”)

Denial of Service (IP attacks, SYN attacks, Ping-of-Death)

Information sniffing (Princeton “WWW Spoofing” attack)

Prof. Shlomo Kipnis 11 Fall 2007/2008

Jamming

Description: Disabling a system or service

Means: Engaging host in numerous (legitimate)
activities until exhausting its resources; spoofing return
addresses to avoid tracing

Threats:

Consume all resources on the attacked machines, e.g., memory
(SYN attack), disk (E-mail attack)

Exploit bug to shut down hosts (ping-of-death)

Prof. Shlomo Kipnis 12 Fall 2007/2008

Code Injection

Description: Injecting malicious code to execute on host
with high privileges and infecting other hosts

Means:

Virus: attached to executable, spread through infected floppy
disks, E-mail attachments, macros

Worm: replicate over the Internet

Threats:

Everything…

3

Prof. Shlomo Kipnis 13 Fall 2007/2008

The Melissa Virus

E-mail message; launched around end of March 1999
Subject: Important Message From <name>

Body: Here is that document you asked for ... don't show
anyone else ;-) + set of pornographic links

Attachment: Word file with infectious macro

Registers itself, to avoid duplication

Modifies Normal.dot template

Sends Email to top 50 addresses in Outlook address book

When date+month matches hour+minutes, inserts “Twenty-two
points, plus triple-word-score, plus fifty points for using
all my letters. Game's over. I'm outta here.”

Impact: Within less than 3 days, over 100,000 hosts. Some
hosts had to shut down because of E-mail volume

Prof. Shlomo Kipnis 14 Fall 2007/2008

Exploiting Flaws

Exploit vulnerabilities in software to penetrate systems
Buffer overflow (e.g., ‘finger’, Internet Worm, Web Site apps)

Mobile code security flaws (Java, ActiveX)

Bad human engineering (Unix administrator logins, sendmail)

Knowledge spreads faster than remedy
Hacker bulletins

Advisories:
Flaws/fixes repositories, e.g., CERT

Publicly available software kits to detect known vulnerabilities,
e.g., SATAN, ISS

But they are not always followed readily, and are often used to
the advantage of hackers

Publicly available hacker kits on the net, e.g., RootKit (Unix)

Prof. Shlomo Kipnis 15 Fall 2007/2008

Password and Key Cracking

Guessing: family member names, phone numbers, etc.

Dictionary Attack: systematic search

Crack: dictionary attack extended with common patterns

crack is now employed by sys-admins and the passwd program

Exhaustive search:

Crypt-analysis tools evolve continually

The Internet provides a massively parallel computing resource

Crypt-analysis, bad generators, timing analysis

Kocher: discover key by the time it takes to encrypt with it

Smart-card cracking via fault injection
Prof. Shlomo Kipnis 16 Fall 2007/2008

Social Engineering

Spoofing a “real system”:

Login screen

Phone numbers

ATM story

Spoofing a “service”:

Stealing credit card numbers and PINs

Stealing passwords

Agent-in-the-Middle Attacks

Special print of newspaper

Router, gateway, bulletin boards, etc.

Prof. Shlomo Kipnis 17 Fall 2007/2008

Hackers – Who Are They?

Academic Researchers:
Universities and research laboratories
Develop and analyze systems

Consultant Hackers:
Employed by companies to identify weaknesses in systems

Independent Hackers:
Work individually to identify weaknesses in systems
Motivation is social or personal

Criminal Hackers:
Other side of the law
Motivation is mostly financial or political

Amateur Hackers:
Get tools and codes from others
Non-professional (leave traces)

Prof. Shlomo Kipnis 18 Fall 2007/2008

Political Hacking

Motivation:
Political reasons

Industrial espionage

Military espionage

Information Warfare

Resources:
Almost unlimited

Risk:
Depends on the country

Examples:
US-Russia, US-China, Israel-Hizballa

4

Prof. Shlomo Kipnis 19 Fall 2007/2008

Commercial Hacking

Motivation:

Kind of business intelligence

Gain business advantage

Cause direct or indirect loses

Resources:

Limited by potential gain

Risk:

Legal prosecution

Examples:

Reverse engineering, service disruption

Prof. Shlomo Kipnis 20 Fall 2007/2008

Social Hacking

Motivation:
Political or social agenda

Social Hacktivism

Ideology

Resources:
Institutional groups may have abundant resources

Independent groups may have public support

Risk:
Almost no risk

Examples:
CDC (Microsoft’s SW), Russian hacker (Adobe’s SW)

Prof. Shlomo Kipnis 21 Fall 2007/2008

Financial Hacking

Motivation:
Monetary gains

Theft of resources

Resources:
Single individuals – little resources (but have the skills)

Organized crime – abundant financial resources

Risk:
Target individuals and organizations

Considered to be low

Examples:
Phone, TV, Web-sites, Credit card numbers

Prof. Shlomo Kipnis 22 Fall 2007/2008

Individual Hacking

Motivation:
Disgruntled employees

Curiosity

Intellectual challenge

Vandals

Resources:
Scarce resources

Large community

Risk:
Innocent mistakes

Almost no risk when crossing jurisdiction boundaries

Prof. Shlomo Kipnis 23 Fall 2007/2008

Hacker Information Resources

Newsgroups:
alt.2600

Cult of Dead Cow (CDC)

Magazines:
Phrack

Web sites

Conferences:
DefCon

CERT:
Computer Response Emergency Team newsgroups

Prof. Shlomo Kipnis 24 Fall 2007/2008

Recommended Books (I)

General Security

“The NCSA Guide to Enterprise Security: Protecting Information
Assets”, Michel Kabay, McGraw Hill, 1996

“Practical Unix and Internet Security”, Simson Garfinkel and Gene
Spafford, O’Reilly & Associates, 1996

“Security Engineering: a Guide to Building Dependable Distributed
Systems”, Ross Anderson, John Wiley & Sons, 2001

“Firewalls and Internet Security”, William Cheswick and Steven
Bellovin, Addison Wesley, 1994 (and 2003 ???)

“Web Security Sourcebook”, Aviel Rubin, Daniel Geer, and Marcus
Ranum, John Wiley & Sons, 1997

5

Prof. Shlomo Kipnis 25 Fall 2007/2008

Recommended Books (II)

Applied Cryptography

“Cryptography and Network Security: Principles and Practice”,
William Stallings, 3-rd edition, Prentice Hall, 2003

“Network Security: Private Communication in a Public World”,
Charlie Kaufman, Radia Perlman, and Mike Speciner, 2-nd
edition, Prentice Hall, 2002

“Handbook of Applied Cryptography”, Alfred Menezes, Paul van
Oorschott, and Scott Vanstone, CRC Press, 1997

“Applied Cryptography: Protocols, Algorithms, and Source Code
in C”, Bruce Schneier, 2-nd edition, John Wiley & Sons, 1996

“The Code Book”, Simon Singh, Anchor Books, 1999
Prof. Shlomo Kipnis 26 Fall 2007/2008

Recommended Books (III)

Systems & Protocols

“Understanding Public-Key Infrastructure: Concepts, Standards,
and Deployment Considerations”, Carlisle Adams and Steve Lloyd,
New Riders, 1999

“IPSEC: The New Security Standard for the Internet, Intranets,
and Virtual Private Networks”, Naganand Doraswamy and Dan
Harkins, Prentice Hall, 1999

“SSL and TLS: Designing and Building Secure Systems”, Eric
Rescorla, Addison Wesley, 2001

1

Prof. Shlomo Kipnis 1 Fall 2007/2008

Security Engineering

Prof. Shlomo Kipnis
October 24, 2007

Prof. Shlomo Kipnis 2 Fall 2007/2008

Security Engineering

Security Engineering – a disciplined approach to
building security systems:

Security Policies

Security Threats

Security Goals

Security Methods

Security Layers

Security Principles

Prof. Shlomo Kipnis 3 Fall 2007/2008

Security Policies

Threats – what the dangers and attacks are

Goals – what to protect, types of security services

Entities – users, stations, devices, assets, etc.

Actions – allowable actions in the system

Permissions – who is allowed to do what in the
system (ACL - Access Control Lists)

Failures – they will happen, so better plan for them

Recovery – what to do when (not if) failures happen,
how to recover system assets and services

Prof. Shlomo Kipnis 4 Fall 2007/2008

Security Threats

Unauthorized access

System integrity loss

Denial of service

Computer viruses

Trojan horses

Information loss

Data leaks

Data manipulation

Data fraud

Data theft

Data destruction

Program manipulation

Prof. Shlomo Kipnis 5 Fall 2007/2008

Security Goals

Entity Identification

Entity Authentication

Data Integrity

Data Authenticity

Data Confidentiality

Data Source Verifiability

Non-Repudiation

Plausible Deniability

Data Availability

System Availability

Data Reliability

System Reliability

Data Privacy

Data Containment

Entity Anonymity

And more . . .

Prof. Shlomo Kipnis 6 Fall 2007/2008

System Entities

Users:

regular users, administrators, guests, clients, suppliers, etc.

Workstations:

personal station, functioned server, end terminal, data server

Gateways:

routers, gateways, firewalls, application proxies, data proxies

Security Servers:

administration station, key centers, directory servers, etc.

2

Prof. Shlomo Kipnis 7 Fall 2007/2008

System Actions

File System:

open, close, read, write, execute, delete, modify, list,
change permissions, etc.

Banking System:

deposit, withdraw, open, close, transfer, get balance, etc.

TV Viewing System:

view, purchase, store, play, connect to center, gamble,
change permissions, etc.

Router / Gateway:

allow packets, drop packets, apply checks to packets, etc.

Prof. Shlomo Kipnis 8 Fall 2007/2008

System Permissions

Tables of entities and actions:

Lists of subject, object, and actions

Grouping subjects, objects, and actions

Example: users, groups, files, file-actions

Decision procedures given an entity and an action:

Static rules

Time-driven rules

Event-driven rules

Example: firewalls

Prof. Shlomo Kipnis 9 Fall 2007/2008

System Failures

Data loss (accidental or intentional)

Data corruption (accidental or intentional)

Data falling in the wrong hands

Breaking into the system

Leaking system secrets

System unavailability

System non-accessibility

System non-operability

Prof. Shlomo Kipnis 10 Fall 2007/2008

System Recoveries

Data backup

Redundant systems

Operation resumption procedures

Alternate operations

Insurance

Prof. Shlomo Kipnis 11 Fall 2007/2008

Security Methods

Damage Prevention – keeping bad things away
(guards, doors, firewalls, access controls, etc.)

Damage Detection – detecting when bad things
happen (cameras, alarms, monitoring, intrusion
detection systems, log files, etc.)

Damage Recovery – recovering from bad things
(backup, alternate systems, insurance, etc.)

Prof. Shlomo Kipnis 12 Fall 2007/2008

Security Layers

User Awareness – assets, secrets, passwords, etc.

Physical Protection – disks, cards, systems, locks, etc.

Access Control – lists, devices, etc.

Cryptography – encryption, authentication, signatures

Backup – data, services, availability

Monitoring – traffic, log files, etc.

Redundancy – systems, data, people

Deception – honey-pot systems

Proactive Security – distributed, going after bad guys

3

Prof. Shlomo Kipnis 13 Fall 2007/2008

Security Principles

Least Privilege – action to be performed by lowest
ranking entity that can perform it

Trusted Components – identification of components and
the level of trust in them

Simple Designs – small and modular systems with well
defined interfaces

Paranoia – if your system / data is worth something –
then, sooner or later, someone will break it. Stay alert.

No Perfection – Return-On-Investment curves

Prof. Shlomo Kipnis 14 Fall 2007/2008

Natural Faults

Electrical power interruption – no computing

Communication interruption – no remote access

Hardware malfunctioning – wrong computing

Software bugs – wrong computing

Operator errors – loss of data or operation

Fire – damage to hardware and data

Flood – damage to hardware and data

Earthquake – loss of operation and data

Acts of War – loss of operation

Prof. Shlomo Kipnis 15 Fall 2007/2008

Intended Attacks

Sniffing – listening to the communication

Snooping – stealing secrets or sensitive data

Tampering – changing data, breaking into systems

Spoofing – impersonating as another entity

Code Injection – viruses, applets, etc.

System Exploits – finding weak spots in systems

Password Cracking – guessing or searching for passwords

Social Engineering – convincing users to do things

Physical Attacks – breaking devices

And more
Prof. Shlomo Kipnis 16 Fall 2007/2008

System Solutions (I)

Password systems

Authentication devices

Access control lists

Firewalls

Virus-detection software

Intrusion detection systems

Data backup systems

Security evaluation software

Hardware security devices

Prof. Shlomo Kipnis 17 Fall 2007/2008

Security Solutions (II)

Secure Virtual Private Networks

Encryption software / hardware

Signature software / hardware

Trusted operating systems

Trusted web server

Software screening tools

Program verification

Sand-box model

Network containment

Prof. Shlomo Kipnis 18 Fall 2007/2008

Data Backup Systems

What type of data needs to be backed-up?
Mostly user data

Usually not application code

How much data needs to be backed-up?
Assume daily backup, 100 users, 100 MB per user per day

10 GB of backup data per day……

Ways to deal with complexity and volume:
Full backup

Incremental backup

Differential backup

Backup security concerns

4

Prof. Shlomo Kipnis 19 Fall 2007/2008

Full Backup

Backup all files on the computer

Expensive:

Volume to backup

Time to run the backup

Storage to be kept for many years

Done at large time-intervals (month, year)

Used as a complete system image at a given time

Allows rebuilding the system as it was on a given date

Prof. Shlomo Kipnis 20 Fall 2007/2008

Incremental Backup

Backup files that have changed since last full backup

Done at small time-intervals (days, weeks)

Less expensive than full backup:

Volume of data to backup increases with time

Recovery time is fast (1 full backup + 1 incremental backup)

Storage can be reused after next full backup

Can be used hierarchically and jointly with full backup:

Full backup once a year

Level 1 incremental backup once a month

Level 2 incremental backup once a day

Prof. Shlomo Kipnis 21 Fall 2007/2008

Differential Backup

Backup files that have changed since last differential backup

Done at small time-intervals (days, weeks)

Less expensive than full backup:

Volume of data to backup is more or less constant every time

Recovery time is variable (1 full backup + ??? differential backups)

Storage can be reused after next full backup

Can be used hierarchically and jointly with full backup:

Full backup once a year

Level 1 differential backup once a month

Level 2 differential backup once a day

Prof. Shlomo Kipnis 22 Fall 2007/2008

Backup Security Concerns

Where is the backup data kept physically?

Is the backup data kept encrypted?

Where is the encryption key?

Is the encryption key backed-up for future use?

Where is the encryption key kept?

Keep a hard copy of the key !!!

How does the system determine which files to backup?

Timestamps by the operating system

Tables or flags for each file

What protects the time, table, flags?

Prof. Shlomo Kipnis 23 Fall 2007/2008

Monitoring Systems

Log Files:
user name, process id, exit status, time, etc.

Shell History:
last few commands are kept in history

Mail:
outgoing mail is kept in system

Monitoring Software:
on the wires, in the file system, exceptional operations

Audit Levels:
dictated by the US DoD “orange book”

Log files need to be backed-up !!!

Prof. Shlomo Kipnis 24 Fall 2007/2008

Redundant Systems

CPUs in Server

Special systems with 2 or 3 CPUs per server

Used in mission-critical financial applications

Servers in Farm

Several servers with access to same database

Used in database / web farms

Used also for load balancing

Site Redundancy

Cold site – has data, operational within hours/days

Hot site – runs in parallel, operational immediately

5

Prof. Shlomo Kipnis 25 Fall 2007/2008

Physical Security

Physical Access
Buildings, computers, terminals, cables, data

Transmission Lines
Electrical wires, optical fibers, wireless communication

Display Devices
CRT screens, LCD screens, paper

Magnetic Media
Disks, tapes, computer memory

Computing devices
PC cards, smart cards

Prof. Shlomo Kipnis 26 Fall 2007/2008

Physical Access

Buildings
Doors, windows, locks, ventilation paths

Computers
PCs, laptops, storage devices

Terminals
Printers, screens, X-terminals, remote access

Cables
Eavesdropping, networks, modems, entry points

Data
Disks, tapes, backup

Prof. Shlomo Kipnis 27 Fall 2007/2008

Transmission Lines

Electrical Wires:
Electromagnetic radiation is emitted from wires carrying signals

Radiation can be detected up to meters from the wire

Signal can be re-constructed with commercial equipment

Same technology is used for testing communication equipment

Tempest standards

Wireless Communication
Easy to eavesdrop a wireless line

Optical Fibers
Signal can be stolen off fiber by bending the fiber and placing it in
a liquid with similar diffraction index to that of wire

Prof. Shlomo Kipnis 28 Fall 2007/2008

Display Devices

CRT Screens:

Cathode Ray Tubes emit electromagnetic radiation

Radiation can be captured and analyzed

Signal / image can be reconstructed

Commercial products exist that do the job

LCD Screens:

Less vulnerable to radiation analysis

Paper:

Paper falling to the wrong hands…

Writing on paper leaves marks on paper / material behind it

Prof. Shlomo Kipnis 29 Fall 2007/2008

Magnetic Media

Delete:
Removes the pointer to the object

Erase:
Writes zero on memory area

Purge:
Wipes the memory area several times (?)

Disks / Tapes / Magnetic Memory:
Digital signals are encoded by analog phenomena

Magnetic media have “state memory” of several generations

Digital values of 0 or 1 leave trace even after erased
Information is truly erased only after several generations of
random values have been written

Prof. Shlomo Kipnis 30 Fall 2007/2008

Computing Devices

PC Cards:

Physically securing crypto-processors and keys

IBM 4758 processor board complies with FIPS-140 level 4

Tamper resistance against break-ins and other physical probing
techniques (temperature, power tests, etc.)

Smart Cards

Small chips with some physical protection

Freezing the chip and getting the info out

Physical probing onto the chip bus

Surface meshes (can be defeated with Focused Ion Beams)

6

Prof. Shlomo Kipnis 31 Fall 2007/2008

Physical Attacks on Smart Cards

Stopping control signals aimed at the card

Freezing the card and reading secret data in memory

Slow-clocking the card and getting data out

Probing though the passivation layers

Probing and reading data on bus lines

Changing the program flow (by external probing)

Mapping the chip’s hardware

Prof. Shlomo Kipnis 32 Fall 2007/2008

External Physical Attacks

Fault Analysis
Causing voltage spikes on a computing device may change
values stored in it or used in computation

Timing Analysis
Measuring the time it takes to perform certain computations
may reveal something about secret data stored internally

Power Analysis
Measuring the power consumption of a device while it is
computing something may reveal something about the values
being used in the computations

Prof. Shlomo Kipnis 33 Fall 2007/2008

Risk Analysis – Questions

What do you want to protect?

Why do you want to protect it?

What is its value?

What are the threats?

What are the risks?

What are the consequences of its loss?

What are the various scenarios?

What will the loss of the information or system cost?

Prof. Shlomo Kipnis 34 Fall 2007/2008

Risk Analysis – Methodology

Assessment of assets (hardware, software, data, time)

Identification of potential threats and problems

Identification of damage ”likelihood”

Evaluation of damage ”expectation”

Survey of potential security solutions

Evaluation of reduction in damage ”expectation”

Decision regarding ”value” of security system

Prof. Shlomo Kipnis 35 Fall 2007/2008

Risk Analysis – Example

Assets:

Home appliances, money, personal items, etc.

Threats:

Damage, fire, flood, theft

Solutions:

Prevention (doors, locks, guard, alarm)

Detection (alarm, camera)

Recovery (insurance, legal means)

Costs:

Should be reasonable compared to damage

Prof. Shlomo Kipnis 36 Fall 2007/2008

Security Management

Security does not contribute to the business

Security only reduces losses

Return-On-Investment curves

Return

Investment

1

Prof. Shlomo Kipnis 1 Fall 2007/2008

Classical Cryptography I

Prof. Shlomo Kipnis
October 29, 2007

Prof. Shlomo Kipnis 2 Fall 2007/2008

Cryptography

Crypt = secret
Graph = writing

Cryptography is the science / art of transforming
meaningful information into unintelligible text

Cryptanalysis is the science / art of breaking
cryptographic codes

Cryptology is the science / art / study of both
cryptography and cryptanalysis

Prof. Shlomo Kipnis 3 Fall 2007/2008

Applications of Cryptography

Assuring text integrity

Authenticating parties

Authenticating text source

Assuring text confidentiality

Document fingerprinting

Document signature

Non-repudiation

Secure transactions

Creating random values

Exchanging keys

Sharing Secrets

Hiding traffic existence

Digital cash

Preserving anonymity

Copyright protection

More . . .

Prof. Shlomo Kipnis 4 Fall 2007/2008

Cryptographic Services (I)

Source Integrity

Source Authenticity

E

A B

E

A B

Prof. Shlomo Kipnis 5 Fall 2007/2008

Cryptographic Services (II)

Data Integrity

Data Timeliness

E

A B

E

A B

Prof. Shlomo Kipnis 6 Fall 2007/2008

Cryptographic Services (III)

Data Confidentiality

E

A B

Denial of Service

E

A B

2

Prof. Shlomo Kipnis 7 Fall 2007/2008

Steganography

Stega = hidden
Graph = writing

Steganography is the science / art of hiding
information inside objects

Examples:
Hidden message in a text file
Hidden copyright mark in an image file
Hidden communication between source and destination

Prof. Shlomo Kipnis 8 Fall 2007/2008

Applications of Steganography

Copyrighted material monitoring

Data transmission auditing

Data augmentation

Tamper proofing

Commercial espionage

Information surveillance

Prof. Shlomo Kipnis 9 Fall 2007/2008

Sample Steganographic Scehmes

Sending a digital object, in which certain fields have
hidden meaning between the sender and receiver

Changing some of the low-order bits of a digital
image to imprint a watermark

Transferring information from high-security zones to
low-security zones with covert channels (e.g., time,
name, existence)

Adding encrypted information as noise in a legitimate
analog-to-digital object (such as image, audio, video)

Prof. Shlomo Kipnis 10 Fall 2007/2008

Cryptography and Steganography

Cryptography

Tries to conceal the contents of a communication between
parties – but it does not try to conceal the existence of the
communication

Steganography

Tries to conceal the very existence of the communication
between the parties

Prof. Shlomo Kipnis 11 Fall 2007/2008

Early Cryptography

Cryptography used by early civilizations (such as
Egyptians, Jews, Greeks, Romans)

Early use of cryptography consisted of encryption by
substitution methods and/or transposition methods

Early cryptography was rather simple because of the
lack of sophisticated computing engines

Early substitution methods and transposition methods
are easily attacked

Same methods are in use today, but with stronger
properties and more powerful computing engines

Prof. Shlomo Kipnis 12 Fall 2007/2008

Substitution Methods

Methods in which the letters of the alphabet are
replaced with other letters / numbers / symbols

Examples:
Biblical Cipher – fixed permutation

Caesar Cipher – fixed permutation

Mono-Alphabetic Ciphers – one of many permutations

Playfair Cipher – keyed-table lookup

Hill Cipher – matrix-multiplication operation

Poly-Alphabetic Ciphers – changing permutations

Vigenere Cipher – multiple Mono-Alphabetic Ciphers

Algorithm is known – Key is “index” of permutation

3

Prof. Shlomo Kipnis 13 Fall 2007/2008

Early Biblical Cipher

Jeremiah 51, 41:

"איך נלכדה ששך ותתפש תהלת כל הארץ . . ."

The word – ששך – actually refers to – בבל – if the
following Hebrew substitution method is used:

ת ↔ א

ש ↔ ב

.
ל ↔ כ

Note: בבל is Babylon

Prof. Shlomo Kipnis 14 Fall 2007/2008

Caesar Cipher

Cyclic shift of the 26 letters of the alphabet by 3:

a b c d e f g h i j k l m n o p q r s t u v w x y z

D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

In mathematical terms:

C = ENC(P) = P + 3 (mod 26)

The secrecy is in the algorithm (!!!!)

There is one key (fixed permutation)

Easy to break (if algorithm is known)

Prof. Shlomo Kipnis 15 Fall 2007/2008

Generalization of Caesar Cipher

Cyclic shift of the 26 letters of the alphabet by key K,
where 0 ≤ K < 26.

In mathematical terms:

C = ENCK(P) = P + K (mod 26)

Algorithm is known

There are 26 different keys

Easy to break – check which of 26 possible keys returns
the unintelligible ciphertext to a meaningful plaintext

Prof. Shlomo Kipnis 16 Fall 2007/2008

Mono-Alphabetic Ciphers

One of N! permutations on N letters of the alphabet

The key is the index of the permutation

Algorithm is known (mono-alphabetic cipher)

Key is secret (one of N! options)

Example:

N = 26 letters of the English alphabet

N! = 26! ≈ 4 • 1026 ≈ 288 permutations

Prof. Shlomo Kipnis 17 Fall 2007/2008

Attacking Mono-Alphabetic Ciphers (I)

Appearance frequency of letters (in long enough texts)
in the language is well determined

In the English language:

A ≈ 8.2% H ≈ 6.1% O ≈ 7.5% V ≈ 1.0%

B ≈ 1.5% I ≈ 7.0% P ≈ 1.9% W ≈ 2.4%

C ≈ 2.8% J ≈ 0.2% Q ≈ 0.1% X ≈ 0.2%

D ≈ 4.3% K ≈ 0.8% R ≈ 6.0% Y ≈ 2.0%

E ≈ 12.7% L ≈ 4.0% S ≈ 6.3% Z ≈ 0.1%

F ≈ 2.2% M ≈ 2.4% T ≈ 9.1%

G ≈ 2.0% N ≈ 6.7% U ≈ 2.8%

Prof. Shlomo Kipnis 18 Fall 2007/2008

Attacking Mono-Alphabetic Ciphers (II)

Appearance frequency of pairs of letters in the language
is well defined:

th, ee, oo, tt, qu, is, ae, . . .

Appearance frequency of certain words in the language
is well defined:

the ≈ 6.4% a ≈ 2.1% i ≈ 0.9%
of ≈ 4.0% in ≈ 1.8% it ≈ 0.9%
and ≈ 3.2% that ≈ 1.2% for ≈ 0.8%
to ≈ 2.4% is ≈ 1.0% as ≈ 0.8%

4

Prof. Shlomo Kipnis 19 Fall 2007/2008

Attacking Mono-Alphabetic Ciphers (III)

Using the appearance frequencies of letters, words, and
pairs-of-letters – accelerates the identification of certain
letter substitutions (which are part of the key)

Identification of word patterns, vowels, and consonants
helps in finding parts of the text

The identification of the remaining parts of the key now
reduces the search space dramatically (from N!)

Using heuristics and associative word-completions, the
rest of the key can be easily revealed

Prof. Shlomo Kipnis 20 Fall 2007/2008

Playfair Cipher (I)

A multiple-letter encryption method – encrypts pairs of
letters at each step

Use a word in the language as the key, and build a 5 x 5
table of the letters in the key and the other letters

Example: Key = ”MONARCHY”

M O N A R
C H Y B D
E F G I K
L P Q S T
U V W X Z

Prof. Shlomo Kipnis 21 Fall 2007/2008

Playfair Cipher (II)

Rules for substituting a pair of plaintext letters:
Repeated letters in the plaintext are separated with a filler letter
(such as Z)

Two plaintext letters that fall in the same row of the 5 x 5 table,
are replaced by two letters that reside to their right in the table
(with circular wraparound)

Two plaintext letters that fall in the same column of the 5 x 5
table, are replaced by two letters that reside beneath them in
the table (with circular wraparound)

Otherwise, each plaintext letter (of a pair) is replaced by the
letter that lies in its own row and the column occupied by the
other plaintext letter (of the pair)

Prof. Shlomo Kipnis 22 Fall 2007/2008

Playfair Cipher (III)

Example:
The word “funny” is transformed into the word:

“funzny”

The pair of letters “fu” is replaced by the pair:

“ev”

The pair of letters “nz” is replaced by the pair:

“rw”

The pair of letters “ny” is replaced by the pair:

“yg”

The ciphertext is therefore – “evrwyg”

Prof. Shlomo Kipnis 23 Fall 2007/2008

Attacking Playfair Cipher

Playfair cipher works on 26 x 26 = 676 digrams (pairs of
letters) rather than on 26 letters

The graph of letter appearance frequencies of Playfair
cipher is flatter than the graph of a Mono-Alphabetic
cipher

Playfair cipher makes attacks based on appearance
frequencies of letters more complicated – but it is still
subject to attacks based on appearance frequencies of
pairs of letters

Prof. Shlomo Kipnis 24 Fall 2007/2008

Hill Cipher (I)

A multiple-letter encryption method – encrypts m letters
of plaintext at each step

The encryption key K is a m x m matrix of coefficients

To encrypt – multiply the matrix K by a vector of m
plaintext letters to receive a vector of m ciphertext
letters. (Arithmetic is modulo the size of the alphabet.)

Example: m=3

C1 = K11 P1 + K12 P2 + K13 P3

C2 = K21 P1 + K22 P2 + K23 P3

C3 = K31 P1 + K32 P2 + K33 P3

5

Prof. Shlomo Kipnis 25 Fall 2007/2008

Hill Cipher (II)

The encryption key K is a m x m matrix of coefficients

The decryption key K-1 is the m x m matrix of coefficients
that is the inverse of matrix K:

K K-1 = I

To decrypt – multiply the matrix K-1 by the vector of m
ciphertext letters to receive the vector of m plaintext
letters. (Arithmetic is modulo the size of the alphabet.)

Prof. Shlomo Kipnis 26 Fall 2007/2008

Attacking Hill Cipher

Hill Cipher is rather strong (for large values of m) against
“Known Ciphertext” attacks

Problem with Hill Cipher arises with “Known Plaintext”
attacks:

If there are m pairs of < plaintext , ciphertext > vectors of
length m, then one can write a system of m2 equations with the

unknowns being the m2 coefficients of the m x m matrix K.

If some of the pairs of < plaintext , ciphertext > vectors of
length m do not contribute new independent equations – then
one needs to obtain more pairs of < plaintext , ciphertext >
vectors of length m, until the system of m2 equations becomes
regular

Prof. Shlomo Kipnis 27 Fall 2007/2008

Poly-Alphabetic Ciphers

Use different Mono-Alphabetic Ciphers at different parts
of the plaintext

Using many Mono-Alphabetic Ciphers will more-or-less
equate the appearance frequencies of letters

Well-designed, and sufficiently long, Poly-Alphabetic
Ciphers can be quite strong

A common scheme to build a Poly-Alphabetic Cipher:

Use a collection of related Mono-Alphabetic Ciphers

Use a key to determine which one of the Mono-Alphabetic
Ciphers in the collection to use at each stage

Prof. Shlomo Kipnis 28 Fall 2007/2008

Vigenere Cipher (I)

The collection of Mono-Alphabetic Ciphers consists of
the 26 options for Caesar Cipher (with K = 0, 1, 2, . . ., 25)

Each of the 26 Caesar Ciphers is denoted by a letter,
which is the ciphertext letter that replaces the letter ‘a’

In practice:

A table of 26 rows by 26 columns is built. Row i in the table
contains the 26 letters of the alphabet circularly shifted by i.

A keyword is used (over and over again) to select which of the
mono-alphabetic ciphers to use. The cipher used is selected by
the current letter in the keyword.

Prof. Shlomo Kipnis 29 Fall 2007/2008

Vigenere Cipher (II)

Example: Table with 6 letters (A, B, C, D, E, F):

| a b c d e f
A | A B C D E F
B | B C D E F A
C | C D E F A B
D | D E F A B C
E | E F A B C D
F | F A B C D E

Keyword = “BAD”

Plaintext = “cabfaded”

Ciphertext = “DAEAAAFD”
Prof. Shlomo Kipnis 30 Fall 2007/2008

Vigenere Cipher (III)

The strength of Vigenere Cipher is based on the fact
that there are multiple ciphertext letters to which each
plaintext letter can be mapped

Question: To how many possible ciphertext letters can
a single plaintext letter be mapped?

Answer: The number of different letters of which the
keyword is constructed

Comment: Typical keywords are not too long

6

Prof. Shlomo Kipnis 31 Fall 2007/2008

Attacking Vigenere Cipher

Check whether the cipher is Mono-Alphabetic
Check whether the appearance frequency of letters in the
ciphertext complies with that of a Mono-Alphabetic cipher

Determine the length of the keyword
If two identical sequences of plaintext letters occur at a distance
that is an integer multiple of the keyword length – than the two
corresponding sequences of ciphertext letters will be identical

Detect identical sequences of ciphertext letters

Conjecture that the keyword length is the GCD (greatest common
divisor) of distances between identical sequences of ciphertext

Neutralize shifts and break each of the suspected
Mono-Alphabetic Ciphers independently

Prof. Shlomo Kipnis 32 Fall 2007/2008

Some Cryptanalytic Attacks

Known Cipehrtext
Only the ciphertext is known to attacker

Cryptanalysis aims at revealing the plaintext and/or the key

Known Plaintext
Pairs of < plaintext , ciphertext > are known to attacker

Cryptanalysis aims at revealing the key

Relevant when plaintext is known / can be obtained

Chosen Plaintext
Attacker chooses the plaintext and receives the ciphertext

Cryptanalysis aims at revealing the key

Relevant when attacker can “inject” plaintext messages

1

Prof. Shlomo Kipnis 1 Fall 2007/2008

Classical Cryptography II

Prof. Shlomo Kipnis
October 31, 2007

Prof. Shlomo Kipnis 2 Fall 2007/2008

Transposition Methods

Plaintext is buffered in a buffer of size N characters

Plaintext is scrambled by a fixed transposition on the
locations of the characters in the buffer

Algorithm is known

Key is the indication of the transposition mapping

A C A T I S A C A T

T C A I A S C A T A

Prof. Shlomo Kipnis 3 Fall 2007/2008

Early Spartan Cipher

The Spartan scytale is a wooden staff around which a
strip of leather is wound. The text is written along the
length of the scytale, and then the strip is unwounded.
The result is a long meaningless string.

Example: Try to decipher the following text –

TETHIETLTHRRNOHCIYSRHEGOTIEIERSPOIOTOUASRT
SETRNFUITAPOT

Answer: Reading every 14-th letter gives the text –

The secret is thy prisoner; if thou let it
go, thou art a prisoner to it

Prof. Shlomo Kipnis 4 Fall 2007/2008

Rail-Fence Cipher

Method:

Plaintext is written down as a sequence of diagonals and
then read of as a sequence of rows

Example:

m e m a t r h t g p r y
e t e f e t e o a a t

Plaintext:

meet me after the toga party

Prof. Shlomo Kipnis 5 Fall 2007/2008

Row-Column Cipher

Plaintext is written in a rectangle, row by row, and
ciphertext is read from the rectangle, column by
column, in a permuted column order

Example:

Key: 2 4 1 5 3

Plaintext: a t t a c

k f r o m

e a s t a

t d a w n

Ciphertext: trsaaketcmantfadaotw

Prof. Shlomo Kipnis 6 Fall 2007/2008

Repeated Row-Column Cipher

Repeat the Row-Column Transposition several times
Key: 2 4 1 5 3

Plaintext-1: attack from east at dawn

Table-1: a t t a c
k f r o m
e a s t a
t d a w n

Ciphertext-1: trsa aket cman tfad aotw

Plaintext-2: trsaa ketcm antfa daotw

Table-2: t r s a a
k e t c m
a n t f a
d a o t w

Ciphertext-2: stto tkad amaw rena acft

2

Prof. Shlomo Kipnis 7 Fall 2007/2008

Attacking Transposition Methods

A pure Transposition Cipher can be easily recognized,
because it has the same letter appearance frequencies
as the original text

Appearance frequencies of di-grams or tri-grams may
also be useful in breaking the code

Frequent plaintext words (or combinations of letters)
may repeat at same locations in many buffers, which
will result in repetition of certain letter combinations in
the ciphertext

Key can be determined by placing the ciphertext in a
rectangle and playing with the rows and the columns

Prof. Shlomo Kipnis 8 Fall 2007/2008

Rotor Machines (I)

Rotor Machines combine principles of Substitution
Methods and Transposition Methods

Rotor Machines produce ciphers that are very difficult
to break

Rotor Machines in World War II:

“Enigma” used by the German

“Purple” used by the Japanese

The breaking of both Rotor Machines by the Allies was
a significant factor in the outcome of the war

Prof. Shlomo Kipnis 9 Fall 2007/2008

Rotor Machines (II)

Rotor Machine is a set of L independently rotating
cylinders, each having 26 input pins and 26 output pins,
with internal wiring that connect each input pin to a
unique output pin

Each cylinder implements a fixed permutation between
its 26 input pins and its 26 output pins

The 26 rotations of a cylinder implement 26 permutations

The set of L cylinders implements 26L permutations

The key of the Rotor Machine consists of the relative
arrangement of the L cylinders

Prof. Shlomo Kipnis 10 Fall 2007/2008

Rotor Machine Example (I)

This setting maps: a→D, b→C, c→B, d→A

a

b

c

d

A

B

C

D

C1 C2 C3

Prof. Shlomo Kipnis 11 Fall 2007/2008

Rotor Machine Example (II)

This setting maps: a→D, b→A, c→C, d→B

a

b

c

d

A

B

C

D

C1 C2 C3

Prof. Shlomo Kipnis 12 Fall 2007/2008

Rotor Machine Example (III)

This setting maps: a→A, b→B, c→C, d→D

a

b

c

d

A

B

C

D

C1 C2 C3

3

Prof. Shlomo Kipnis 13 Fall 2007/2008

Rotor Machine Example (IV)

This setting maps: a→C, b→B, c→D, d→A

a

b

c

d

A

B

C

D

C1 C2 C3

Prof. Shlomo Kipnis 14 Fall 2007/2008

Rotor Machine Example (V)

This setting maps: a→C, b→D, c→A, d→B

a

b

c

d

A

B

C

D

C1 C2 C3

Prof. Shlomo Kipnis 15 Fall 2007/2008

Enigma Machine (I)

Commercial Version of Enigma Machine:

Uses 3 cylinders, each of which has 26 input pins and 26 output
pins, totaling 263 = 17,576 permutations

Has a reflector at the end

A plaintext letter typed at the keyboard goes through 3 cylinders,
through the reflector, back through the 3 cylinders, and lights up
a lamp of the ciphertext letter

Every encryption (of a single letter) steps the cylinders to the
next setting of the cylinders

Decryption is mirror image of Encryption (due to reflector). If
letter X is mapped to letter Y, than letter Y is mapped to letter X

Prof. Shlomo Kipnis 16 Fall 2007/2008

Enigma Machine (II)

Commercial Version of Enigma Machine (continued):

Since number pf permutations (17,576) was not considered
high enough – the design of the Enigma machines allowed
swapping the 3 cylinders. This multiplied the number of initial
settings by 3! = 6

In addition, there were 6 cables that enabled swapping pairs
of letters at the keyboard. This multiplied the number of initial
options by 100,391,791,500

The key is the initial setting of the machine

Total number of initial settings of the Enigma Machine is about
1016 = 10,000,000,000,000,000

Prof. Shlomo Kipnis 17 Fall 2007/2008

Enigma Machine (III)

Commercial Version of Enigma Machine (continued):

In the early 1930’s, the German used the commercial version
of the Enigma Machine to encrypt military content

Germans used to transmit the “daily key” setting encrypted
with the key of the previous day. The “daily key” consisted of
a set of 3 letters repeated twice (for a total of 6 letters)

The Polish managed to get a hold of an Enigma machine.
Polish mathematicians tabulated patterns of encryptions of the
Enigma, and they searched for desired patterns.

Commercial version on Enigma was analyzed and broken by
Polish mathematicians in mid 1930’s

Prof. Shlomo Kipnis 18 Fall 2007/2008

Enigma Machine (IV)

German Military Version of Enigma Machine:

In 1939, the Germans increased the Enigma security

Use of 3 out of 5 cylinders increased number of options
from 6 to 60

Use of 10 instead of 6 plug-board cables increased number
of options by another factor of about 1600

Total number of initial settings of the German Military Enigma
Machine is about – 1.59•1020 = 159,000,000,000,000,000,000

Polish cryptanalysts weren’t able to crack the Enigma anymore

Action now moves to Britain

4

Prof. Shlomo Kipnis 19 Fall 2007/2008

Enigma Machine (V)

German Military Version of Enigma Machine (continued):

British focused on finding “cribs” – pieces of plaintext that can
be associated with pieces of ciphertext.

Within “cribs” – they tried to find chains of letters that encrypt
to one another. Such chains could help in automatic searches.
Automatic searches were handled by electrical wiring of chains
of Enigma Machines.

Problem of plug-board setting was isolated from that of the
cylinder arrangements.

To try all possible “3 out of 5” cylinder arrangements – 60
machines were built to run in parallel.

In the early 1940’s, the British were able to crack the Enigma

Prof. Shlomo Kipnis 20 Fall 2007/2008

Classical Cryptography – Summary

Use of Substitution Ciphers (permutations on the letters)
and/or Transposition Ciphers (permutations on the places)

Require increasingly more sophisticated computing
machinery to implement (encrypt and decrypt)

Assume the attacker doesn’t have enough text, computing
machinery, and time to break the ciphers

Question: Is there any hope of coming with a
cryptographic scheme that cannot be broken?

Prof. Shlomo Kipnis 21 Fall 2007/2008

Shannon Theory of Secrecy Systems

Let {M1, M2, . . ., MN} be the message space

Messages M1, M2, . . ., MN are distributed with probabilities
p(M1), p(M2), . . . p(MN) (not necessarily uniform)

Let {K1, K2, . . ., KL} be the key space

Keys K1, K2, . . ., KL are distributed with probabilities
p(K1), p(K2), . . . p(KL) (usually uniform – p(Ki) = 1/L)

Each key defines a projection of all the messages onto all
the cipher texts, giving a bipartite graph

Prof. Shlomo Kipnis 22 Fall 2007/2008

Shannon’s Message-Ciphertext Graph

M1

M2

M3

MN

C1

C2

C3

CN

P1=p(M1)

P2=p(M2)

P3=p(M3)

PN=p(MN)

Prof. Shlomo Kipnis 23 Fall 2007/2008

Perfect Ciphers (I)

A cipher is perfect if for any i and j we have:

p(Mi|Cj) = p(Mi)

This means that the ciphertext does not reveal any
information about the plaintext

By this definition – a perfect cipher is 100% resilient
against Known Ciphertext Attacks, even if the opponent
has infinite computational power

Prof. Shlomo Kipnis 24 Fall 2007/2008

Perfect Ciphers (II)

Note: p(M) p(C|M) = p(M,C) =p(C) p(M|C)

Theorem: A cipher is perfect if and only if
∀ M,C: p(C) = p(C|M)

Note: p(C|M) = Σ p(K)
(where sum is over all K such that EK(M)=C)

Therefore: A cipher is perfect if and only if

∀ C: Σ p(K) over all K such that EK(M)=C
is independent of M

5

Prof. Shlomo Kipnis 25 Fall 2007/2008

Perfect Ciphers (III)

L – number of keys; N – number of plaintext messages

Theorem: A perfect cipher satisfies L ≥ N
(proof omitted)

Example: Encrypting only one letter with Caesar Cipher:

L = 26 and N = 26

p(C) = p(C|M) = 1/26

Example: Encrypting two letters with Caesar Cipher:

L = 26 and N = 262

P(C) = (1/26)2

But – p(C|M) is either (1/26) or 0
Prof. Shlomo Kipnis 26 Fall 2007/2008

Perfect Ciphers (IV)

Question: How can one make the Caesar Cipher perfect

for more than one letter?

Answer: By using a new random key for encrypting each
letter of the plaintext

Example:

Message = HELLOCAESAR

Key = gxaudovjrak

Ciphertext = nblfrqvnjab

Prof. Shlomo Kipnis 27 Fall 2007/2008

Perfect Encryption and Authentication

These are cryptographic schemes that cannot be
broken – no matter how much text, computation
power, and time the opponent has

Encryption with ”One-Time PAD” and Authentication
with ”One-Time MAC” require that:

key be long (same size as message)

key be random

key be one-time

Perfect Cryptography is provably 100% secure

Prof. Shlomo Kipnis 28 Fall 2007/2008

Symmetric Message Encryption

A encrypts the message M using the algorithm ENC
with the key K to receive the cipher C

B decrypts the cipher C using the algorithm DEC with
the key K to receive the message M

Key K is symmetric, secret, and known only to A and B

ENC DEC
M MC

K K
A B

Prof. Shlomo Kipnis 29 Fall 2007/2008

OTP – One-Time Pad

Message M of length n bits

Key K of length n bits (same as M)

Key K is random bit by bit

Key K is used only once

Key K is known only to A and B

Encryption by A: C = M ⊕ K (bit-wise XOR)

Decryption by B: M = C ⊕ K (bit-wise XOR)

Prof. Shlomo Kipnis 30 Fall 2007/2008

OTP – Proof of Perfection

Because of the randomness of the bits of K – the
opponent’s knowledge about the message M is
identical whether or not the cipher C has been seen

Perfect Security Claim:
Prob(M = x | C = y) = Prob(M = x)

The opponent can only guess the message M, of

length n bits, with success probability of (1/2)n

6

Prof. Shlomo Kipnis 31 Fall 2007/2008

OTP – Proof of Perfection (explained)

Question: Why can’t the opponent start from the
ciphertext C and reveal something about plaintext M?

Answer: What the opponent can do is:

Start from the ciphertext C

Guess one of the keys K with probability (1/2)n

Obtain a viable plaintext M with probability (1/2)n

But this is not different than just guessing M with

probability (1/2)n

Prof. Shlomo Kipnis 32 Fall 2007/2008

OTP – Pad Reuse Problems

If two messages are encrypted with the same key:
C1 = M1 ⊕ K
C2 = M2 ⊕ K

Then – the following relation holds:
C1 ⊕ C2 = M1 ⊕ M2

This means that the messages M1 and M2 can be
correlated, and security is not 100% anymore

Prof. Shlomo Kipnis 33 Fall 2007/2008

OTP – Practicality Issues

Generating large random pads

Random physical phenomena

Generating random numbers in software

Distributing large random pads:

Physical delivery

Delivery over secure media

Quantum key-distribution

Prof. Shlomo Kipnis 34 Fall 2007/2008

Symmetric Message Authentication

A computes a Message Authentication Code (MAC) for
the message M using the algorithm AUTH with the key
K to receive the code Y

B uses the algorithm VER to verify that the code Y is
indeed the MAC of the message M with the key K

Key K is symmetric, secret, and known only to A and B

AUTH VER
M Yes / NoM

K K
A B

Y = f(M,K)

Prof. Shlomo Kipnis 35 Fall 2007/2008

OTM – One-Time MAC

Large prime P

Message M with numeric value between 1 and P-1

Key K is a pair of random numbers, a and b, such that:
0 < a , b < P

Key K is used only once

Message Authentication Code (MAC) is:
Y = f(M, K) = a•M+b (mod P)

MAC is computed by the sending party (who knows K)

MAC is verified by the receiving party (who knows K)
Prof. Shlomo Kipnis 36 Fall 2007/2008

OTM – Attacking the MAC

What can an opponent do?

Find the key K = (a,b)
modify the message M to M’
modify the MAC Y to Y’
in a way that will not be detected by B

Even without knowing K:
come up with another message M’
come up with another code Y’
such that M’ and Y’ will be accepted by B

7

Prof. Shlomo Kipnis 37 Fall 2007/2008

OTM – Key Reuse Problems

If two different messages M1 and M2 are authenticated
with the same key K = (a, b) – then:

Y1 = a•M1+b (mod P)

Y2 = a•M2+b (mod P)

Two equations with two unknowns – a and b

This system can be solved, which means that the key
K = (a, b) can be found

Prof. Shlomo Kipnis 38 Fall 2007/2008

OTM – Proof of Perfection (I)

Why the opponent cannot reveal the key?

The opponent:

knows the value of P

sees two values – M and Y

knows that Y = a•M+b (mod P)

For every ”guess” of the value of ’a’ – there is exactly one
value of ’b’ that solves the equation; and also vice versa

Perfect Security Claim:
Prob(opponent finds K) = 1/(P-1)

Prof. Shlomo Kipnis 39 Fall 2007/2008

OTM – Proof of Perfection (II)

Why the opponent cannot forge a message and a MAC?

The opponent:

knows the value of P

sees two values – M and Y

knows that Y = a•M+b (mod P)

If the opponent can come up with another message M’
and another code Y’ such that Y’ = a•M’+b (mod P)

Then, the opponent has two equations with two unknowns
(a and b), and the opponent can reveal the key K = (a, b)

Prof. Shlomo Kipnis 40 Fall 2007/2008

Using Perfect Cryptography

Perfect cryptography is 100% secure (with mathematical
proofs to back this claim)

Usage of perfect cryptography is limited due to the need
to negotiate a new, long, and random one-time key for
every encryption or authentication

OTP and OTM are the ultimate cryptographic schemes,
and they provide a reference point for security

OTP and OTM are used in highly-critical environments,
where key negotiation / distribution can be handled over
off-line channels

1

Prof. Shlomo Kipnis 1 Fall 2007/2008

Modern Cryptography

Prof. Shlomo Kipnis
November 5, 2007

Prof. Shlomo Kipnis 2 Fall 2007/2008

Unconditional Cryptography

Cryptographic schemes that are provably 100% secure

An opponent cannot break the scheme:

even if unlimited text is available

even if unlimited time is available

even if unlimited computing power is available

Strength of scheme relies on a mathematical proof that
the opponent does not have enough information to break
the cryptographic scheme

There are unconditionally secure cryptographic schemes.
Unfortunately, they are not too practical.

Prof. Shlomo Kipnis 3 Fall 2007/2008

Conditional Cryptography

Cryptographic schemes, for which we do not have a
mathematical proof that they are 100% secure

An opponent can break the scheme:
if unlimited text is available

if unlimited time is available

if unlimited computing power is available

Strength of such a scheme relies on the assumption that
the opponent does not have sufficient resources (text,
time, computers, money, etc.) to break the scheme

All modern practical cryptographic schemes are only
conditionally secure

Prof. Shlomo Kipnis 4 Fall 2007/2008

Notations

A – Alice (one party)

B – Bob (another party)

E – Eve (eavesdropper / attacker)

M – Message (plaintext, sometimes secret)

K – Key (highly secret)

C – Cipher (ciphertext, seen by attacker)

ENC – Encryption (secret / known)

DEC – Decryption (secret / known)

AUTH – Authentication (secret / known)

VER – Verification (secret / known)

Prof. Shlomo Kipnis 5 Fall 2007/2008

Symmetric Cryptography

Same key is used on both sides

Algorithms are usually similar on both sides

Sealing Opening
Message Message

Sealed
Text

Key Key

Prof. Shlomo Kipnis 6 Fall 2007/2008

Symmetric Encryption

A encrypts the message M using the algorithm ENC
with the key K to obtain the cipher C

B decrypts the cipher C using the algorithm DEC with
the key K to obtain the message M

Key K is symmetric, secret, and known only to A and B

ENC DEC
M MC

K K
A B

2

Prof. Shlomo Kipnis 7 Fall 2007/2008

Symmetric Authentication

A computes a Message Authentication Code (MAC) for
the message M using the algorithm AUTH with the key
K to obtain the code Y

B uses the algorithm VER to verify that the code Y is
indeed the MAC of the message M with the key K

Key K is symmetric, secret, and known only to A and B

AUTH VER
M Yes / NoM

K K
A B

Y = f(M,K)

Prof. Shlomo Kipnis 8 Fall 2007/2008

Hash Functions

Names:

Cryptographic Checksum

Message Digest

Fingerprint

Hash Value

Hash function generates a small identifier of a large
object (message, file, document, etc.)

Identifier is used to identify / authenticate / sign / verify
the original object

It should be difficult to forge the identifier

Prof. Shlomo Kipnis 9 Fall 2007/2008

Properties of Hash Functions

Should be difficult to reverse a hash function

Should be difficult to find a collision for some object

Should be difficult to find a collision of the hash function

Source
Space Target

Space

Prof. Shlomo Kipnis 10 Fall 2007/2008

Public-Key Cryptography

Entity A has two keys
Prv(A) – Private Key of A, kept secretly only by A
Pub(A) – Public Key of A, made public to the world

Two functions used for encryption/decryption:
ENC – uses the public key
DEC – uses the private key
Such that DEC [ENC (M, Pub(A)) , Prv(A)] = M

Two functions used for signature/verification:
SIGN – uses the private key
VER – uses the public key
Such that VER [SIGN (M, Prv(A)) , Pub(A)] = yes / no

Prof. Shlomo Kipnis 11 Fall 2007/2008

Public-Key Encryption

Anyone knowing Pub(A) can encrypt message M for A

Only A can decrypt, using Prv(A), message M that was
encrypted specifically for A

ENC DECM MC

Pub(A) Prv(A)
A

Prof. Shlomo Kipnis 12 Fall 2007/2008

Public-Key Signatures

Only A can sign, using Prv(A), some message M

Anyone knowing Pub(A) can verify that message M is
signed properly by A

SIGN VERM yes / noM

Pub(A)Prv(A)
A

S [M, Prv(A)]

3

Prof. Shlomo Kipnis 13 Fall 2007/2008

Selecting Algorithms

Published Algorithm – reviewed by many cryptographers
and is probably strong

Manufacturer Algorithm – trust the reputation of the
manufacturer

Private Consultant – trust the reputation of the expert

Government Standard – trust the government and its
intentions

Own Algorithm – develop own secret algorithm by
trusting your skills

Prof. Shlomo Kipnis 14 Fall 2007/2008

Secret vs. Known Algorithms

Secret algorithms:

used in closed environments (military, monopoly)

need to be internally analyzed

hard to keep secret

get broken eventually

Known algorithms:

have a commercial value

easy to keep small and changing secret (key)

are publicly reviewed

Prof. Shlomo Kipnis 15 Fall 2007/2008

Kerckhoff’s Principle

The security model does not rely on the obscurity of

the encryption/decryption algorithm. The algorithm is

assumed to be known to the adversary. The security

depends on the secrecy of the key.

Prof. Shlomo Kipnis 16 Fall 2007/2008

Algorithms and Keys

Encryption / Decryption / Authentication / Verification
algorithms can be either secret or known

In either case – keys are used as part of the scheme

An encryption / decryption algorithm can be viewed
as a large collection of un-keyed transformations (all
having a similar structure, but are different in the
details) from plaintext to ciphertext. The secret key
can be viewed as the index that selects a particular
transformation from the collection.

Prof. Shlomo Kipnis 17 Fall 2007/2008

Selecting Keys

The key should be selected from a large set of keys:
to decrease the probability of guessing the secret key

to increase the time required by an attacker to try all the keys
in the set

Key sizes:
40 bits (240 ≈ 1012) were used in the 1980’s and 1990’s in
Internet applications

56 bits (256 ≈ 1017) are used by DES; good in the 1980’s; not
strong enough today

64 bits (264 ≈ 1020) are used by some ciphers today

128 bits (2128 ≈ 1040) are considered the smallest number of bits
to be used by modern algorithms today

Prof. Shlomo Kipnis 18 Fall 2007/2008

Requirements from Cipher Algorithms

For the legitimate user:

Easy to encrypt / decrypt having the key

For the attacker:

Difficult to encrypt / decrypt without the key

Difficult to recover the key

Difficult to get any information on the plaintext

All the above, even if many encrypted texts are seen

Above should hold, assuming algorithm is not secret

4

Prof. Shlomo Kipnis 19 Fall 2007/2008

Encryption and Compression

Encryption is reversible when the key is known; it is
not (it should not be) reversible without the key

Compression can be either fully reversible or partially
reversible; but it does not use a key

If both encryption and compression are desired – do
the compression first and then do the encryption

Good encryption generates output that looks like a
random text (and, therefore, cannot be compressed)

Compressed text is less material to encrypt and is
harder to analyze

Prof. Shlomo Kipnis 20 Fall 2007/2008

Non-Cryptanalytic Attacks (I)

Compromising the Key
Stealing devices and keys

Getting old (backup) keys

Attacking the environment and leaking the key

Exhaustive Search
Searching all the key space (if feasible)

Checking which keys encrypt / decrypt the text

Prof. Shlomo Kipnis 21 Fall 2007/2008

Non-Cryptanalytic Attacks (II)

In many commercial products, one can identify the
security algorithms used and break them without
sophisticated computations. Many systems use simple
obscurity-based algorithms to hide information

In some commercial systems, the keys are kept in the
clear at some known places (key files, registries,
beginning of an encrypted file, etc.). Not much is
required to break these systems

Conclusion: It is not sufficient to use good cryptography.
Good system design (with security in mind) is needed.

Prof. Shlomo Kipnis 22 Fall 2007/2008

Cryptanalytic Attacks (I)

Cryptanalysis is the techniques used to recover the
secret information hidden in cryptographic algorithms

Usually, cryptanalysis attempts to find the secret key

In some cases, cryptanalysis attempts to find the
encrypted text

Cryptanalysts develop techniques that rely on analyzing
long texts to find the secret information

The job of the cryptanalyst gets more difficult with the
introduction of powerful algorithms and faster machines

Prof. Shlomo Kipnis 23 Fall 2007/2008

Cryptanalytic Attacks (II)

Known Cipehrtext
Only the ciphertext is known to attacker

Cryptanalysis to reveal the plaintext and/or the key

Known Plaintext
Pairs of < plaintext , ciphertext > are known to attacker

Cryptanalysis to reveal the key

Relevant when plaintext is known / can be obtained

Chosen Plaintext
Attacker chooses the plaintext and receives the ciphertext

Cryptanalysis to reveal the key

Relevant when attacker can “inject” plaintext messages

Prof. Shlomo Kipnis 24 Fall 2007/2008

Cryptanalytic Attacks (III)

Chosen Ciphertext
Attacker chooses the ciphertext and receives the plaintext
that encrypts to the chosen ciphertext

Cryptanalysis to reveal the key

Relevant when attacker can “inject” ciphertext messages
to the decryption module

Adaptive Chosen Text
Attacker chooses successive plaintext and/or the ciphertext
messages in accordance to attack plan

Cryptanalysis to reveal the key

Relevant when attacker can “control” the encryption and
decryption modules to respect chosen messages

5

Prof. Shlomo Kipnis 25 Fall 2007/2008

Modern Cryptography

Development of ciphers with the understanding of the
principles of Perfect Ciphers

Mathematical proofs (when possible) regarding the
strength of the ciphers

Unconditional Cryptography – theoretically 100%
secure, but it is not very practical

Conditional Cryptography – theoretically not 100%
secure, but it is very practical

Prof. Shlomo Kipnis 26 Fall 2007/2008

Block Ciphers and Stream Ciphers

When encrypting large volumes of data – the plaintext
M is divided into fixed-size blocks M = M1, M2, …, ML

Each block Mi is encrypted to a ciphertext block Ci and
the results are concatenated to produce the ciphertext
C = C1, C2, …, CL

There are two main ways to encrypt the plaintext M:

Block Ciphers – Plaintext is fragmented into fixed-sized blocks
(typically 64 / 128 bits long) and the encryption transformation
is applied to each block separately

Stream Ciphers – Plaintext is handled in small groups of bits
(typically 1 or 8 each time) and the encryption transformation
maintains memory (state) between encryption steps

Prof. Shlomo Kipnis 27 Fall 2007/2008

Block Ciphers

Encryption of one block
of data at a time

Need to partition
message into blocks

Need to pad small blocks

Key is used many times before it is changed

ENC should scramble the data and the key well

With enough text and time – key can be revealed

ENCM C

K

Prof. Shlomo Kipnis 28 Fall 2007/2008

Stream Ciphers

Encryption of one bit
or one byte at a time

Message is encrypted
as it comes

No need to pad data

Key is used many times before it is changed

ENC function is used primarily to prepare a pad

With enough text and time – key can be revealed

ENC

M C

K

f

Prof. Shlomo Kipnis 29 Fall 2007/2008

Deterministic Block Ciphers (I)

Given M = M1, M2, …, ML

Each block is encrypted with the same encryption
function EK(•) and the same key K – Ci = EK(Mi)

The encryption function EK(•) should not be vulnerable
to Known Plaintext Attacks (that is, having the attacker
be able to collect all the < plaintext, ciphertext > block
pairs for all the keys, and being able to tell for each
ciphertext block which plaintext block and/or key are
being used)

This requirement imposes some constraints on the
block size and on the key size

Prof. Shlomo Kipnis 30 Fall 2007/2008

Deterministic Block Ciphers (II)

|K| must not be too small
and must not be too large

Typical sizes for |K| were
64 / 128 bits

Moving towards
128 / 192 / 256 bits

Must have |C| ≥ |M|
Typically |C| = |M|
Typical sizes for |M| were 64 / 128 bits

Moving towards 128 / 192 / 256 bits

ENCM C

K

6

Prof. Shlomo Kipnis 31 Fall 2007/2008

Deterministic Block Ciphers (III)

Block Ciphers (on blocks on length N bits) are actually
Substitution Ciphers in which the alphabet is the set of
all the binary blocks of length N

Example:

When N=64 – there are 264 blocks of plaintext / ciphertext

When N=128 – there are 2128 blocks of plaintext / ciphertext

For each key K – the function EK(•) is a permutation
from {0,1}N to {0,1}N

The function DK(•) is the inverse permutation of EK(•)

Prof. Shlomo Kipnis 32 Fall 2007/2008

Deterministic Block Ciphers (IV)

Some permutations from {0,1}N to {0,1}N are weak

Let M = b1 b2 . . . bN (binary representation of M)

Examples of Weak Block Ciphers:

E0(b1 b2 . . . bN-1 bN) = b1 b2 . . . bN-1 bN (identity permutation)

E1(b1 b2 . . . bN-1 bN) = b2 b3 . . . bN b1 (cyclic shift of the bits)

E2(b1 b2 . . . bN-1 bN) = b2 b1 . . . bN bN-1 (bit transpositions)

E3(M) = M+3 (mod 2N) (large Caesar Cipher)

E4(M) = M+K (mod 2N) (generalized Caesar)

Luckily – there are enough good permutations …

Prof. Shlomo Kipnis 33 Fall 2007/2008

Deterministic Block Ciphers (V)

For N=64 – there are 264 ! permutations

Question: How does one specify all (or part of) these
264 ! permutations (since the permutation is the key)?

Obvious Answer: It is not practical to write down all the
permutations in a “Code Book” and lookup the key…

Another Answer: One needs to find an efficient way to
compute the permutation when the key is given

Prof. Shlomo Kipnis 34 Fall 2007/2008

Deterministic Block Ciphers (VI)

No simple substitutions / transpositions of the bits of
the plaintext block

Heavy involvement of the key K in the generation of the
ciphertext block from the plaintext block

For key K – the cipher mapping should be non-linear in
the plaintext M (since linear mappings can be attacked
by algebraic techniques)

For any two keys K1 and K2 – their mappings should be
non-linear in K1 and K2 (since linear mappings can be
attacked by algebraic techniques)

Prof. Shlomo Kipnis 35 Fall 2007/2008

Deterministic Block Ciphers (VII)

Cipher blocks should look random (pass statistical tests,
look random over time, etc.) when messages change

Cipher blocks should look random (pass statistical tests,
look random over time, etc.) when keys change

Opponent should not be able to detect a cipher block
from a random block

Cipher blocks should change dramatically even when
small changes are made to plaintext blocks

Each bit in the plaintext block should influence all the
bits in the cipher block (”avalanche effect”)

Prof. Shlomo Kipnis 36 Fall 2007/2008

Deterministic Block Ciphers (VIII)

Known Plaintext Attack:

Choose random messages M1, M2, …, ML

Opponent receives M1, M2, …, ML and
C1 = EK(M1), C2 = EK (M2), …, CL = EK (ML)

Opponent tries to recover key – that is – to output K’ as guess for K

An encryption algorithm should be secure at least against
Known Plaintext Attacks

What about Chosen Plaintext Attacks ?

Does security against key recovery from Known Plaintext
imply security against key recovery from Chosen Plaintext ?

7

Prof. Shlomo Kipnis 37 Fall 2007/2008

Deterministic Block Ciphers (IX)

Assume EK is secure against key recovery from known
plaintext attacks, and define:








=

=
=

else(M)E
K(M)Eif(0)E

0MforK
(M)E'

K

KKK

Then, E’K is secure against Known Plaintext, but it is not
secure against Chosen Plaintext (since randomly selected
messages will not be useful to recover the key, but
messages chosen purposely will recover the key)

Prof. Shlomo Kipnis 38 Fall 2007/2008

Distinguishability Tests (I)

Key Recovery is not a good test for security (it is not
sufficient to require that EK is secure against key recovery)

Example: EK(M) = M does not recover the key, but it is
not a very good encryption function

Distinguishability Tests capture the essence of good
encryption functions:

Opponent is given several encryptions of known / chosen plaintexts

Opponent is given / chooses two new plaintexts X1 and X2 that
were not seen before

Opponent is given encryption C of one of the new plaintexts

Opponent needs to distinguish whether C = EK(X1) or C = EK(X2)

Prof. Shlomo Kipnis 39 Fall 2007/2008

Distinguishability Tests (II)

Known Plaintext Attack (with non-repeating inputs):
Pick random key K (unknown to opponent)

Let i ← 1

Repeat until opponent decides to abort or until i = 2N–1

Pick new message Mi not in {M1, M2, …, Mi-1}

Give the opponent Mi and Ci = EK(Mi)

i ← i + 1

Give the opponent two plaintexts X1 and X2 not in {M1, M2, …, Mi-1}

Pick a random bit b

Give the opponent C = EK(Xb)

Opponent outputs guess b’ for b

Prof. Shlomo Kipnis 40 Fall 2007/2008

Distinguishability Tests (III)

Chosen Ciphertext Attack (with non-repeating inputs):
Pick random key K (unknown to opponent)

Let i ← 1

Repeat until opponent decides to abort or until i = 2N–1

Opponent selects Mi

Opponent is given Ci = EK(Mi)

i ← i + 1

Opponent picks two plaintexts X1 and X2 not in {M1, M2, …, Mi-1}

Pick a random bit b

Give the opponent C = EK(Xb)

Opponent outputs guess b’ for b

Prof. Shlomo Kipnis 41 Fall 2007/2008

Random Permutations (I)

Random Deterministic Block Cipher:

For any K, select a random permutation fK : {0,1}N → {0,1}N.

Define EK(M) = fK(M).

Intuitively, opponent learns nothing by seeing a new ciphertext
(or seeing a new pair of < plaintext, ciphertext >), except that
it differs from previously seen ciphertexts (or pairs of previously
seen < plaintext, ciphertext >).

In particular, opponent will not be able to distinguish between
encryptions of any two messages that were not seen before
(because the permutation fK is random).

Prof. Shlomo Kipnis 42 Fall 2007/2008

Random Permutations (II)

Question: Why not use a random permutation
fK : {0,1}N → {0,1}N as our encryption function EK?

Answer: The number of permutations from {0,1}N to
{0,1}N is too large – 2N! , and there is no easy way of
indexing (keying) these permutations.

Example: For N=5, there more than 2116 permutations,
and there is no easy way to index (key) them

Idea: Use a smaller subset of permutations that can be
easily indexed (keyed), and for which it would still be
difficult to distinguish between unseen inputs

8

Prof. Shlomo Kipnis 43 Fall 2007/2008

Pseudo-Random Permutations (I)

A collection of efficient (easy to compute) permutations

{fK} on {0,1}N, such that for any randomly selected K,

the opponent cannot efficiently (in polynomial time, in

polynomial space, with large probability, etc.) distinguish

between the permutation fK and a random permutation

Prof. Shlomo Kipnis 44 Fall 2007/2008

Pseudo-Random Permutations (II)

Distinguishability Test for a collection {fK} of pseudo
random permutations on {0,1}N:

Select random b in {0,1}

Select random f in {fK}

Select random permutation p from {0,1}N to {0,1}N

Repeat until opponent decides to abort:

Opponent selects X in {0,1}N and bit b’

If b’ = b then opponent gets f(X)
else opponent gets p(X)

Opponent succeeds if it outputs guess b’ such that b’ = b

Prof. Shlomo Kipnis 45 Fall 2007/2008

Pseudo-Random Permutations (III)

Using pseudo random permutations:

Developing secure deterministic block ciphers:
encryption function EK(•) and decryption function DK(•).

Generating independent random values:
Vi = EK(i) where K is a secret key and i is the index of the
independent random value.
Comment: If K is shared, then values of Vi can be shared

Proving security of protocols (based on the assumption that the
opponent cannot “guess” certain pseudo-random values)

Prof. Shlomo Kipnis 46 Fall 2007/2008

Pseudo-Random Permutations (IV)

Analyzing a PRP (Pseudo-Random Permutation) should
be difficult and time consuming

To increase security – use several lines of defense

Cascading PRP:

Given PRP fK1 and gK2 , one can compose them to come with

a permutation hK1,K2 such that hK1,K2(X) = fK1(gK2(X))

Claim: If f and g are PRP, then h is also a PRP

Use: Developing block ciphers that contain several rounds of
scrambling the plaintext with PRP

1

Prof. Shlomo Kipnis 1 Fall 2007/2008

Symmetric Cryptography I

Prof. Shlomo Kipnis
November 7, 2007

Prof. Shlomo Kipnis 2 Fall 2007/2008

Modern Block Ciphers

Plaintext Block

Preprocessing

Round Cipher
i = 1, 2, 3, …

Postprocessing

Ciphertext Block

Key

Sub-Key Generation

Sub-Key 1
Sub-Key 2
Sub-Key 3

.

Possible slowdown
to combat exhaustive

key search

Prof. Shlomo Kipnis 3 Fall 2007/2008

Feistel Ciphers (I)

Feistel was one of the designers of early cryptographic
algorithms at IBM in the 1970’s

Feistel Cipher is a scheme / template for specifying the
algorithm of a block cipher

The Feistel scheme allows encryption and decryption
with the same hardware circuit / piece of software

Algorithms that use the Feistel scheme:

DES

IDEA

RC5

Prof. Shlomo Kipnis 4 Fall 2007/2008

Feistel Ciphers (II)

There are r rounds

In round i – input block Mi
is broken into two half-blocks
Li and Ri

Mi

Li Ri

Li+1

Mi+1

Ri+1

f

+

Ki
Input half-block Ri is copied
to output half-block Li+1 (to
be used as input in round i+1)

Input half-block Ri and
round key Ki are scrambled
by function f. The result is
XORed with input half-block Li
to create output half-block Ri+1
(to be used as input in round i+1)

Prof. Shlomo Kipnis 5 Fall 2007/2008

Feistel Ciphers (III)

K is used to generate r round keys – K1 , K2 , . . . , Kr

Input block Mi of round i split into two halves Li and Ri

In each round 1 ≤ i ≤ r do the following:

Li+1 ← Ri

Ri+1 ← Li ⊕ f(Ri , Ki)

After last round (i=r) – swap the two output blocks:

C ← Ri+1 || Lr+1

Prof. Shlomo Kipnis 6 Fall 2007/2008

Feistel Ciphers (IV)

Examples:

What happens if f(R, K) = R ?

If M = L || R – then C = L ⊕ R || R

What happens if f(R, K) = K ?

Multiple encryptions XOR their left-halves L’s with the
same K (same problem as with one-time-pad)

What happens if f(R, K) = R ⊕ K ?

Possible attack if R = L – then K is revealed

2

Prof. Shlomo Kipnis 7 Fall 2007/2008

Feistel Ciphers (V)

R3 L3 = R2

R2 L2 = R1

M

f

+

K2

C

R1 L1

f

+

K1

Decryption

L1 R1

L2 R2

C

f

+

K1

M

L3 R3

f

+

K2

Encryption

Prof. Shlomo Kipnis 8 Fall 2007/2008

Feistel Ciphers (VI)

In Feistel Cipher – decryption is the same as encryption,
only reversing the order of usage of the r round keys

Function f can be any function; usually it is a function
that is easy to compute but is hard to reverse

The reversibility of the Feistel Cipher depends on the
reversibility of the XOR function

Function f only serves to generate a pad to be XORed
with the L half-block; function f creates this pad from
the R half-block and from the round key K

Prof. Shlomo Kipnis 9 Fall 2007/2008

Feistel Ciphers (VII)

The Feistel scheme does not specify:

Block size (N)

Key size (L)

Number of rounds (r)

Round-key generation algorithm (K1 , K2 , . . . , Kr)

Scrambling function (f)

Prof. Shlomo Kipnis 10 Fall 2007/2008

DES History

In 1973, NBS (National Bureau of Standards) came out
with an RFP (Request for Proposals) for a commercial
encryption standard

IBM proposed its strong Lucifer algorithm (developed
by Feistel and others)

NSA (National Security Agency) requested to weaken
the strength of Lucifer (by shortening the key)

NSA also made changes to IBM’s Lucifer algorithm

Data Encryption Standard (DES) accepted in 1976

Prof. Shlomo Kipnis 11 Fall 2007/2008

DES Design Criteria

NBS had set the following design criteria for DES:

Algorithm must provide high level of security

Algorithm must be completely specified

Security of the algorithm must reside in the key

Algorithm must be available to all users

Algorithm must be adaptable for use in diverse applications

Algorithm must be efficiently implemented in hardware

Algorithm must be efficient to use

Algorithm must be able to be validated

Algorithm must be exportable

Prof. Shlomo Kipnis 12 Fall 2007/2008

DES Structure (I)

Block size – 64 bits

Key size – 56 bits (in a 64-bit buffer)

Fixed initial permutation on input block (64 bits)

16 round keys (48 bits) derived from key (56 bits)

Key scheduling scheme for 16 round keys

16 iterations each consisting of scrambling the
round-block (64 bits) with the round-key (48 bits)

Scrambling function detailed later

Fixed inverse initial permutation on output block

3

Prof. Shlomo Kipnis 13 Fall 2007/2008

DES Structure (II)

Overall structure of

DES is as follows

M

Init-Perm
64 bit

K1

48 bit
Round 1

64 bit

64 bit

K2

48 bit
Round 2

Final-Perm

C
64 bit

64 bit

Prof. Shlomo Kipnis 14 Fall 2007/2008

DES Structure (III)

Initial Permutation (64 inputs / 64 outputs):

58 50 42 34 26 18 10 2

60 52 44 36 28 20 12 4

62 54 46 38 30 22 14 6

64 56 48 40 32 24 16 8

57 49 41 33 25 17 9 1

59 51 43 35 27 19 11 3

61 53 45 37 29 21 13 5

63 55 47 39 31 23 15 7

Prof. Shlomo Kipnis 15 Fall 2007/2008

DES Structure (IV)

Initial and Final Permutations:

“Final Permutation” is inverse of “Initial Permutation”

“Initial Permutation” and “Final Permutation” are fully
specified and do not add to the security of DES

Purpose of “Initial Permutation” and “Final Permutation”
is to make software implementations of DES slow

Question: Why not use only “Initial Permutation”?

Answer: To support encryption/decryption with the
Feistel Scheme !

Prof. Shlomo Kipnis 16 Fall 2007/2008

DES Structure (V)

Mi

Li Ri

32 bit32 bit

+

Li+1 Ri+1

32 bit

32 bit

32 bit32 bit

32 bitEach round

of DES

consists of

the following

operations

Ki

expand

+

s s s s s s ss

permute

32 bit

48 bit
48 bit

48 bit

32 bit

32 bit

function f

Prof. Shlomo Kipnis 17 Fall 2007/2008

DES Structure (VI)

Message block Mi (64 bits) is split into left half-block Li

(32 bits) and right half block Ri (32 bits)

Right half block Ri is copied to become left half-block Li+1

Right half block Ri is expanded to 48 bits and is XORed
with round key Ki (48 bits)

The eight S-Boxes – each takes 6 bits (of the 48 bits
above) and generates 4 bits (resulting in 32 bits)

The resulting 32 bits are permuted and XORed with the
left half-block Li to create right half-block Ri+1

Prof. Shlomo Kipnis 18 Fall 2007/2008

DES Structure (VII)

Expand Function (32 inputs / 48 outputs):

32 1 2 3 4 5

4 5 6 7 8 9

8 9 10 11 12 13

12 13 14 15 16 17

16 17 18 19 20 21

20 21 22 23 24 25

24 25 26 27 28 29

28 29 30 31 32 1

4

Prof. Shlomo Kipnis 19 Fall 2007/2008

DES Structure (VIII)

Internal Permute (32 inputs / 32 outputs):

16 7 20 21 29 12 28 17

1 15 23 26 5 18 31 10

2 8 24 14 32 27 3 9

19 13 30 6 22 11 4 25

Prof. Shlomo Kipnis 20 Fall 2007/2008

DES Structure (IX)

S-Box-1 (6 inputs / 4 outputs):
First and sixth input bits select row
(between 0 and 3 in table below)

Four middle input bits select column
(between 0 and 15 in table below)

Value of four output bits is depicted
in decimal (between 0 and 15) in
table entry below

| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
___|__
0 | 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
1 | 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
2 | 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0
3 | 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

S-Box

I1 I2 I3 I4 I5 I6

O1 O2 O3 O4

Prof. Shlomo Kipnis 21 Fall 2007/2008

DES Structure (X)

All the operations in DES are linear, with the exception
of the S-Boxes

If the S-Boxes were selected to be easily described by
linear transformations – DES would have been weaker

The strength of DES depends heavily on the selection
of the S-Boxes

NSA had changed the S-Boxes that IBM had proposed

Other S-Boxes are possible

Random selection of S-Boxes proves easier to break

Prof. Shlomo Kipnis 22 Fall 2007/2008

DES Structure (XI)

Key-Scheduling

Perm-Choice-1
56 bit

K1

48 bit
Left-Circ-ShiftPerm-Choice-2

56 bit

56 bit

56 bit
K2

48 bit
Left-Circ-ShiftPerm-Choice-2

56 bit

64 bit

K

Prof. Shlomo Kipnis 23 Fall 2007/2008

DES Structure (XII)

DES Key Scheduling – Permuted Choice 1:

57 49 41 33 25 17 9

1 58 50 42 34 26 18

10 2 59 51 43 35 27

19 11 3 60 52 44 36

63 55 47 39 31 23 15

7 62 54 46 38 30 22

14 6 61 53 45 37 29

21 13 5 28 20 12 4
Prof. Shlomo Kipnis 24 Fall 2007/2008

DES Structure (XIII)

DES Key Scheduling – Permuted Choice 2:

14 17 11 24 1 5 3 28

15 6 21 10 23 19 12 4

26 8 16 7 27 20 13 2

41 52 31 37 47 55 30 40

51 45 33 48 44 49 39 56

34 53 46 42 50 36 29 32

5

Prof. Shlomo Kipnis 25 Fall 2007/2008

DES Structure (XIV)

DES Key Scheduling – Shift Schedule:

Round: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Shift: 1 1 2 2 2 2 2 2 1 2 2 2 2 2 1

Prof. Shlomo Kipnis 26 Fall 2007/2008

Design Issues for Block Ciphers (I)

S-Boxes:

Output bits of S-Box should not be a linear function of
input bits

Each row of the S-Box should be a permutation of the
possible input / output values

Inputs that differ in one bit should generate outputs
that differ in many bits

Output bits of S-Box should be distributed such that
they affect other S-Boxes in the following round

Prof. Shlomo Kipnis 27 Fall 2007/2008

Design Issues for Block Ciphers (II)

Number of Rounds:

More rounds are generally better, but they cost in
reduced performance

Number of rounds should maximize the Avalanche
Effect (about 50% of output bits should change for any
change in input bit)

Number of rounds should be selected to make the
effects of advanced attacks (differential / linear / etc)
be similar to exhaustive search (when taking into
account the overhead required to run the attacks)

Prof. Shlomo Kipnis 28 Fall 2007/2008

Design Issues for Block Ciphers (III)

F-Function:

Must be difficult to un-scramble

Should be non-linear

SAC (Strict Avalanche Criteria) – any output bit should
be inverted with probability ½ when some input bit is
changed

BIC (Bit Independence Criteria) – any two output bits
should change independently when some input bit is
changed

Prof. Shlomo Kipnis 29 Fall 2007/2008

DES Design Issues (I)

Unofficial requirement to make DES slow in software

The NSA reduction of the key-size to 56 bits

NSA changes to the S-Boxes

“Initial Permutation” and “Inverse Initial Permutation”

Effects of the “Expand” and “Permute” operations

Effects of the “f” scrambling function

Effects of the S-Boxes

Exportability of cryptographic algorithms, software, and
hardware

Prof. Shlomo Kipnis 30 Fall 2007/2008

DES Design Issues (II)

Avalanche Effect in DES – Change in Plaintext:

Number of output bits that change when one input bit is changed

Round: 0 1 2 3 4 5 6
Bits: 1 6 21 35 39 34 32

Round: 7 8 9 10 11 12 13
Bits: 31 29 42 44 32 30 30

Round: 14 15 16

Bits: 26 29 34

6

Prof. Shlomo Kipnis 31 Fall 2007/2008

DES Design Issues (III)

Avalanche Effect in DES – Change in Key:

Number of output bits that change when one key bit is changed

Round: 0 1 2 3 4 5 6
Bits: 0 2 14 28 32 30 32

Round: 7 8 9 10 11 12 13
Bits: 35 34 40 38 31 33 28

Round: 14 15 16

Bits: 26 34 35

Prof. Shlomo Kipnis 32 Fall 2007/2008

DES Design Issues (IV)

Avalanche Effect in DES and Number of Rounds:

For output to appear random - number of bits that
change should be around 50% (that is – 32 bits)

With 16 DES rounds – the Avalanche Effect DES is
about optimal

Also 16 rounds is large enough to withstand certain
cryptanalytical attacks

Prof. Shlomo Kipnis 33 Fall 2007/2008

DES Design Issues (V)

Weak DES Keys:

4 keys in which each half of the key (after PC-1) is either
all 0’s or all 1’s

For these keys: EK(EK(X)) = X

Semi-Weak DES Keys:

12 keys in which each half of the key (after PC-1) is one
of the following: all 0’s, all 1’s, alternating 0’s and 1’s, and
alternating 1’s and 0’s

For pairs of keys: EK1
(EK2

(X)) = X

Prof. Shlomo Kipnis 34 Fall 2007/2008

DES Strength

Since 1975, there was a debate regarding the selection
of only 56 bits for the DES key size

Exhaustive Search Attack:
Requires searching O(256) keys

Differential Cryptanalysis:
Requires analyzing O(247) chosen plaintexts

Linear Cryptanalysis:
Requires analyzing O(247) known plaintexts

In 1990’s – DES was declared not secure enough by the
technical community (IETF)

Prof. Shlomo Kipnis 35 Fall 2007/2008

DES – Exhaustive Search

Exhaustive Search Attack:

Search space of O(256) = O(1017) keys

In the 1970’s, Diffie and Hellman suggested a $20M-machine
that will crack DES in about one day

In the 1990’s, Wiener suggested a $1M-machine that will crack
DES in 3.5 hours

Assume about 109 encryptions per second on today’s computers.
Then about 108 computers seconds are required to crack DES

In 1990’s, DES challenges were broken in matter of days using
distributed clusters of computers

Presumably, most national security agencies have the hardware
and software to crack DES in hours

Prof. Shlomo Kipnis 36 Fall 2007/2008

DES – Differential Cryptanalysis

Differential Cryptanalysis Attack:

Study the differences between two encryptions of two different
plaintext blocks M and M*

Study the probability of output differences in each S-Box

Trace back differences to specific S-Boxes

Estimate the likelihood of key-bits involved in the XOR operation
before the S-Boxes

Continue developing estimates for key until one key emerges as
the only ultimate option

Chosen space of O(247) plaintexts

Not practical – but theoretically important

7

Prof. Shlomo Kipnis 37 Fall 2007/2008

DES – Linear Cryptanalysis

Linear Cryptanalysis Attack:

Approximate the DES key as a linear transformation of the
plaintext bits and the ciphertext bits

Change the coefficients based on multiple values of pairs of
<plaintext,ciphertext>

Requires known space of O(247) <plaintext,ciphertext> pairs

Not practical – but theoretically important

Prof. Shlomo Kipnis 38 Fall 2007/2008

DES Strength – Summary

Since early 1990’s – DES is considered not secure
enough for technical and commercial use

Several approaches:

Strengthening DES – 2-DES

Strengthening DES – 3-DES

Strengthening DES – DES-X

Other Algorithms

1

Prof. Shlomo Kipnis 1 Fall 2007/2008

Symmetric Cryptography II

Prof. Shlomo Kipnis
November 12, 2007

Prof. Shlomo Kipnis 2 Fall 2007/2008

Double DES (I)

Apply two iterations of DES with two keys K1 and K2

ENCM C

K1

ENC

K2

What if DES has a structure of an algebraic group, such
that for each K1 and K2 there is a K3 with the property:

EK2
(EK1

(X)) = EK3
(X)

This is not the case (proved in 1992)

BUT - is the security level O(2112)?

Prof. Shlomo Kipnis 3 Fall 2007/2008

Double DES (II)

Meet-in-the-Middle Attack:

For given M and C – search only O(256) pairs of keys
K1 and K2 at the intermediate point I

ENCM C

K1

ENC

K2

I

Encrypt M under all 256 options for K1

Denote the results by X1, X2, . . ., X256

Decrypt C under all 256 options for K2

Denote the results by Y1, Y2, . . ., Y256

Prof. Shlomo Kipnis 4 Fall 2007/2008

Double DES (III)

Meet-in-the-Middle Attack (continued):

Sort the values X1, X2, . . ., X256

Sort the values Y1, Y2, . . ., Y256

Find collisions between values of Xi and Yj – there should
be about (2112 / 264) = 248 such collisions

Mark the 248 potential candidates for key-pair K1 and K2

Take another pair M’ and C’, and repeat the above test
with the new pair and the suspected 248 key-pairs

The second test will pin down the correct pair K1 and K2

(since the success rate will be (248 / 264) = 2-16)

Prof. Shlomo Kipnis 5 Fall 2007/2008

Double DES (IV)

Meet-in-the-Middle Attack (continued):

Time requirement of attack – for encryptions, decryptions,
sorting, and comparing:

about O(264) steps

Space requirement of attack – for keeping the encryption
and decryption values:

about O(260) bytes

Although attack is not very practical – it is sufficiently
intriguing to consider Double-DES not secure enough

Prof. Shlomo Kipnis 6 Fall 2007/2008

Triple-DES (I)

EEE Mode:
DES Encrypt-Encrypt-Encrypt with three keys K1, K2, and K3

ENCM C

K1

ENC

K3

ENC

K2

Properties:

Three keys (168 bits)

Strength about O(2110) against Meet-in-the-Middle

Not compatible with regular DES

2

Prof. Shlomo Kipnis 7 Fall 2007/2008

Triple-DES (II)

EDE Mode:
DES Encrypt-Decrypt-Encrypt with two keys K1, and K2

ENCM C

K1

ENC

K1

DEC

K2

Properties:

Two keys (112 bits)

Strength about O(2110) against Meet-in-the-Middle

Compatible with regular DES when K1= K2

Prof. Shlomo Kipnis 8 Fall 2007/2008

Triple-DES (III)

EDE Mode with three keys:
DES Encrypt-Decrypt-Encrypt with keys K1, K2, and K3

ENCM C

K1

ENC

K3

DEC

K2

Properties:

Three keys (168 bits)

More resilient against attacks

Compatible with regular DES when K1= K2 or K2= K3

Prof. Shlomo Kipnis 9 Fall 2007/2008

DES-X

Whitening Technique:

Three keys – KO ; K ; KI

C = Ko ⊕ DESK(M ⊕ KI)

Strength of 3-DES and of DES-X is considered to be
about O(2120)

M C

KI KO

ENC

K

+ +

Prof. Shlomo Kipnis 10 Fall 2007/2008

Other Algorithms

DES is (was) the most widely used encryption algorithm

Other popular encryptions algorithms include:

IDEA (1990)

RC5 (1990)

AES (2000)

Prof. Shlomo Kipnis 11 Fall 2007/2008

IDEA (I)

IDEA – International Data Encryption Algorithm

Developed in late 1980’s in Switzerland

Efficient in software and hardware

Used in many software pakages (e.g., PGP)

Block size – 64 bits

Key size – 128 bits

Based on a variation of Feistel scheme

Encryption and decryption are identical with the only
difference in the sub-key generation scheme

Prof. Shlomo Kipnis 12 Fall 2007/2008

IDEA (II)

IDEA uses 17 rounds (or 8½ double-rounds)

Each odd round uses 4 sub-keys (16 bits each)

Each even round uses 2 sub-keys (16 bits each)

Total number of sub-keys used in IDEA is 52

IDEA generates the 52 sub-keys from the 128-bit key by first
consuming the 128 bits of the key (to generate 8 sub-keys), and
then shifting the key by 25 bits to generate more sub-keys, and
so on until all 52 sub-keys are generated:
- K1, K2, K3, K4, K5, K6, K7 , K8 are taken from K[1..128]
- K9, K10, K11, K12, K13, K14, K15 , K16 are taken from K[26..25]
- K17, K18, K19, K20, K21, K22, K23 , K24 are taken from K[51..50]
- Etc.

3

Prof. Shlomo Kipnis 13 Fall 2007/2008

IDEA (III)

M
64 bit

K1, K2, K3, K4

16 bits each
Round 1

64 bit

C

K5, K6
Round 2

64 bit
16 bits each

64 bit
K49, K50, K51, K52

64 bit
16 bits each

Round 17

K
128 bit

Key Expansion

Prof. Shlomo Kipnis 14 Fall 2007/2008

IDEA (IV)

Scrambling functions in IDEA are based on mathematical
operations (XOR, modular ADD, modular MULT):

⊕ – Bitwise XOR:
on registers of 16 bits

+ – Addition modulo 65536 = 216:
on numbers represented in 16-bits

⊙ – Multiplication modulo 65537 = 216+1:
on numbers represented in 16-bits

Prof. Shlomo Kipnis 15 Fall 2007/2008

IDEA (V)

Scrambling function of odd rounds:

⊙

Xa

Ya

Ka +

Xb

Kb +

Xc

Kc ⊙

Xd

Kd

YdYb Yc

Xa, Xb, Xc, Xd are four 16-bit inputs to the round

Ka, Kb, Kc, Kd are four 16-bit keys of the round

Ya, Yb, Yc, Yd are four 16-bit outputs from the round
Prof. Shlomo Kipnis 16 Fall 2007/2008

IDEA (VI)

Inverse scrambling of odd rounds:

⊙

Ya

Xa

K’a +

Yb

K’c +

Yc

K’b ⊙

Yd

K’d

XdXb Xc

K’a and K’d are multiplicative inverses of Ka and Kd

K’b and K’c are additive inverses of Kb and Kc

Xa, Xb, Xc, Xd are derived back from Ya, Yb, Yc, Yd

Prof. Shlomo Kipnis 17 Fall 2007/2008

IDEA (VII)

Scrambling function of even rounds:

Xa, Xb, Xc, Xd are four 16-bit inputs to the round

Ke and Kf are two 16-bit keys of the round

Ya, Yb, Yc, Yd are four 16-bit outputs from the round

⊕

Xa

Ya

Xb

⊕

Yb

⊕

⊕

Yc

⊕

Yd

⊕

Xc XdKe Kf

Mangler
Function

I1 I2

O1 O2

Prof. Shlomo Kipnis 18 Fall 2007/2008

IDEA (VIII)

Mangler Function:

O1 = ((Ke ⊙ I1) + I2) ⊙ Kf

O2 = (Ke ⊙ I1) + O1

Ke and Kf are 16-bit keys of the round

A reminder:

I1 = Xa ⊕ Xb

I2 = Xc ⊕ Xd

Ke Kf

Mangler
Function

I1 I2

O1 O2

4

Prof. Shlomo Kipnis 19 Fall 2007/2008

IDEA (IX)

Inverse scrambling of even rounds:

Same Ke and Kf are used in the inverse scrambling

Mangler function gets same inputs and ⊕ is invertible

Xa, Xb, Xc, Xd are derived back from Ya, Yb, Yc, Yd

⊕

Ya

Xa

Yb

⊕

Xb

⊕

⊕

Xc

⊕

Xd

⊕

Yc YdKe Kf

Mangler
Function

I1 I2

O1 O2

Prof. Shlomo Kipnis 20 Fall 2007/2008

IDEA (X)

Inputs to Mangler Function:

I1 = Xa ⊕ Xb = Ya ⊕ Yb

I2 = Xc ⊕ Xd = Yc ⊕ Yc

Same Ke and Kf

Therefore – outputs from Mangler Function are identical
in encryption and decryption

Now if Y = X ⊕ O
then X = Y ⊕ O

Prof. Shlomo Kipnis 21 Fall 2007/2008

IDEA (XI)

Encryption Keys:

K1, K2, K3, K4, K5, K6, K7 , K8, K9, K10, K11, K12, K13, K14,
K15 , K16, K17, K18, K19, K20, K21, K22, K23 , K24 , K25, K26,
K27, K28, K29, K30, K31 , K32, K33, K34, K35, K36, K37, K38, K39 ,
K40, K41, K42, K43, K44, K45, K46, K47 , K48 , K49, K50, K51 , K52

Decryption Keys:

K49
-1, -K51, -K50, K52

-1, K47, K48, K43
-1, -K45, -K44, K46

-1, K41,
K42, K37

-1, -K39, -K38, K40
-1, K35, K36, K31

-1, -K33, -K32, K34
-1,

K29, K30, K25
-1, -K27, -K26, K28

-1, K23, K24, K19
-1, -K21, -K20,

K22
-1, K17, K18, K13

-1, -K15, -K14, K16
-1, K11, K12, K7

-1, -K9,
-K8, K10

-1, K5, K6, K1
-1, -K3, -K2, K4

-1

Prof. Shlomo Kipnis 22 Fall 2007/2008

IDEA (XII)

Summary:

IDEA is a strong encryption algorithm

Simple binary operations (XOR, ADD, MULT)

Difficult to cryptanalyze (because of 3 operations, use of 16
bits in the manipulations, and number of rounds)

Efficient in software (simple operations, no convoluted
permutations, same algorithm for encryption and decryption)

Efficient in hardware (simple modules, simple operations on
16-bit registers)

Used in commercial products (PGP and some standards)

Prof. Shlomo Kipnis 23 Fall 2007/2008

RC5 (I)

Designed by Rivest in 1994

Design Characteristics:

Efficient in hardware and software

Fast implementations

Different word lengths

Variable number of rounds

Variable key length

Low memory requirement

High security

Data-dependant rotations

Prof. Shlomo Kipnis 24 Fall 2007/2008

RC5 (II)

RC5 Operational Parameters:

w – word size in bits (16 / 32 / 64)

r – number of rounds (between 0 and 255)

b – number of bytes in secret key (between 0 and 255)

Nominal values for parameters:

w = 32

r = 12

b = 16

5

Prof. Shlomo Kipnis 25 Fall 2007/2008

RC5 (III)

Key Expansion:

Given key K with b bytes – K[0] . . . K[b-1]

When r rounds are used – then t = 2r+2 sub-keys
need to be prepared

Array S will keep the t sub-keys – S[0] . . . S[t-1]

Two hexadecimal constants are used to initializate S.
For w = 16 / 32 / 64 bits, these constants are:

Pw = B7E1 / B7E15163 / B7E151628AED2A6B

Qw = 9E37 / 9E3779B9 / 9E3779B97F4A7C15

Prof. Shlomo Kipnis 26 Fall 2007/2008

RC5 (IV)

Key Expansion (continued):

Initialization code for array S:

S[0] = Pw

for i=1 to t-1 do
S[i] = S[i-1] + Qw /// addition modulo 2w

Define c = ┌ 8b/w ┐

The b-bite array K is copied into a c-word array L
(with leaving zeros at the end of array L)

Prof. Shlomo Kipnis 27 Fall 2007/2008

RC5 (V)

Key Expansion (continued):

Array S is mixed with array L to produce the set of
final values in array S:

i = j = X = Y = 0
do 3 • max(t, c) times

S[i] = (S[i] + X + Y) <<< 3
X = S[i]
i = i + 1 (mod t)
L[j] = (L[j] + X + Y) <<< (X+Y)
Y = L[j]
j = j + 1 (mod c)

Prof. Shlomo Kipnis 28 Fall 2007/2008

RC5 (VI)

Encryption and Decryption Primitives:

Three primitive operations (and their inverses) are used
in the encryption (and decryption):

+ Addition of w-bit words modulo 2w

– Subtraction modulo 2w (inverse of addition)

⊕ Bit-wise XOR

⊕ XOR is its own inverse

<<< Left circular shift

>>> Right circular shift (inverse of left circular shift)

Prof. Shlomo Kipnis 29 Fall 2007/2008

RC5 (VII)

Encryption:

Plaintext block resides initially in two w-bit registers A and B

Following round i – left half of data is called LEi and right half of

data is called REi

LE0 = A + S[0]

RE0 = B + S[1]

for i=1 to r do

LEi = ((LEi-1 ⊕ REi-1)) <<< REi-1) + S[2i]

REi = ((REi-1 ⊕ LEi)) <<< LEi) + S[2i+1]

Prof. Shlomo Kipnis 30 Fall 2007/2008

RC5 (VIII)

Decryption:

Ciphertext block resides initially in two w-bit registers LDr and RDr

Before round i – left half of data is called LDi and right half of data

is called RDi

for i=r down to 1 do

RDi-1 = ((RDi – S[2i+1] >>> LDi) ⊕ LDi)

LDi-1 = ((LDi – S[2i] >>> Rdi-1) ⊕ Rdi-1)

B = RD0 – S[1]

A = LD0 – S[0]

6

Prof. Shlomo Kipnis 31 Fall 2007/2008

RC5 (IX)
M 2w bits

B (w bits)A (w bits)

+ + S[1]S[0]

C
2w bits

⊕ ⊕

<<< <<<

S[2i+1]+S[2i] +

Round i
LEi-1 REi-1

LEi REi

M 2w bits

B (w bits)A (w bits)

– – S[1]S[0]

C
2w bits

LDi-1 RDi-1

⊕ ⊕

>>> >>>

S[2i+1]–S[2i] –

Round i

LDi RDi

Prof. Shlomo Kipnis 32 Fall 2007/2008

RC5 (X)

RC5 Modes:

RC5 Block Cipher – This is the raw algorithm which takes 2w-bit
plaintext blocks and produces 2w-bit ciphertext blocks. This mode
is also called ECB (Electronic Code Book) Mode

RC5-CBC – This is the cipher-block-chaining mode of RC5. This
mode only handles plaintext with a multiple of 2w bits.

RC5-CBC-Pad – This is the cipher-block-chaining mode of RC5 that
handles plaintext of any length. It does so by padding the plaintext
to be of size of the next multiple of 2w bits.

RC5-CBC-CTS – This is a Cipher Text Stealing mode. This mode
handles plaintext of any length and produces a corresponding
ciphertext of the same length.

Prof. Shlomo Kipnis 33 Fall 2007/2008

RC5 (XI)

CBC Padding:

If the length of the message is not a multiple of 2w bits, than the
message can be padded.

Up to 2w/8 bytes might be added to the length of the message

The pad bytes are all the same and are set to a value that
represents the number of bytes of padding. (For example, if there
are 6 bytes of padding, then the last 6 bytes will be set to the
binary value 00000110.)

Padding may not be desirable in applications or communications
that need to preserve the size of the data

Prof. Shlomo Kipnis 34 Fall 2007/2008

RC5 (XII)

RC5-CBC-CTS Mode:

If plaintext consists of N blocks, and last block is only L
bytes long, where L < 2w/8:

Encrypt the first (N-2) blocks using RC5-CBC mode

XOR block MN-1 with the previous ciphertext block CN-2 and
denote the resulting block YN-1

Encrypt block YN-1 to create EN-1

Select the first L bytes of EN-1 to create CN

Pad MN with 0’s at the end and XOR with EN-1 to create YN

Encrypt YN to create CN-1

Last two blocks of the ciphertext are CN-1 and CN

Prof. Shlomo Kipnis 35 Fall 2007/2008

AES (I)

AES Histrory:
Other algorithms were not appropriate

Not strong enough (DES)

Not fast enough (3-DES)

Not available freely (IDEA, RC5)

NIST published RFP for Advanced Encryption Algorithm in 1997:

Fully specified and explained algorithm

Variable strength by key size (from 128 to 256 bits)

Efficient implementation on various SW & HW platforms

About 20 algorithms were proposed

Open review process for about 3 years

Rijndael was selected in November 2001
Prof. Shlomo Kipnis 36 Fall 2007/2008

AES (II)
Rijndael Parameters:

Nb = Block size in 32-bit words – 4 / 5 / 6 / 7 / 8
(that is – 128 / 160 / 192 / 224 / 256 bits)

Nk = Key size in 32-bit words – 4 / 5 / 6 / 7 / 8
(that is – 128 / 160 / 192 / 224 / 256 bits)

Nr = Number of rounds – 6 + max(Nb, Nk)

AES Parameters:
Nb = Block size in 32-bit words – 4

(that is – 128 bits)
Nk = Key size in 32-bit words – 4 / 6 / 8

(that is – 128 / 192 / 256 bits)
Number of rounds –

AES-128 – 10 rounds
AES-192 – 12 rounds
AES-256 – 14 rounds

7

Prof. Shlomo Kipnis 37 Fall 2007/2008

AES (III)

AES maintains a state:

State is a rectangular array of 4 rows by Nb = 4 columns

Each of the 4Nb = 16 array entries holds an octet (8 bits)

Initial value of state is the plaintext block entered column by column

State is transformed during Nr rounds

Final value of state is the ciphertext block read column by column

AES maintains a key-expansion scheme:

Key is used to generate a sequence of key-sets

Each key-set consists of Nk columns of 4 octets (32 bits) each

Key-expansion generates (Nr+1)Nb 4-octet columns

Prof. Shlomo Kipnis 38 Fall 2007/2008

AES (IV)

4Nb octet input 4Nk octet key

+

Round i
Key ki

+
Key k0

key expansion

4Nb octet input

4Nk octet key

Placement of input
in the state array

Key expansion

XOR input with K0

Nr rounds of state
transformation and
XOR with Ki

Prof. Shlomo Kipnis 39 Fall 2007/2008

AES (V)

Four primitive operations inside each round:

Bit-wise XOR – ⊕
S-box that substitutes octet for octet. The S-box substitution
is implemented as a table lookup.

Rearrangement of octets that consists of rotating rows by some
number of cells.

A Mix-Column operation that replaces a 4-octet column with
another 4-octet column. The Mix-Column operation can be
implemented as a table lookup.

Prof. Shlomo Kipnis 40 Fall 2007/2008

AES (VI)

63 7c 77 7b f2 64 6f c5 30 01 67 2b fe d7 ab 76
ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0
b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15
04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75

83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84
d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf
ef aa fb 43 4d 33 85 45 f9 09 7f 50 3c 9f a8
a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2

09
53
d0
51
cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73
60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0d db
e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79
e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08

78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a
3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e
f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df
a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16

ba
70
e1
8c

0
1
2
3
4
5
6
7
8
9
a
b
c
d
e
f

0 1 2 3 4 5 6 7 8 9 a b c d e f

S-
Bo

x
Pe

rm
ut

at
io

n

Prof. Shlomo Kipnis 41 Fall 2007/2008

AES (VII)

The Row Rotations (4Nb cells of 8 bits each):
Row 0 of the state is not rotated

Row 1 of the state is rotated left 1 column

Row 2 of the state is rotated left 2 columns

Row 3 of the state is rotated left 3 columns

Prof. Shlomo Kipnis 42 Fall 2007/2008

AES (VIII)

The Mix-Column operation on each 4-octet column:

Table lookup
expands each

octet to a
4-octet column

This operation computes a new 4-octet column

⊕

⊕
⊕
⊕

⊕
⊕
⊕

⊕
⊕

⊕
⊕
⊕

8

Prof. Shlomo Kipnis 43 Fall 2007/2008

AES (IX)

Inverse AES:

XOR – ⊕ – is its own inverse

Since the S-box is a permutation – there is an inverse S-Box. The
inverse S-box substitution can be implemented as a table lookup.

Inverses of the row and column rotations are rotations in the
opposite directions.

The inverse of the Mix-Column operation is the Inv-Mix-Column
operation that can be implemented as another table lookup.

Prof. Shlomo Kipnis 44 Fall 2007/2008

AES (X)

Key Expansion:

Arrange the initial 4Nk octet key as Nk columns of 4 octets each.
This is key-set number 0.

Iteratively generate the next key-sets. Each key-set consists of
Nk columns and is derived from the previous key-set.

Key-set number i is generated as follows:

Column 0 is obtained by rotating the last column of key-set i-1
upward one cell, applying the S-box to each octet, and XORing
the first octet with a constant Ci (which is based on i).

Other columns are generated by XORing the previous column in
key-set number i with the corresponding column in key-set
number i-1.

Prof. Shlomo Kipnis 45 Fall 2007/2008

AES (XI)

Key Expansion

⊕ ⊕

Set i-1

Set i

⊕

S
S
S
S

⊕

Ci

Prof. Shlomo Kipnis 46 Fall 2007/2008

AES (XII)

AES Operation:

Can be implemented with table lookup operations,
instead of multiplications and additions of polynomials

Round transformations of AES can be parallelized

AES can be efficiently implemented over a wide range of
platforms:

hardware (8051, 68xxx, Pentium)

software (ANSI C and Java over 32-bit processors)

AES has been tested and found resilient against all
known cryptanalysis techniques

Prof. Shlomo Kipnis 47 Fall 2007/2008

Mathematics of AES (I)

One AES Field:

AES uses arithmetic over the field GF(28).

Each byte (octet) in AES represents an element in GF(28).

Bit-wise XOR of two octets in AES is the addition of corresponding
elements in GF(28).

A second application of bit-wise XOR (with the same value) achieves
the effect of subtracting.

AES defines an irreducible polynomial m(x) = x8+x4+x3+x+1 over Z2.
Multiplication of octets in AES is done by multiplying the polynomials
(which correspond to the octets) and taking modulo m(x). The result
also fits in an octet.

Prof. Shlomo Kipnis 48 Fall 2007/2008

Mathematics of AES (II)

One AES Field (continued):

The multiplication table of GF(28) is of size 256 x 256 = 65536 entries
of 1-octet each.

Luckily, AES requires multiplication only by six different constants,
which can be done by a much smaller table of size 256 x 6 = 1536
entries of 1-octet each.

Multiplicative inverses of the 255 elements (excluding the 0) are
obtained by a table lookup of size 255 entries of 1-octet each.

The constants Ci used in the key-expansion are defined to be:

Ci = xi-1 mod m(x). These constants are also kept in a table.

9

Prof. Shlomo Kipnis 49 Fall 2007/2008

Mathematics of AES (III)

Another AES Field:
AES also uses polynomials (of degree up to 3) with coefficients in
GF(28), that is, with 8-bit vectors as coefficients.

Addition of coefficients of these polynomials is bit-wise XOR of the
8-bit vectors.

For multiplication of these polynomials, the following degree-4
irreducible polynomial x4+1 over GF(28) is used.

Each of these polynomials is represented by a 4-octet column.

For these polynomials, multiplication by x is a left-cyclic rotation.

The Mix-Column operation is a multiplication by the fixed polynomial

c(x) = 03x3+01x2+01x+02. And, the Inv-Mix-Column operation is a

multiplication by the fixed polynomial d(x) = 0Bx3+0Dx2+09x+0E.
Prof. Shlomo Kipnis 50 Fall 2007/2008

Mathematics of AES (IV)

Yet Another AES Field:

AES also uses polynomials (of degree up to 7) with coefficients in Z2.

For these operations, the irreducible polynomial x8+1 over Z2 is used.

The AES S-Box transformation consists of taking an octet (which is a
representation of a polynomial of degree at most 7) and doing:
- taking the multiplicative inverse modulo m(x) of the octet

- multiplying by x4+x3+x2+x+1 modulo x8+1

- adding x6+x5+x+1

The AES inverse S-Box consists of doing:

- multiplying by x6+x3+x modulo x8+1

- adding x2+1
- taking the multiplicative inverse modulo m(x) of the result

1

Prof. Shlomo Kipnis 1 Fall 2007/2008

Symmetric Cryptography III

Prof. Shlomo Kipnis
November 14, 2007

Prof. Shlomo Kipnis 2 Fall 2007/2008

Encrypting Long Texts (I)

Message M is divided into L blocks, each consisting of
N bits: M = M1, M2, . . ., ML

Cipher C is constructed of L blocks, each consisting of
N bits: C = C1, C2, . . ., CL

Three modes of building the cipher blocks

ECB – Electronic Code Book

CTR – Counter Mode

CBC – Cipher Block Chaining

Prof. Shlomo Kipnis 3 Fall 2007/2008

Encrypting Long Texts (II)

ECB – Electronic Code Book

ENC

M1

K

C1

M2

C2

ENCK

ML

CL

ENCK

Each block is encrypted independently of the others

Encryption: Ci = EK(Mi)

Decryption: Mi = DK(Ci)
Prof. Shlomo Kipnis 4 Fall 2007/2008

Encrypting Long Texts (III)

ECB – Electronic Code Book

Advantages:

Simple implementation

Parallel encryption

Parallel decryption

Random Access to blocks

Disadvantages:

Identical blocks encrypt the same

No protection on order of blocks

No protection against block loss / change

Prof. Shlomo Kipnis 5 Fall 2007/2008

Encrypting Long Texts (IV)

CTR – Counter Mode

ENC

M1

K

C1

+1

ENC

M2

K

C2

+2

ENC

ML

K

CL

+L

Each block is encrypted independently of the others

Encryption: Ci = EK(Mi ⊕ i)

Decryption: Mi = DK(Ci) ⊕ i
Prof. Shlomo Kipnis 6 Fall 2007/2008

Encrypting Long Texts (V)

CTR – Counter Mode

Advantages:
Simple implementation

Parallel encryption

Parallel decryption

Random Access to blocks

Identical blocks encrypt differently

Some protection on order of blocks

Disadvantages:
No protection against block loss

Explicit synchronization is needed

2

Prof. Shlomo Kipnis 7 Fall 2007/2008

Encrypting Long Texts (VI)

CBC – Cipher Block Chaining

ENC

M1

K

C1

+IV

ENC

ML

K

CL

+

ENC

M2

K

C2

+

Each block is encrypted and decrypted as follows:

Encryption: Ci = EK(Mi ⊕ Ci-1)

Decryption: Mi = DK(Ci) ⊕ Ci-1
Prof. Shlomo Kipnis 8 Fall 2007/2008

Encrypting Long Texts (VII)

CBC – Cipher Block Chaining

Advantages:

Parallel decryption

Identical blocks encrypt differently

Protection on order of blocks

Implicit synchronization (blocks Ci and Ci-1 needed for Mi)

Using IV to randomize ciphertext

Disadvantages:

Serial encryption

Prof. Shlomo Kipnis 9 Fall 2007/2008

Encrypting Long Texts (VIII)

Attacks on Chaining Modes

Detecting similar ciphertext blocks in ECB mode

Dropping the last block of ciphertext in all modes

Rearranging ciphertext blocks in ECB and CTR modes

Changing certain bits in block of ciphertext in CBC mode

Prof. Shlomo Kipnis 10 Fall 2007/2008

CBC Message Authentication Code (I)

Computing MAC of a message with CBC-Mode:

ENC

M1

K’

C1

+IV

ENC

ML

K’

CL

+

ENC

M2

K’

C2

+

If key K’ is secret between sender and receiver – then
last block CL can serve as MAC

Note: Should use different keys for encryption and MAC

Prof. Shlomo Kipnis 11 Fall 2007/2008

CBC Message Authentication Code (II)

Computing MAC of a message with CBC-Mode:

CBC residue is dependant on all the plaintext blocks

Chance of 1/264 (in the case of DES) of changing the message
and getting the MAC right

MAC of 64 bits might be too weak – one might need to use MAC
of double the size (using two keys)

Option of computing the CBC residue of the plaintext, and then
encrypting it with another key

Prof. Shlomo Kipnis 12 Fall 2007/2008

Encrypting Long Texts with 3-DES (I)

Outside Chaining

DEC

M1

K1

C1

+IV

ENC

ENC

K2

K3

DEC

M2

K1

C2

+

ENC

ENC

K2

K3

DEC

ML

CL

+

ENC

ENC

K1

K2

K3

3

Prof. Shlomo Kipnis 13 Fall 2007/2008

Encrypting Long Texts with 3-DES (II)

Inside Chaining
M1

K1

C1

+IV1

ENC

K2 DEC

K3 ENC

+IV2

+IV3

M2

C2

DEC

ENC

K1

+

ENC

K2

K3

+

+

ML

K1

CL

+

ENC

K2 DEC

K3 ENC

+

+

Prof. Shlomo Kipnis 14 Fall 2007/2008

Encrypting Long Texts with 3-DES (III)

Outside Chaining

Attack of changing certain bits in the ciphertext to cause
specific changes in the plaintext is still valid

Slower by a factor of 3 and cannot be pipelined

Maintains the self-synchronization property

Better treated as a “black box” for purposes of different
chaining modes

Widely used in practice

Prof. Shlomo Kipnis 15 Fall 2007/2008

Encrypting Long Texts with 3-DES (IV)

Inside Chaining

Attack of changing certain bits in the ciphertext to cause
specific changes in the plaintext is not valid

Slower by a factor of 3 but can be pipelined

Does not maintain the self-synchronization property

Chaining and composition modes need to get into the
“black box”

Used less in practice

Prof. Shlomo Kipnis 16 Fall 2007/2008

Stream Ciphers

Stream Ciphers:

Plaintext is handled in small groups of bits (typically 1 or 8 each
time) and the encryption transformation maintains memory (state)
between encryption steps

Linear Feedback Shift Registers

Output Feedback Mode

Cipher Feedback Mode

RC4

A5

Prof. Shlomo Kipnis 17 Fall 2007/2008

Linear Feedback Shift Registers (I)

LFSR – Linear Feedback Shift Register

f

Feedback
bit

Output
bit

Generation of pseudo random bits

Dependency on initial value

Length of cycle depends on function f and on length n

b1b2b3b4b5bn

Prof. Shlomo Kipnis 18 Fall 2007/2008

Linear Feedback Shift Registers (II)

Cycle length:
Maximal cycle length is 2n-1

Mostly used function is XOR

To obtain a maximal cycle – the polynomial formed from the tap
sequence plus the constant 1 must be a primitive polynomial
modulo 2.
(The polynomial must divide X2n-1+1 but not other Xd+1 for any
d that divides 2n-1.)

Example:

The polynomial X32+ X7+X5+ X3+X2+X+1 is a primitive
polynomial modulo 2.

Therefore, the 32-bit LFSR that XOR’s bits 32, 7, 5, 3, 2, and 1
cycles through all the 232–1 states.

4

Prof. Shlomo Kipnis 19 Fall 2007/2008

Linear Feedback Shift Registers (III)

Most early stream ciphers were based on LFSR’s

LFSR’s are still in wide use today in military and in
civilian applications

Many systems combine several LFSR’s to increase the
complexity and to reduce the correlation of bits

For an LFSR to be cryptographically secure, it must use
many bits in the shift register (i.e., the polynomial must
be ‘dense’)

LFSR’s can be made to be very fast in hardware

LFSR’s are slow in software

Prof. Shlomo Kipnis 20 Fall 2007/2008

Output Feedback Mode (I)

OFM – Output Feedback Mode

Block encryption algorithm is
used to generate a pad

ENCK

+
M C

Pad is used to XOR with bits
of incoming message M

When pad bits are exhausted,
the output register is fed into
the input register, and another
cycle of encryption is performed

Prof. Shlomo Kipnis 21 Fall 2007/2008

Output Feedback Mode (II)

Specified as one of the
operation modes of DES

Can be used with any
encryption algorithm

Input register is initially
loaded with an IV

IV is transmitted between
the parties at the beginning
of the communication

Feedback can be full size of
output register or only b bits

ENC

+
M C

K

Prof. Shlomo Kipnis 22 Fall 2007/2008

Output Feedback Mode (III)

Advantages:
OFM is a Finite Automaton with
internal feedback

Easy to analyze

Offline preparation of pad bits

Fast online performance

Disadvantages:
Pad is not dependant on
input bits

Explicit synchronization is needed
in cases of communication loss

Bit positions can be switched

ENC

+
M C

K

Prof. Shlomo Kipnis 23 Fall 2007/2008

Cipher Feedback Mode (I)

+
M C

ENCK

CFM – Cipher Feedback Mode

Block encryption algorithm is
used to generate a pad

Pad is used to XOR with bits
of incoming message M

When pad bits are exhausted,
cipher bits are fed into the
input register, and another
cycle of encryption is performed

Prof. Shlomo Kipnis 24 Fall 2007/2008

Cipher Feedback Mode (II)

ENC

+
M C

K

Specified as one of the
operation modes of DES

Can be used with any
encryption algorithm

Input register is initially
loaded with an IV

IV is transmitted between
the parties at the start of
the communication

Feedback can be full size of
output register or only b bits

5

Prof. Shlomo Kipnis 25 Fall 2007/2008

Cipher Feedback Mode (III)

ENC

+
M C

K

Advantages:
Pad is dependant on input bits

Synchronization is implicit

Automatic recovery from
communication errors

More resistant to attacks

Disadvantages:
Cannot generate long pads
in advance

Online performance is less
than that of OFM

Prof. Shlomo Kipnis 26 Fall 2007/2008

RC4 (I)

Developed by Rivest in 1994

Kept as a trade secret (but leaked)

Key can be between 1 and 256 bytes

Used as a simple and fast generator of pseudo-random
sequences of bytes (to be used as “one-time-pad”)

Should discard first 256 bytes of generated pad

Passes all usual randomness tests

Prof. Shlomo Kipnis 27 Fall 2007/2008

RC4 (II)

Code for RC4 – state initialization:

static unsigned char state[256], x, y;
void rc4init(key, length)

unsigned char *key;
unsigned short length;
{

int i;
unsigned char t, j, k=0;

for (i=256; i--;)
state[i] = i;

for (i=0, j=0; i<256; i++, j=(j+1) % length)
t = state[i], state[i] = state[k += key[j] + t], state[k] = t;

x = 0;
y = 0;

}
Prof. Shlomo Kipnis 28 Fall 2007/2008

RC4 (III)

Code for RC4 – generation of pad:

unsigned char rc4step()
{

unsigned char t;

t = state[y += state[++x], state[y] = state[x], state[x] = t;
return(state[state[x] + state[y]]);

}

Prof. Shlomo Kipnis 29 Fall 2007/2008

A5

The stream cipher used in GSM phones:

Held in confidence but leaked

Papers and code available on Internet

Includes 3 LFSR (of sizes 19, 22, and 23 bits)

Each register is clocked separately

There is an attack requiring O(240) encryptions:

Guess content of first two LFSR’s

Determine third LFSR from the keystream

Overall design of A5 is good

Weaknesses can be overcome with longer registers

Prof. Shlomo Kipnis 30 Fall 2007/2008

Summary

The design of a good encryption algorithm is not a
simple task; it is better to leave this task to skilled
cryptographers

There are many good commercial algorithms from which
one may select

Today’s keys are long enough (128 / 192 / 256 bits) to
overcome all known attacks

One may compose several algorithms, and the result will
probably be strong

Use algorithms with care

1

Prof. Shlomo Kipnis 1 Fall 2007/2008

Authentication and Integrity

Prof. Shlomo Kipnis
November 19, 2007

Prof. Shlomo Kipnis 2 Fall 2007/2008

Authenticity and Integrity Attacks

Source Impersonation / Source Spoofing

Message Injection / Message Fabrication

Message Modification / Message Alteration

Message Re-Sequencing / Message Re-Ordering

Message Re-Timing / Message Replaying

Message Repudiation / Transaction Denying

Prof. Shlomo Kipnis 3 Fall 2007/2008

Authentication and Integrity Services

Identity Authentication – proving the identity of an
entity in a conversation

Source Authentication – proving that a message has
indeed arrived from the claimed source

Message Authentication – proving that the content of
the received message was not altered

Sequence Authentication – proving order of messages

Timing Authentication – proving timeliness of messages

Message Signing – proving to a third-party that some
message was indeed sent by a known entity

Prof. Shlomo Kipnis 4 Fall 2007/2008

Authentication Functions

Creating an authenticator for a particular type of
authentication service may involve functions of:

Entity Name / Message / Text

Time Stamp / Sequence Number / Random Value

Symmetric Secret Key / Asymmetric Private Key

The sender computes and sends the authenticator as
part of / in addition to the regular message

The recipient compares the received authenticator with
the expected authenticator

Prof. Shlomo Kipnis 5 Fall 2007/2008

Authentication Methods

Authentication by Encryption – using encryption functions
with secret keys:

Symmetric: key shared between sender and receiver

Asymmetric: private key by sender / public key by receiver

Authentication by MAC – using MAC functions of the text
and secret keys:

Symmetric: key shared between sender and receiver

Authentication by Hash – using hash functions and
involving secret keys in the computations:

Symmetric: key shared between sender and receiver

Asymmetric: private key by sender / public key by receiver

Prof. Shlomo Kipnis 6 Fall 2007/2008

Authentication by Symmetric Encryption

A encrypts message M and some control data using
algorithm ENC with symmetric key K to obtain cipher C

B decrypts cipher C using algorithm DEC with
symmetric key K to obtain message M and control data

B checks control data and outputs a Yes / No answer

ENC DEC
M + control data M + control dataC

K KA B

Yes / No

2

Prof. Shlomo Kipnis 7 Fall 2007/2008

Authentication by Asymmetric Encryption

A encrypts message M and some control data using
algorithm ENC and private key Prv(A) to obtain cipher C

B decrypts cipher C using algorithm DEC with public key
Pub(A) to obtain message M and control data

B checks control data and outputs a Yes / No answer

ENC DEC
M + control data

Yes / No

C

Pub(A)Prv(A)
A B

M + control data

Prof. Shlomo Kipnis 8 Fall 2007/2008

Authentication by Encryption

“Symmetric Encryption” and “Asymmetric Encryption”
provide source authenticity and message integrity

Both methods provide also secrecy of the messages

Recipient can check whether meaningful message and
control data are obtained after decryption

Changes to cipher are likely to result in meaningless
message and control data

Prof. Shlomo Kipnis 9 Fall 2007/2008

Authentication by Encryption – Requirements

Valid messages must be “sparse” in the domain of all
possible messages. (Otherwise, it will be easy to
generate a cipher that will decrypt to a valid message.)

Valid messages must be “distinguishable” from non-valid
messages. (Otherwise, any random cipher will decrypt to
a valid message.)

Valid messages must be “automatically” distinguishable
from non-valid messages. This can be done by adding
some control data and message formats.

Control data may contain tags, time stamps, sequence
numbers, format fields, etc.

Prof. Shlomo Kipnis 10 Fall 2007/2008

Authentication by Encryption – Properties

Achieves secrecy, authenticity, and integrity in one
operation

Requires automatic distinguishability between valid
messages and non-valid messages

Requires full decryption of the message in order to
determine authenticity and integrity

Requires heavy calculations of the encryption functions
(which may be too costly if secrecy is not needed)

The authenticator is as long as the encrypted message
(which may be problematic for large messages)

Prof. Shlomo Kipnis 11 Fall 2007/2008

Authentication by MAC

A computes a Message Authentication Code (MAC) for
message M using algorithm AUTH with symmetric key K
to obtain the code Y

B uses algorithm VER with symmetric key K to verify
that code Y is indeed the MAC of message M

B outputs a Yes / No answer

AUTH VER
M MM

K KA B

Y = f(M,K) Yes / No

Prof. Shlomo Kipnis 12 Fall 2007/2008

One-Time MAC – Reminder

Large prime P

Message M with numeric value between 1 and P-1

Key K is a pair of random numbers, a and b, such that:
0 < a , b < P

Key K is used only once

Message Authentication Code (MAC) is:
Y = f(M, K) = a•M+b (mod P)

MAC is computed by the sending party (who knows K)

MAC is verified by the receiving party (who knows K)

3

Prof. Shlomo Kipnis 13 Fall 2007/2008

One-Time-MAC – Practicality Issues

One-Time MAC (OTM) is 100% secure, with a
mathematical proof to back this claim

Use of OTM is limited due to the need to negotiate a
new, long, random one-time key for every authentication

OTM is the ultimate authentication scheme, and it can
provide a reference point for authentication

OTM may be used in highly-critical environments, where
key negotiation and distribution can be handled using
off-line channels

Prof. Shlomo Kipnis 14 Fall 2007/2008

Authentication by MAC

MAC should be a fixed-size code that is appended to the
message; typical sizes of MAC range from 64 to 256 bits

Message can be sent in the clear without encryption

No need to add control data to the message in order to
protect it

MAC is a function of the message and a secret key

MAC should not be reversible

The strength of the MAC depends on the function and
on the secrecy of the key

Prof. Shlomo Kipnis 15 Fall 2007/2008

Authentication by MAC – Properties

MAC can be computed quickly by both the sender and
the receiver

MAC need not be computed by the receiver on all the
received messages; it may be computed only on some
selected messages

MAC need not be computed by the receiver when the
message is received; it may be computed later

MAC is much smaller than the message; it can be stored
for later reference and use

Knowledge of the MAC does not endanger the message

Prof. Shlomo Kipnis 16 Fall 2007/2008

Authentication by MAC – Requirements

All the possible MAC’s should be equally probable;
that is, the appearance probability of a particular n-bit
MAC should be 2-n

The probability that the n-bit MAC’s of two different
messages M1 and M2 will be the same should be 2-n

Given a message M and its MAC Y, it should infeasible
for an attacker (who doesn’t know the key K) to find
another message M’ with the same MAC Y

Having seen the MAC’s Y1, Y2, . . ., YL of some (known or
chosen) messages M1, M2, . . ., ML, it should be infeasible
for an attacker to find the MAC of a new message M’

Prof. Shlomo Kipnis 17 Fall 2007/2008

Authentication by MAC – Bad Example

Divide message M into L blocks of n bits each:
M = M1, M2, . . ., ML

Let K be a key of the encryption algorithm E

Let X(M) = M1 ⊕ M2 ⊕ . . . ⊕ ML

(that is, the bit-wise XOR of the L blocks)

Let MACK(M) = EK(X(M))
(that is, the encryption with algorithm E and key K of the
result of the bit-wise XOR of the L blocks of M)

It is easy to forge MAC’s with this scheme (change order
of blocks, change corresponding bits in two blocks, etc.)

Prof. Shlomo Kipnis 18 Fall 2007/2008

CBC-MAC Authentication

Divide message M into L blocks of size n bits each:
M = M1, M2, . . ., ML

Let K be a key of the encryption algorithm E

Let C0 = IV be a random block of n bits

Let Ci = EK(Mi ⊕ Ci-1) for i = 1, 2, . . ., L
(that is, the L+1 blocks C0, C1, . . ., CL are the CBC
encryption with algorithm E and key K of message M)

Let MACK(M) = (C0, CL) = (IV, CBC-MAC-EK(M)) :
that is, the first and last blocks of CBC encryption

4

Prof. Shlomo Kipnis 19 Fall 2007/2008

CBC-MAC Authentication – Properties

CBC-MAC computations are simple and efficient
(depending on the encryption algorithm)

The CBC-MAC depends on all the L blocks of the message
in a similar manner

The CBC-MAC is uniformly distributed over the 2n output
blocks of n-bits

The CBC-MAC is hard to forge given only the random IV
and the last block CL

Prof. Shlomo Kipnis 20 Fall 2007/2008

CBC – Encryption and Authentication

Question: What about using CBC both for encrypting a
message and for authentication it?
If M = M1, M2, . . ., ML and Ci = EK(Mi ⊕ Ci-1),
then use C = IV, C1, C2, . . ., CL as the encryption of M,
and use the last block CL as the MAC of M

Answer: Not good if encryption and authentication use
same key K – attacker can truncate the message to get
M’ = M1, M2, . . ., ML-1 and send C’ = IV, C1, C2, . . ., CL-1
as the cipher and send (IV, CL-1) as the MAC

Answer: Good if encryption and authentication use two
independent keys K and K’ – compute IV, C1, C2, . . ., CL
with key K and compute MAC (IV’, C’L) with key K’

Prof. Shlomo Kipnis 21 Fall 2007/2008

Problem: Consider a 1-block message M = M1 that is fed
into a CBC-MAC scheme with a key K and an arbitrary IV.
The output will be MACK(M) = (IV, C1). An attacker can
create the following 2-block message M’ = M1, M2, where

the new block M2 is defined by M2 = IV ⊕ M1 ⊕ C1.
Then, we get MACK(M) = MACK(M’) = (IV, C1).

Generalized Problem: Let message M = M1, M2, . . ., ML

and let message M’ = M’1, M’2, . . ., M’T. An attacker can
“combine” messages M and M’ into a new message for
which the attacker will have the MAC. (Specific details of
the construction are left as exercise.)

CBC-MAC Authentication – Issues

Prof. Shlomo Kipnis 22 Fall 2007/2008

Solution: Include the length L in blocks of the message M
in the MAC computation – MACK(“L,M”) = (IV, C*).
This will not allow “extending” or “combining” messages to
form new and longer messages.

Bad Solution: C* is last block of the CBC-MAC of the new
message M || L (that is, L+1 blocks consisting of the L
blocks of M and one more block containing the value L).

Good Solution: C* is last block of the CBC-MAC of the new
message L || M (that is, L+1 blocks consisting of one block
containing the value L followed by the L blocks of M).

CBC-MAC Authentication – Solutions

Prof. Shlomo Kipnis 23 Fall 2007/2008

Authentication by Symmetric Hash

A computes a hash H() on the value of some function g()
of the message M and of the symmetric key K

B also computes the hash H() on the value of function g()
of the message M and of the symmetric key K.

B compares the resultant hash value with the received
hash value, and outputs a Yes / No answer

H ° g H ° g
M MM

K KA B

H(g(M,K)) Yes / No

Prof. Shlomo Kipnis 24 Fall 2007/2008

Authentication by Hash – Properties

Construction is similar to “Authentication by MAC”

Hash functions are more efficient than MAC functions

Hash functions do not require the use of encryption
functions

Hash functions are standard and are freely available

Hash functions are not reversible (by definition)

The strength of the MAC depends on the hash function
and on the secrecy of the key

5

Prof. Shlomo Kipnis 25 Fall 2007/2008

Hash Functions – Requirements

Operability:
H() should work on any input length

H() should produce output of fixed size

H() should be easy to compute

Security:
One-way – given value y it is hard to find value X
such that Y = H(X)
Weak Collision Resistance – given value X1 it is hard to
find another value X2 such that H(X1) = H(X2)
Strong Collision Resistance – it is hard to find two
different values X1 and X2 such that H(X1) = H(X2)

Prof. Shlomo Kipnis 26 Fall 2007/2008

Authentication by Hash – Constructions

Hash functions H() are functions of one argument

Most hash functions H() use some chaining mode of the
blocks of their argument

Several alternatives for H°g:

H°g(M,K) = H(K || M) – may not be good because K is
only involved at the beginning of the message M

H°g(M,K) = H(M || K) – may not be good because K is
only involved at the end of the message M

H°g(M,K) = H(K || M || K) – seems like a good scheme
because K wraps the message M

Prof. Shlomo Kipnis 27 Fall 2007/2008

Authentication by Hash – HMAC

HMACK(M) is a scheme to create a MAC of a message M
using a hash function H() and a secret key K

K+ = K padded with zeros to the left

ipad = 00110110 repeated to fill block

opad = 01011010 repeated to fill block

HMACK(M) = H((K+ ⊕ opad) || H((K+ ⊕ ipad) || M))
Pad K and XOR with ipad to produce Si (first ”random” key)

Append M to Si and apply H() to them

Pad K and XOR with opad to produce So (second ”random” key)

Append result of first hash to So and apply H()

Prof. Shlomo Kipnis 28 Fall 2007/2008

Authentication by Asymmetric Signature

A computes a hash function H() of the message M.
A signs the hash value with the asymmetric key Prv(A).

B also computes a hash function H() of the message M.
B verifies the signature of A on H(M) using the
asymmetric key Pub(A).

B outputs a Yes / No answer.

SIGN + H VER + H
M

Yes / No

M

Pub(A)Prv(A)
A B

M

S(H(M),Prv(A))

Prof. Shlomo Kipnis 29 Fall 2007/2008

Authentication by Signature – Properties

Hash function reduces the size of the message from an
arbitrary length to a fixed length (usually between 128
and 256 bits)

The signature function operates on a fixed-length input

Hash functions are fast and efficient on all texts

Signature functions are slow and inefficient for long texts

Strength of the scheme depends on the hash function, on
the signature function, and on the secrecy of the key

Scheme also provides non-repudiation
Prof. Shlomo Kipnis 30 Fall 2007/2008

Signature Functions – Requirements

Hash function H() should be:
One-way

Weak Collision Resistance

Strong Collision Resistance

Signature function and verification function should be
efficient

Signature should be difficult to forge

Public key should be known to all parties wishing to
authenticate the source / message

Private key should be kept in strict confidence only at
the source

1

Prof. Shlomo Kipnis 1 Fall 2007/2008

Hash Functions

Prof. Shlomo Kipnis
November 21, 2007

Prof. Shlomo Kipnis 2 Fall 2007/2008

Hash Functions

Hash function generates a small identifier of a large
object (number, message, file, document, etc.)

Identifier is used to identify / authenticate / hide /
scramble / sign / verify the original object

Common Names:

Hash Value

Message Digest

Fingerprint

Checksum

Notice: Hash function does not use a key

Prof. Shlomo Kipnis 3 Fall 2007/2008

Cryptographic Hash Functions

Hash function maps from the very large message space to
the relatively small hash values space

It should be difficult to reverse the hash function

It should be difficult to find collisions of the hash function

Source
Space Target

Space
H

Prof. Shlomo Kipnis 4 Fall 2007/2008

Crypto Hash Functions – Uses

Object identifiers

Authentication Protocols

Commitment Protocols

Symmetric Encryption

Symmetric MAC’s

Asymmetric Signatures

Prof. Shlomo Kipnis 5 Fall 2007/2008

Object Identifiers with Hash (I)

Object Digest

Computing hash of files / documents / emails

Keeping the hash values in a secure place

Files / documents / emails may reside in non-secure
places

Before using an object, the system computes a hash of
the object and compares it with the stored hash

If the hash values do not match – the object was
probably changed in an unauthorized manner

Prof. Shlomo Kipnis 6 Fall 2007/2008

Object Identifiers with Hash (II)

A: H(A)
B: H(B)
C: H(C)

Secure

Storage

Object
A

Compute H Compare

T / F

2

Prof. Shlomo Kipnis 7 Fall 2007/2008

Authentication Protocols with Hash (I)

Goal: A wishes to identify and authenticate himself to B

Infrastructure: A and B share a long-lived secret key K

Naive Authentication Protocol

A identifies himself to B

A sends to B hash of secret key K

B verifies hash of secret key K

Problem: Above protocol is subject to a “replay attack”

Prof. Shlomo Kipnis 8 Fall 2007/2008

Authentication Protocols with Hash (II)

A B

Secret K
A

Y Checks if indeed
Y = H(K)

Secret K

Computes
Y = H(K)

Prof. Shlomo Kipnis 9 Fall 2007/2008

Authentication Protocols with Hash (III)

Modified Authentication Protocol

A identifies himself to B

B sends to A a random number R

A sends to B hash of random number R and secret key K

B verifies hash of random number R and secret key K

Solution: This protocol is sound against sniffing and replay

Prof. Shlomo Kipnis 10 Fall 2007/2008

Authentication Protocols with Hash (IV)

A B

Secret K

Picks random
number R

A

R

Checks if indeed
Y = H(R,K)

Y

Secret K

Computes
Y = H(R,K)

Prof. Shlomo Kipnis 11 Fall 2007/2008

Commitment Protocols with Hash (I)

Goal: A and B wish to play “odd or even” over the network

Naive Commitment Protocol

A picks a number X and sends it to B

B picks a number Y and sends it to A

A wins if X+Y is odd

B wins if X+Y is even

Problem: How can we guarantee that B doesn’t cheat?

Prof. Shlomo Kipnis 12 Fall 2007/2008

Commitment Protocols with Hash (II)

A B

Picks number X

Picks number Y

X

Y

Wins if X+Y is odd Wins if X+Y is even

3

Prof. Shlomo Kipnis 13 Fall 2007/2008

Commitment Protocols with Hash (III)

Modified Commitment Protocol

A picks a number X and sends value of Z = H(X) to B

B picks a number Y and sends value of Y to A

A now sends value of X to B

B checks if X complies with Z that was sent before

A wins if X+Y is odd

B wins if X+Y is even

Solution: In this protocol B cannot cheat

Prof. Shlomo Kipnis 14 Fall 2007/2008

Commitment Protocols with Hash (IV)

A B

Picks number X
and computes

Z = H(X)

Picks number Y

Z

Y

Wins if X+Y is odd

Checks if indeed
Z = H(X)

X

Wins if X+Y is even

Prof. Shlomo Kipnis 15 Fall 2007/2008

Commitment Protocols with Hash (V)

Hash function does two things in the protocol:

Hides the number X from B at the beginning of the game

Makes A commit to the number X until the end of the game

Question: What if A always picks small numbers so that B
can make a list of all the hash values?

Answer: A should select random values for the protocol:

Select the number X from a very large space of numbers

Mask the number X with a random noise from a very large space

Prof. Shlomo Kipnis 16 Fall 2007/2008

Commitment Protocols with Hash (VI)

A B

Picks random
number X from a
very large space
and computes

Z = H(X)
Picks random

number Y from a
very large space

Z

Y

Wins if X+Y is odd

Checks if indeed
Z = H(X)

X

Wins if X+Y is even

Prof. Shlomo Kipnis 17 Fall 2007/2008

Encryption with Hash (I)

Goal: A and B wish to create a “Pseudo-One-Time-Pad”

Infrastructure: A and B share a long-lived secret key K

Generation of Pseudo-One-Time-Pad

A and B exchange random numbers

A and B compute a series of hash values of the random
numbers and the secret key to generate encryption pads

Parties can “encrypt” without an encryption function

Prof. Shlomo Kipnis 18 Fall 2007/2008

Encryption with Hash (II)

A B

Picks random R1

Picks random R2

R1

R2

Computes series
of pad values

P1 = H(K,R1,R2)
P2 = H(K,P1)
P3 = H(K,P2)

. . . .

Computes series
of pad values

P1 = H(K,R1,R2)
P2 = H(K,P1)
P3 = H(K,P2)

. . . .

Secret K Secret K

4

Prof. Shlomo Kipnis 19 Fall 2007/2008

MAC’s with Hash

Goal: A and B wish to create MAC’s of messages

Infrastructure: A and B share a long-lived secret key K

Message Authentication Code

A creates a random R

A computes the MAC of a message M as the hash of
message M, secret key K, and random R

A sends message M, random R, and value of MAC

B compares MAC with the expected value

Prof. Shlomo Kipnis 20 Fall 2007/2008

MAC’s with Hash (II)

A B

Picks random R

M, R, Y
Computes

Y = H(M,K,R)
Checks if

Y = H(M,K,R)

Secret K Secret K

Message M

Prof. Shlomo Kipnis 21 Fall 2007/2008

Signatures with Hash (I)

Goal: A wishes to sign messages for B

Infrastructure: A has private Prv(A) and B has public Pub(A)

Signature

A creates a random R

A signs message M by applying the signature function
(with Prv(A)) to the hash of message M and random R

A sends message M, random R, and value of signature

B verifies signature with Pub(A)

Prof. Shlomo Kipnis 22 Fall 2007/2008

Signatures with Hash (II)

A B

Picks random R

M, R, S
Computes

S = Sig(Prv(A),M,R)
Checks if

Ver(Pub(A),M,R)
returns T / F

Private Prv(A) Public Pub(A)

Message M

Prof. Shlomo Kipnis 23 Fall 2007/2008

Crypto Hash Functions – Requirements

Operability:
H() should work on any input length

H() should produce output of fixed size

H() should be easy to compute

Security:
One-way – given value y it is hard to find value X
such that Y = H(X)
Weak Collision Resistance – given value X1 it is hard
to find another value X2 such that H(X1) = H(X2)
Strong Collision Resistance – it is hard to find two
different values X1 and X2 such that H(X1) = H(X2)

Prof. Shlomo Kipnis 24 Fall 2007/2008

Hash Function – Bad Example I

Divide message M into L blocks of n bits each:
M = M1, M2, . . ., ML

Let E be an encryption algorithm, let K be a known key
for algorithm E (such as K=0), and let IV be a known
initial vector for algorithm E (such as IV=0)

Let H(M) be the last block of CBC-EK(M) with the known
K and the known IV

Problem: H is easy to inverse – since given some output
value Y, one can compute a message X = DK(Y) ⊕ IV

5

Prof. Shlomo Kipnis 25 Fall 2007/2008

Exhaustive Search Attack

Values produced by a good hash function should be
randomly spread over the target space

If hash function H produces an output of length n bits,
then collisions will be found after searching O(2n) input
values

Consequently – n should be large enough to reduce the
risk of finding collisions – n ≥ 100 seems good enough

Prof. Shlomo Kipnis 26 Fall 2007/2008

Hash Function – Bad Example II

Divide message M into L blocks of 56 bits each:
M = M1, M2, . . ., ML

Use the DES encryption algorithm as follows:
- Let P be a known text block (such as P=0)
- Let C0=IV be a known initial vector (such as IV=0)
- Let Ci be the value of DESMi(P ⊕ Ci-1) for i = 1, 2, …, L
- Define H(M) = CL – the last block of the encryption

Problem: Given message M = M1, M2, . . ., ML it is easy to
find another message M’ = M’1, M’2, . . ., M’T that will be
mapped to same CL by checking O(264) options for M’

Prof. Shlomo Kipnis 27 Fall 2007/2008

Birthday Paradox

Assume a target space Y with N possible outcomes

Assume a function F that maps input values from a
source space X to the target space Y with a uniform
distribution

Then, if R input values from the source space X are
picked at random, such that R ≥ 1.18 √N, then the
probability that two inputs map to the same output
value will be greater than ½

Example: if there are over 23 people in a room, then
the probability is greater than ½ that two people will
have the same birthday (out of 365 days in the year)

Prof. Shlomo Kipnis 28 Fall 2007/2008

Birthday Paradox – Proof

Let Q(N,T) be the probability that T independently
selected inputs from the source space X still do not
create any collision in the target space Y

Q(N,T) = 1 • (1 - 1/N) • (1 - 2/N) • . . . • (1 - (T-1)/N)

≤ e -1/N • e -2/N • . . . e -(T-1)/N

= e -(T-1)T/2N

Now, for values of T ≥ 1.18 √N, we get Q(N,T) < ½,
which means that the probability that a collision will
occur is greater than ½.

Prof. Shlomo Kipnis 29 Fall 2007/2008

Birthday Attack

Hash function H produces output of length n bits

Compose two documents – good doc and bad doc

Generate about √2n = 2(n/2) semantically-identical
variations of good doc

Generate about √2n = 2(n/2) semantically-identical
variations of bad doc

With probability at least ½ – there will be a pair of
good doc and bad doc with the same hash value

Signing the hash of good doc also signs bad doc

To escape the birthday attack – should select n ≥ 150

Prof. Shlomo Kipnis 30 Fall 2007/2008

Hash Function – Bad Example III

Divide message M into L blocks of 128 bits each:
M = M1, M2, . . ., ML

Use the AES encryption algorithm as follows:
- Let H0 be a known 128-bit block (such as H0=0)
- Let Hi = AESMi(Hi-1) for i = 1, 2, …, L
- Define H(M) = HL – the last block of this process

Birthday Attack:
- Take message M = M1, M2, . . ., ML and compute H(M)
- Take message M’ = M1, M2, . . ., ML-2 and compute H(M’)
- Check O(264) options for ML-1 and compute AESML-1(HL-2)
- Check O(264) options for ML and compute AES-1

ML(HL)
- Collisions will be found with probability at least ½

6

Prof. Shlomo Kipnis 31 Fall 2007/2008

Practical Cryptographic Hash Functions

MD5 – generates outputs of 128 bits

SHA-1 – generates outputs of 160 bits

RIPMED – generates outputs of 160 bits

HMAC – a standard scheme for generating safe MAC’s
with a given hash function H

Prof. Shlomo Kipnis 32 Fall 2007/2008

Description of MD5

Works on blocks of 512 bits

Produces hash of length 128 bits

Input is padded to length 448 mod 512; and original
input length is written in last 64 bits

Each input block is processed by the compression
function – HMD5 – that works in four rounds:

use 128-bit state buffer ABCD, with initial known values

use lookup table, produced by ”sine” function, to map inputs

each round uses a different primitive logical function

at end of last round – add result to current value of ABCD

Prof. Shlomo Kipnis 33 Fall 2007/2008

Description of SHA-1

Works on blocks of 512 bits

Produces hash of length 160 bits

Input is padded to length 448 mod 512; and original
input length is written in last 64 bits

Each input block is processed by the compression
function – HSHA – that works in four rounds:

uses five-word state buffer ABCDE with initial known values,
producing 160-bit hash

More resilient to brute-force attacks than MD5

Less known vulnerabilities than MD5

Prof. Shlomo Kipnis 34 Fall 2007/2008

Schematics of MD5 & SHA-1

message pad

message length

Y0 Y1 Ym

512 bits

H H

MD5: 128-bit digest
SHA-1: 160-bit digest

128
160

512 512 512

128
160

128
160

H

len

Prof. Shlomo Kipnis 35 Fall 2007/2008

Description of HMAC

HMACK(M) is a scheme to create a MAC of a message
M using a hash function H() and a secret key K

K+ = K padded with zeros to the left

ipad = 00110110 repeated to fill block

opad = 01011010 repeated to fill block

HMACK(M) = H((K+ ⊕ opad) || H((K+ ⊕ ipad) || M))
Pad K and XOR with ipad to produce Si (first ”random” key)

Append M to Si and apply H() to them

Pad K and XOR with opad to produce So (second ”random” key)

Append result of first hash to So and apply H()

Prof. Shlomo Kipnis 36 Fall 2007/2008

HMAC Claims

There are formal proofs regarding HMAC security:

HMACK() with function H() is as secure as finding
collisions of the function H() when the key K is
unknown and the initial value IV is random

HMACK() with function H() is as secure as computing
the output of the compression function H() when the
key K is unknown and the initial value IV is random

HMACK() with function H() is not subject to birthday
attacks on the key K since, in effect, two different
keys KI and KO are used

1

Prof. Shlomo Kipnis 1 Fall 2007/2008

Algebra and Number Theory

Prof. Shlomo Kipnis
November 26, 2007

Prof. Shlomo Kipnis 2 Fall 2007/2008

Outline

Division

Common Divisors

Euclid’s GCD Algorithm

Modular Arithmetic

Groups and Subgroups

Solving Modular Equations

Chinese Remainders

Modular Powers

Fields

Polynomials

Galois Fields

Prof. Shlomo Kipnis 3 Fall 2007/2008

Division (I)

Definition: The set of integers is:
Z = { …, -2, -1, 0, 1, 2, … }

Definition: The set of natural numbers is:
N = { 0, 1, 2, … }

Definition: Let d and a be integers. We say that d divides a
if there exists an integer k such that a = kd. In this case, we
also say that d is a divisor of a and that a is a multiple of d.
The notation d | a is used to denote that d divides a.

Convention: Every integer divides 0.

Prof. Shlomo Kipnis 4 Fall 2007/2008

Division (II)

Observation: If d | a, then so does (-d) | a.

Convention: In writing d | a, we assume that d is positive.

Observation: A divisor of a is at least 1 and at most |a|.

Example: The divisors of 24 are 1, 2, 3, 4, 6, 8, 12, and 24.

Observation: Every integer a is divisible by the two
trivial divisors 1 and |a|.

Definition: Non-trivial divisors of a are called factors of a.

Example: The factors of 20 are 2, 4, 5, and 10.

Prof. Shlomo Kipnis 5 Fall 2007/2008

Division (III)

Definition: An integer p ≥ 2 is called a prime if it is divisible
only by 1 and by itself (that is, it has no factors).

Theorem: There are infinitely many primes.

Definition: An integer a > 1 that is not a prime is said to
be a composite number.

Convention: Integer 1 is said to be a unit (neither a prime
nor a composite).

Convention: The negative integers and 0 are considered
neither prime nor composite.

Prof. Shlomo Kipnis 6 Fall 2007/2008

Division (IV)

Division Theorem: For any integer a and for any positive
integer n, there are two unique integers q and r, such that
0 ≤ r < n and a = qn + r.

Notation: The value q is called the quotient of the division.

Notation: The value r is called the residue or remainder of
the division, and we write r = a mod n.

Definition: For two integers a and b, and for any positive
integer n, if n | (a-b) (that is, a mod n = b mod n, which means
that a and b have the same residue modulo n), then we say
that a is congruent to b modulo n, and we write a ≡ b (mod n).

2

Prof. Shlomo Kipnis 7 Fall 2007/2008

Division (V)

Definition: For any positive integer n, the integers can be
divided into n equivalence classes according to their residues
modulo n:

[a]n = { a + kn : k ∈ Z }

Definition: The collection of all the n equivalence classes of
the residues modulo n is called Zn:

Zn = { [a]n : 0 ≤ a ≤ n-1 }

Observation: If we represent each [a]n by its least
nonnegative element, then we get:

Zn = { 0, 1, …, n-1 }
Prof. Shlomo Kipnis 8 Fall 2007/2008

Common Divisors (I)

Definition: If d is a divisor of a and d is also a divisor of b,
then d is called a common divisor of a and b.

Example: All the common divisors of 24 and 30 are
1, 2, 3, and 6.

Observation: If d | a and d | b, then d | (a+b) and d | (a-b).

Observation: If d | a and d | b, then d | (ax+by) for any
integers x and y.

Observation: If a | b, then either |a| ≤ |b| or b=0.

Observation: If a | b and b | a, then |a| = |b|.

Prof. Shlomo Kipnis 9 Fall 2007/2008

Common Divisors (II)

Definition: The greatest common divisor of two integers
a and b, not both zero, is the largest of the common divisors
of a and b, and it is denoted by gcd(a, b).

Examples: gcd(24, 30) = 6
gcd(15, 7) = 1
gcd(0, 9) = 9

Observation: If a and b are both not zero, then gcd(a, b) is
an integer between 1 and min(|a|, |b|).

Definition: gcd(0, 0) = 0.

Prof. Shlomo Kipnis 10 Fall 2007/2008

Common Divisors (III)

Observations: gcd(a, b) = gcd(b, a)
gcd(a, b) = gcd(-a, b)
gcd(a, b) = gcd(|a|, |b|)
gcd(a, 0) = |a|
gcd(a, ka) = |a| for any k ∈ Z

GCD Characterization Theorem: If a and b are any
integers, not both zero, then gcd(a, b) is the smallest positive
element of the set LC(a, b) = { ax+by : x, y ∈ Z } of linear
combinations of a and b.

Prof. Shlomo Kipnis 11 Fall 2007/2008

Common Divisors (IV)

Proof of GCD Characterization Theorem:

Let s be the smallest positive element of the set LC(a, b).

Let s = ax+by for some x, y ∈ Z.

Let the unique residual representation of a modulo s be a = qs + r.

Then, a mod s = r
= a – qs
= a – q(ax+by)
= a(1 – qx) + b(-qy) ,

so – (a mod s) is also in the set LC(a, b).

However, since (a mod s) < s , we must have (a mod s) = 0.

Therefore – s | a.

Similarly – s | b.
Prof. Shlomo Kipnis 12 Fall 2007/2008

Common Divisors (V)

Proof of GCD Characterization Theorem (continued):
Therefore, s is a common divisor of a and b.

Therefore, we must have s ≤ gcd(a, b).

However, in general – since gcd(a, b) | a and gcd(a, b) | b – we must
have that gcd(a, b) | s (since s is a linear combination of a and b).

Now, if gcd(a, b) | s and s > 0, then we must have that gcd(a, b) ≤ s.

We now have s ≤ gcd(a, b) and gcd(a, b) ≤ s.

This implies that gcd(a, b) = s.

Therefore, the greatest common divisor of a and b is the smallest
positive linear combination of a and b.

QED.

3

Prof. Shlomo Kipnis 13 Fall 2007/2008

Common Divisors (VI)

Corollary: For any integers a and b, if d | a and d | b,
then d | gcd(a, b).

Proof:
According to the GCD Characterization Theorem, gcd(a, b) is a linear
combination of a and b. And – any common divisor d of a and b must
also divide every linear combination of a and b.

Corollary: For any integers a and b and any nonnegative
integer n, we have gcd(an, bn) = n gcd(a, b).

Proof:
If n = 0, the corollary is immediately true. If n > 0, then gcd(an, bn) is
the smallest positive element of the set {anx+bny}, which is n times
the smallest positive element of the set {ax+by}.

Prof. Shlomo Kipnis 14 Fall 2007/2008

Common Divisors (VII)

Fundamental Theorem of Arithmetic: For all positive
integers d, a, and b, if d | ab and gcd(a, d) = 1, then d | b.

Proof:

Since d | ab, there exists integer k such that ab = kd.

Since gcd(a, d) = 1, there exist integers x and y such that ax + dy = 1.

By manipulating, we get b = (kx + yb) d, which implies that d | b.

Definition: Two integers a and b are relatively prime if
their only common divisor is 1, that is, if gcd(a, b) = 1.

Examples: gcd(8, 15) = 1.

Prof. Shlomo Kipnis 15 Fall 2007/2008

Common Divisors (VII)

Theorem: For any integers a, b, and p, if both gcd(a, p) = 1
and gcd(b, p) = 1, then gcd(ab, p) = 1.

Proof:

By the GCD Characterization Theorem, there exist x, x’, y, y’,
such that ax + py = 1 and bx’ + py’ = 1.

By multiplying, we get ab(xx’) + p(ybx’+y’ax+pyy’) = 1.

This linear combination of ab and p implies that gcd(ab, p) = 1.

Definition: Integers n1, n2, …, nk are said to be pairwise
relatively prime if, for all i ≠ j, we have gcd(ni, nj) = 1.

Prof. Shlomo Kipnis 16 Fall 2007/2008

Common Divisors (VIII)

Theorem: For all primes p and all integers a and b,
if p | ab, then p | a or p | b (or both).

Proof:
Assume that p divides ab, but p doesn’t divide a and p doesn’t divide b.

Since p is prime, its only divisors are 1 and p.

Thus, gcd(a, p) = 1 and gcd(b, p) = 1. And, by previous theorem,
gcd(ab, p) = 1, which contradicts the assumption that p divides ab.

Unique Factorization Theorem: A composite a can be
written in exactly one way as a product of the form:

a = p1
e1 p2

e2 … pr
er

where p1 < p2 < … < pr are primes, and ei are positive integers.

Prof. Shlomo Kipnis 17 Fall 2007/2008

Euclid’s GCD Algorithm (I)

Observation: Discussion can be restricted to nonnegative
integers (since gcd(a, b) = gcd(|a|, |b|)).

Observation: If a = p1
e1 p2

e2 … pr
er and b = p1

f1 p2
f2 … pr

fr ,

where p1 < p2 < … < pr are prime, and ei and fi are nonnegative,
then gcd(a, b) = p1

min(e1, f1) p2
min(e2, f2) … pr

min(er, fr).

Proof:

Left as exercise.

Problem: Above technique requires factoring the numbers
a and b, which is a hard problem by itself.

Prof. Shlomo Kipnis 18 Fall 2007/2008

Euclid’s GCD Algorithm (II)

GCD Recursion Theorem: For any nonnegative integer a
and positive integer b, we have gcd(a, b) = gcd(b, (a mod b)).

Proof:
We show that d = gcd(a, b) and e = gcd(b, (a mod b)) divide one another.

Let d = gcd(a, b), then d | a and d | b.

Now, (a mod b) = a – qb, for some q, which is a linear combination
of a and b. This implies that d | (a mod b).
Since d | b and d | (a mod b), it follows that d | gcd(b, (a mod b)).
Let e = gcd(b, (a mod b)), then e | b and e | (a mod b).
Now, a = qb + (a mod b), for some q, which is a linear combination
of b and (a mod b). This implies that e | a.
Since e | a and e | b, it follows that e | gcd(a, b).
Since d | e and e | d, we have gcd(a, b) = d = e = gcd(b, (a mod b)).

4

Prof. Shlomo Kipnis 19 Fall 2007/2008

Euclid’s GCD Algorithm (III)

Euclid’s Algorithm:

Euclid(a, b)
1 if (b=0)
2 then return a
3 else return Euclid(b, (a mod b))

Example: Euclid(30, 21) =
Euclid(21,9) =
Euclid(9, 3) =
Euclid(3, 0) =
3

Prof. Shlomo Kipnis 20 Fall 2007/2008

Euclid’s GCD Algorithm (IV)

Running Time: Worst case for Euclid’s algorithm appears
when the numbers a and b are Fibonacci numbers. In this
case, the running time of Euclid’s algorithm is logarithmic (in
base Φ = (1+√5)/2 – the Golden Ratio) in the size of a or b.
For other numbers, the running time is even lower.

Lemma: If a > b ≥ 0 and the invocation Euclid(a, b) makes
k ≥ 1 recursive calls, then a ≥ Fk+2 and b ≥ Fk+1.

Proof: (by induction on k)

Lamé’s Theorem: For any integer k ≥ 1, if a > b ≥ 0 and
b < Fk+1, then the call to Euclid(a, b) makes less than k calls.

Prof. Shlomo Kipnis 21 Fall 2007/2008

Euclid’s GCD Algorithm (V)

Extended Euclid’s Algorithm: Euclid’s algorithm can be
extended to compute the coefficients x and y, such that
d = gcd(a, b) = ax + by.

Extended-Euclid(a, b)
1 if (b=0)
2 then return (a,1, 0)
3 (d’, x’, y’) ← Extended-Euclid(b, (a mod b))
4 (d, x, y) ← (d’, y’, x’ – └a/b┘y’)
5 return (d, x, y)

Prof. Shlomo Kipnis 22 Fall 2007/2008

Euclid’s GCD Algorithm (VI)

Extended Euclid’s Algorithm Example:

a b └a/b┘ d x y
––

99 78 1 3 -11 14
78 21 3 3 3 -11
21 15 1 3 -2 3
15 6 2 3 1 -2

6 3 2 3 0 1
3 0 - 3 1 0

Prof. Shlomo Kipnis 23 Fall 2007/2008

Euclid’s GCD Algorithm (VII)

Extended Euclid’s Algorithm Explained:

Line 1 of Extended-Euclid is identical to line 1 of Euclid (checking
whether b = 0 to end the recursion)

If b = 0, then Line 2 of Extended-Euclid returns the following values
(which solve the linear combination gcd(a, b) = ax + by):

a as the value of the gcd(a, b),

1 as the value of the coefficient x, and

0 as the value of the coefficient y

If b ≠ 0, then, in Line 3, Extended-Euclid first computes the values of
(d’, x’, y’) such that:

d’ = gcd(b, (a mod b)) and

d’ = bx’ + (a mod b)y’.
Prof. Shlomo Kipnis 24 Fall 2007/2008

Euclid’s GCD Algorithm (VIII)

Extended Euclid’s Algorithm Explained (continued):
In line 4, after returning from the recursive call, Extended-Euclid sets:

d = gcd(a, b) = gcd(b, (a mod b)) = d’

To obtain x and y such that d = ax + by, we notice that
d = d’ = bx’ + (a mod b)y’

= bx’ + (a – └a/b┘b)y’
= ay’ + b(x’ – └a/b┘y’)

Now, the selection of x = y’ and y = x’ – └a/b┘y’, satisfies the
equation d = ax + by.

Line 5 of Extended-Euclid returns the values computed for d, x, and y.

The running time of Extended-Euclid is the same order of magnitude
as that of Euclid.

5

Prof. Shlomo Kipnis 25 Fall 2007/2008

Modular Arithmetic (I)

Observation: For any n ≥ 2, modular arithmetic can be
described as working with the numbers {0, 1, …, n-1} with
operations (such as addition, subtraction, multiplication, and
division) modulo n.

Definition: Addition modulo n is denoted by +n and is
defined by [a]n +n [b]n = [a + b]n . We shall also write
(a mod n) + (b mod n) = (a + b) (mod n).

Observation: Addition modulo n has an inverse operation,
called subtraction modulo n.

Prof. Shlomo Kipnis 26 Fall 2007/2008

Modular Arithmetic (II)

Definition: Subtraction modulo n is denoted by –n and is
defined by [a]n –n [b]n = [a – b]n . We shall also write
(a mod n) – (b mod n) = (a – b) (mod n).

Definition: The additive inverse of element (a mod n) is
the element ((n – a) mod n). We denote the additive inverse
of a by -a.

Examples:

(8 + 3) (mod 7) = (8 mod 7) + (3 mod 7) = 4

(15 – 22) (mod 10) = (15 mod 10) – (22 mod 10) = 3

(-3 mod 8) = 5

Prof. Shlomo Kipnis 27 Fall 2007/2008

Modular Arithmetic (III)

Definition: Multiplication modulo n is denoted by •n and
is defined by [a]n •n [b]n = [a • b]n . We shall also write
(a mod n) • (b mod n) = (a • b) (mod n).

Observation: Multiplication modulo n does not necessarily
have an inverse operation (that is – division modulo n).

Observation: The inverse of an element modulo n
does not necessarily exist for all the elements.

Prof. Shlomo Kipnis 28 Fall 2007/2008

Modular Arithmetic (IV)

Definition: Multiplicative inverse of an element (a mod n),
if exists, is an element (b mod n), such that (a • b) (mod n) = 1.
The multiplicative inverse of a, if exists, is denoted by a-1.

Definition: Modular division, if exists, is denoted by /n

and is defined by [a]n /n [b]n = [a]n •n [b-1]n. In such cases,
we shall also write (a mod n) / (b mod n) = (a / b) (mod n).

Examples:
26 = 14-1 (mod 11) since

26 • 14 (mod 11) = (26 mod 11) • (14 mod 11) = 1
(8 / 4) (mod 10) is not defined since

4 is not invertible mod 10

Prof. Shlomo Kipnis 29 Fall 2007/2008

Groups and Subgroups (I)

Definition: A group G = (S, ⊕) is a set S with a binary
operation ⊕, for which the following properties hold:

1. Closure: For all a, b ∈ S, we have a ⊕ b ∈ S.

2. Identity: There is an element e ∈ S, called the identity
of the group, such that e ⊕ a = a ⊕ e = a, for all a ∈ S.

3. Associativity: For all elements a, b, c ∈ S, we have
(a ⊕ b) ⊕ c = a ⊕ (b ⊕ c).

4. Inverses: For each a ∈ S, there exists a unique element
b ∈ S, called the inverse of a, such that a ⊕ b = b ⊕ a = e.

Prof. Shlomo Kipnis 30 Fall 2007/2008

Groups and Subgroups (II)

Definition: For n ≥ 2, the additive group Zn is:
S = {0, 1, …, n-1} – the n residues modulo n,

⊕ is addition modulo n.

Example: The additive group Z6 = ({0,1,2,3,4,5}, +6):

+6 | 0 1 2 3 4 5
–––––––––––––––––––––––––––––––––
0 | 0 1 2 3 4 5
1 | 1 2 3 4 5 0
2 | 2 3 4 5 0 1
3 | 3 4 5 0 1 2
4 | 4 5 0 1 2 3
5 | 5 0 1 2 3 4

6

Prof. Shlomo Kipnis 31 Fall 2007/2008

Groups and Subgroups (III)

Theorem: For n ≥ 2, the system Zn is an abelian group.

Proof:

Closure: For all a, b ∈{0, 1, …, n-1}, we have
((a+b) mod n) ∈{0, 1, …, n-1}.

Identity: The element 0 is the identity for addition modulo n.

Associativity: For all a, b, c ∈{0, 1, …, n-1}, we have
((((a+b) mod n) + c) mod n) = ((a + ((b+c) mod n)) mod n).

Inverses: For all a ∈{0, 1, …, n-1}, we have -a = ((n-a) mod n),
since a+(n-a) = 0 (mod n).

Abelian: For all a, b ∈{0, 1, …, n-1}, we have
((a+b) mod n) = ((b+a) mod n).

Prof. Shlomo Kipnis 32 Fall 2007/2008

Groups and Subgroups (IV)

Definition: For n ≥ 2, the multiplicative group Zn
* is:

S = {1 ≤ a ≤ n-1 : gcd(a, n) = 1} – relative primes to n between 1 and n-1,

⊕ is multiplication modulo n.

Example: Multiplicative group Z18
* = ({1,5,7,11,13,17}, •18):

•18 | 1 5 7 11 13 17
–––––––––––––––––––––––––––––––––
1 | 1 5 7 11 13 17
5 | 5 7 17 1 11 13
7 | 7 17 13 5 1 11
11 | 11 1 5 13 17 7
13 | 13 11 1 17 7 5
17 | 17 13 11 7 5 1

Prof. Shlomo Kipnis 33 Fall 2007/2008

Groups and Subgroups (V)

Theorem: For n ≥ 2, the system Zn
* is an abelian group.

Proof:
Closure: For all 1 ≤ a, b ≤ n-1, if gcd(a, n) =1 and gcd(b, n) =1,
then gcd(a • b, n) = 1 and 1 ≤ ((a • b) mod n) ≤ n-1.

Identity: The element 1 is the identity for multiplication modulo n,
and 1 is in Zn

* since gcd(1, n) = 1.

Associativity: For all 1 ≤ a, b, c ≤ n-1, we have
((((a • b) mod n) • c) mod n) = ((a • ((b • c) mod n)) mod n).

Inverses: For 1 ≤ a ≤ n-1, if gcd(a, n) = 1, then there exist integers
x any y, such that ax + ny = 1. This implies ax = 1 (mod n), which
means that x = a-1 (mod n).

Abelian: For all 1 ≤ a, b ≤ n-1, we have ((a • b) mod n) = ((b • a) mod n).
Prof. Shlomo Kipnis 34 Fall 2007/2008

Groups and Subgroups (VI)

Euler’s Phi Function: The size of Zn
* is:

Φ(n) = n Πp|n (1 – (1/p))

(where p runs over all the primes that divide n).

Examples:

Φ(7) = 7•(1-(1/7)) = 6 and Z7
* = {1, 2, 3, 4, 5, 6}

Φ(10) = 10•(1-(1/2))•(1-(1/5)) = 4 and Z10
* = {1, 3, 7, 9}

Φ(18) = 18•(1-(1/2))•(1–(1/3)) = 6 and Z18
* = {1, 5, 7, 11, 13, 17}

Prof. Shlomo Kipnis 35 Fall 2007/2008

Groups and Subgroups (VII)

Definition: If (S, ⊕) is a group, if S’ ⊆ S, and if (S’, ⊕) is
also a group, then (S’, ⊕) is a subgroup of (S, ⊕).

Example: The even integers with addition are a subgroup
of the integers with addition.

Theorem: If (S, ⊕) is a finite group and S’ is a non-empty
subset of S, such that for all a, b ∈ S’ we have a⊕b ∈ S’,
then (S’, ⊕) is a subgroup of (S, ⊕).

Example: The set {0, 2, 4, 6} forms a subset of Z8 that is
closed under operation +8 and is therefore a subgroup of Z8.

Prof. Shlomo Kipnis 36 Fall 2007/2008

Groups and Subgroups (VIII)

Lagrange’s Theorem: If (S, ⊕) is a finite group, and if
(S’, ⊕) is a subgroup of (S, ⊕), then |S’| is a divisor of |S|.

Definition: A subgroup S’ of group S is said to be a
proper subgroup of S if S’ ≠ S.

Corollary: If S’ is a proper subgroup of a finite group S,
then |S’| ≤ |S| / 2.

Example: The size of the subgroup S’ = {0, 2, 4, 6} of Z8

is 4 which is a divisor of 8.

7

Prof. Shlomo Kipnis 37 Fall 2007/2008

Groups and Subgroups (IX)

Notation: If (S, ⊕) is a group, and if a ∈ S, we denote
successive applications of the group operator ⊕ to a by a(k).

Notation: < a > = {a(k) : k ≥ 1}.

Lemma: If (S, ⊕) is a finite group, and if a ∈ S, then < a > is
a subgroup of S.

Proof: < a > is closed under the operator ⊕.

Definition: If (S, ⊕) is a group, and if a ∈ S, then the
subgroup generated by successive applications of ⊕ to a is
called the subgroup generated by a and is denoted by < a >.
The element a is called the generator of < a >.

Prof. Shlomo Kipnis 38 Fall 2007/2008

Groups and Subgroups (X)

Example: In the additive group Z6, we have:
< 0 > = {0}
< 1 > = < 5 > = {0, 1, 2, 3, 4, 5}
< 2 > = < 4 > = {0, 2, 4}
< 3 > = {0, 3}

Example: In the multiplicative group Z7
*, we have:

< 1 > = {1}
< 2 > = < 4 > = {1, 2, 4}
< 3 > = < 5 > = {1, 2, 3, 4, 5, 6}
< 6 > = {1, 6}

Prof. Shlomo Kipnis 39 Fall 2007/2008

Groups and Subgroups (XI)

Definition: For a finite group (S, ⊕), the order of element
a ∈ S, denoted by ord(a), is the smallest k, such that a(k) = e
(the identity element).

Theorem: For any finite group (S, ⊕) and any element
a ∈ S, the order of a is equal to the size of < a >, that is
ord(a) = | < a > |.

Proof:

If ord(a) = k, then for all t ≥ 0, we have a(k+t) = a(t) (since a(k) = e).
This implies that | < a > | ≤ k = ord(a).

If k = ord(a) > | < a > |, then there are 1 ≤ i < j ≤ k, such that a(i) = a(j).
This means a(j–i) = e. But j–i < k is contradiction. Thus, ord(a) ≤ | < a > |.

Prof. Shlomo Kipnis 40 Fall 2007/2008

Groups and Subgroups (XI)

Corollary: The sequence a(1), a(2), … is periodic with period
k = ord(a). That is, a(i) = a(j) if and only if i = j (mod k).

Definition: We can define for all a ∈ S:

a(0) = e (the identity element), and

a(i) = a(i mod k) (where k = ord(a)).

Theorem: If (S, ⊕) is a finite group with identity e, then for

all a ∈ S, we have a(|S|) = e.

Proof:
Lagrange’s Theorem implies that ord(a) divides |S|.
Therefore, |S| = 0 (mod k), where k = ord(a).

Prof. Shlomo Kipnis 41 Fall 2007/2008

Solving Modular Equations (I)

Observation: A linear equation of the form ax = b (mod n),
where a > 0, b ≥ 0, and n > 0, may have zero, one, or more
solutions.

Observation: Since we have < a > = { ax (mod n) : x > 0 },
then the equation ax = b (mod n) has a solution if and only if
b ∈ < a >. Lagrange’s Theorem implies that | < a > | must be
a divisor of n.

Theorem: For any positive integers a and n, if d = gcd(a, n),
then < a > = < d > = { 0, d, 2d, …, ((n/d)-1)d } in Zn, and thus
| < a > | = n/d.

Prof. Shlomo Kipnis 42 Fall 2007/2008

Solving Modular Equations (II)
Proof:

Since d = gcd(a, n), there are integers x and y such that ax + ny = d.
This means that ax = d (mod n), which implies that d ∈ < a >.

Since d is in < a >, all the multiples of d should also be in < a >.
That is, < a > contains all the elements { 0, d, 2d, …, ((n/d)-1)d },
which means that < d > ⊆ < a >.

Now, if m ∈ < a >, then m = ax (mod n) for some integer x, and so
m = ax + ny for some integer y.

Now, because d | a and d | n, we also have d | m. Thus, m ∈ < d >.
This means that < a > ⊆ < d >.

Combining the above, we have < d > = < a >.

The set < d > = < a > contains n/d elements, which is the number of
multiples of d between 0 and n-1.

8

Prof. Shlomo Kipnis 43 Fall 2007/2008

Solving Modular Equations (III)

Corollary: The equation ax = b (mod n) is solvable for x if
and only if gcd(a, n) | b.

Corollary: The equation ax = b (mod n) either has d distinct
solutions modulo n, where d = gcd(a, n), or it has no solutions.

Proof:

If equation ax = b (mod n) has a solution, then b ∈ < a >.

The sequence ai (mod n) is periodic with period | < a > | = n/d.

If b ∈ < a >, then b appears exactly d times in the sequence ai (mod n),
for i=0, 1, …, n-1. This is because the block of the n/d values in < a >
repeats exactly d times as i increases from 0 to n-1.

The d times that b appears in the sequence ai (mod n) give d solutions.
Prof. Shlomo Kipnis 44 Fall 2007/2008

Solving Modular Equations (IV)

Theorem: Let d = gcd(a, n), and suppose that d = ax’ + ny’
for integers x’ and y’. If d | b, then equation ax = b (mod n)
has as one of its solutions the value x0 = x’(b/d) (mod n).

Proof:

We have ax0 = ax’(b/d) (mod n) // checking for x0

= d(b/d) (mod n) // since ax’ = d (mod n)
= b (mod n) // QED

Prof. Shlomo Kipnis 45 Fall 2007/2008

Solving Modular Equations (V)

Theorem: Suppose that the equation ax = b (mod n) is
solvable (that is, d = gcd(a, n) divides b) and that x0 is any
solution to this equation. Then, this equation has exactly
d distinct solutions, modulo n, given by xi = x0 + i(n/d),
for i=0, 1, …, d-1.

Proof:
The d values xi are all distinct modulo n (since 0 ≤ i(n/d) < n, and
since n/d > 0).

For all i=0, 1, …, d-1, we have
axi = a(x0 + i(n/d)) = ax0 + ain/d = b (mod n), because d is a divisor of n.

Each xi is a solution, and the d values of xi are distinct, which means
that the d values of xi are the only d solutions.

Prof. Shlomo Kipnis 46 Fall 2007/2008

Solving Modular Equations (VI)

Algorithm:

Modular-Linear-Equation-Solver(a, b, n)

1 (d, x’, y’) ← Extended-Euclid(a, n)

2 if (d | b)

3 then x0 ← x’(b/d) mod n

4 for i ← 0 to d-1 do

5 print ((x0 + i(n/d)) mod n)

6 else print “no solutions”

Prof. Shlomo Kipnis 47 Fall 2007/2008

Solving Modular Equations (VII)

Algorithm Example:

Consider the equation 14x = 30 (mod 100)

In this equation a=14, b=30, and n=100

Compute d = gcd(14, 100) = 2

Compute x’ = -7

Compute x0 = x’(b/d) (mod n) = 95

Compute xi=1 = x0 + i(n/d) (mod n) = 45

Prof. Shlomo Kipnis 48 Fall 2007/2008

Solving Modular Equations (VIII)

Corollary: For any n > 1, if gcd(a, n) = 1, then the equation
ax = b (mod n) has a unique solution modulo n.

Corollary: For any n > 1, if gcd(a, n) = 1, then a has a unique
inverse modulo n. Otherwise, it has no inverse modulo n.

Proof: In the equation ax = 1 (mod n), the only solution for x
is the inverse of a modulo n.

Algorithm: For any n > 1, if gcd(a, n) = 1, to compute a-1 in
modulo n, one can call the algorithm Extended-Euclid(a, n) to
find d = gcd(a, n) = 1, and x and y with ax + ny = 1 (mod n).
The value of x is x = a-1 (mod n).

9

Prof. Shlomo Kipnis 49 Fall 2007/2008

Chinese Remainders (I)

Problem: Find integers that leave remainders 2, 3, and 2
when divided by 3, 5, and 7, respectively.

Solution: All integers of the form 23+105k, for integer k.

Chinese Remainder Theorem provides a correspondence

between a system of equations modulo a set of pairwise

relatively prime moduli (such as 3, 5, and 7 in the example

above) and an equation modulo their product (such as 105
in the example above).

Prof. Shlomo Kipnis 50 Fall 2007/2008

Chinese Remainders (II)

Setting: Let the integer n be the product of k pairwise
relatively prime factors n1, n2, …, nk. Represent an integer a
either by its residue modulo n (that is, by (a mod n)), or by
its k residues modulo the factors n1, n2, …, nk (that is, by the
k residues a1 = (a mod n1), a2 = (a mod n2), …, ak = (a mod nk)).

Use: Chinese Remainders Theorem is useful in establishing
an isomorphism between Zn and Zn1

x Zn2
x … x Znk

.

Use: Chinese Remainders Theorem allows finding results of
arithmetic operations (such as addition and multiplication) in
Zn by doing the arithmetic in each of the Zni

.

Prof. Shlomo Kipnis 51 Fall 2007/2008

Chinese Remainders (III)

Chinese Remainders Theorem:

Let n = n1 n2
… nk , where the ni are pairwise relatively prime.

We correspond a ↔ (a1, a2, …, ak), where a ∈ Zn , and

ai ∈Zni
, and ai = (a mod ni) for i = 1, 2, …, k.

If a ↔ (a1, a2, …, ak) and b ↔ (b1, b2, …, bk), then:

(a + b) mod n ↔ ((a1 + b1) mod n1, ((a2 + b2) mod n2, …, ((ak + bk) mod nk)

(a – b) mod n ↔ ((a1 – b1) mod n1, ((a2 – b2) mod n2, …, ((ak – bk) mod nk)

(a • b) mod n ↔ ((a1 • b1) mod n1, ((a2 • b2) mod n2, …, ((ak • bk) mod nk)

Prof. Shlomo Kipnis 52 Fall 2007/2008

Chinese Remainders (IV)

Proof:

Going from the representation a ∈ Zn to the representation of the
k-tuple of the ai∈Zni

is straightforward (by doing k divisions).

Going from the k-tuple of the ai∈Zni
to the representation a ∈ Zn is

done as follows:

Define mi = n / ni , for i = 1, 2, …, k.
(Thus, mi is the product of all the nj’s other than ni.)

This definition provides mj = 0 (mod ni), for i ≠ j.
(Because mj contains ni as one of its factors.)

This definition provides mi ≠ 0 (mod ni).
(Because mi contains only factors that are relatively prime to ni.)

Prof. Shlomo Kipnis 53 Fall 2007/2008

Chinese Remainders (V)

Proof (continued):

Define ci = mi • (mi
-1 mod ni) , for i = 1, 2, …, k.

(Value of mi
-1 is well defined since mi and ni are relatively prime.)

These definitions provide ci = 1 (mod ni).

These definitions provide ci = 0 (mod nj), for j ≠ i.

Compute a ∈ Zn as a function of the ai ∈Zni
as follows:

a = (a1•c1+ a2•c2 + …+ ak•ck) (mod n).

This definition provides a = ai (mod ni), for i = 1, 2, …, k.

The correspondence of the operations (addition, subtraction, and
multiplication) follows from the above one-to-one mapping.

Prof. Shlomo Kipnis 54 Fall 2007/2008

Chinese Remainders (VI)

Corollary: If n1, n2, …, nk are pairwise relatively prime and

n = n1 n2
… nk, then for any integers a1, a2, …, ak, the set of

simultaneous equations x = ai (mod ni), for i = 1, 2, …, k,

has a unique solution modulo n for the unknown x.

Corollary: If n1, n2, …, nk are pairwise relatively prime

and n = n1 n2
… nk, then for all integers x and a, we have

x = a (mod ni), for i = 1, 2, …, k, if and only if x = a (mod n).

10

Prof. Shlomo Kipnis 55 Fall 2007/2008

Chinese Remainders (VII)

Example: Find a that solves the two equations:
a = 2 (mod 5) and
a = 3 (mod 13).

Solution:

a1 = 2, n1 = 5, and m1 = 13.

a2 = 3, n2 = 13, and m2 = 5.

We need to find (a mod 65), since n = n1 n2= 65.

m1
-1 (mod n1) = 13-1 (mod 5) = 2 and c1 = 13•(2 mod 5) = 26.

m2
-1 (mod n2) = 5-1 (mod 13) = 8 and c2 = 5•(8 mod 13) = 40.

a = 2 • 26 + 3 • 40 (mod 65) = 42.
Prof. Shlomo Kipnis 56 Fall 2007/2008

Chinese Remainders (VIII)

Chinese Residue Table: For n1 = 5 and n2 = 13.

The number in the row with index i and column j has
residue (i mod 5) and (j mod 13).

| 0 1 2 3 4 5 6 7 8 9 10 11 12
––
0 | 0 40 15 55 30 5 45 20 60 35 10 50 25

1 | 26 1 41 16 56 31 6 46 21 61 36 11 51

2 | 52 27 2 42 17 57 32 7 47 22 62 37 12

3 | 13 53 28 3 43 18 58 33 8 48 23 63 38

4 | 39 14 54 29 4 44 19 59 34 9 49 24 64

Prof. Shlomo Kipnis 57 Fall 2007/2008

Modular Powers (I)

Problem: Computing powers of an element modulo n.

Example: Powers of 3 modulo 7

i 0 1 2 3 4 5 6 7 8 9

3i 1 3 2 6 4 5 1 3 2 6

Example: Powers of 2 modulo 7

i 0 1 2 3 4 5 6 7 8 9

2i 1 2 4 1 2 4 1 2 4 1

Prof. Shlomo Kipnis 58 Fall 2007/2008

Modular Powers (II)

Notation: Let < a > denote the subgroup of Zn
* generated

by a by repeated multiplication, and let ordn(a) denote the
order of a in Zn

*.

Definition: If for g ∈ Zn
*, we have ordn(g) = | Zn

* | (that is,
every element in Zn

* is a power of g), then g is called a
generator or a primitive root of Zn

*.

Examples: 3 is a generator of Z7
*.

2 is not a generator of Z7
*.

Definition: If Zn
* has a generator, then the group Zn

*

is called cyclic.

Prof. Shlomo Kipnis 59 Fall 2007/2008

Modular Powers (III)

Euler’s Theorem: For any integer n > 1 and any a ∈ Zn
*,

we have aΦ(n) = 1 (mod n) .

Fermat’s Theorem: If p is prime, then for any a ∈ Zp
*

we have ap-1 = 1 (mod p) .

Corollary: If p is prime, then for any a ∈ Zp

we have ap = a (mod p) .

Theorem (Niven-Zuckerman): The values of n > 1 for

which Zn
* is cyclic are 2, 4, pe, and 2pe, for all primes p > 2

and all positive integers e.
Prof. Shlomo Kipnis 60 Fall 2007/2008

Modular Powers (IV)

Definition: If g is a generator of Zn
* and a is any element

in Zn
*, then there exists a z such that gz = a (mod n). This z

is called the discrete logarithm or index of a, modulo n, to
the base g. We denote this value as indn,g(a).

Examples: ind7,3(1) = 0 ind7,3(2) = 2
ind7,3(3) = 1 ind7,3(4) = 4
ind7,3(5) = 5 ind7,3(6) = 3

Discrete Logarithm Theorem: If g is a generator of Zn
*,

then the equation gx = gy (mod n) holds if and only if the
equation x = y (mod Φ(n)) holds.

11

Prof. Shlomo Kipnis 61 Fall 2007/2008

Modular Powers (V)

Proof:

Suppose x = y (mod Φ(n)).
Then x = y + kΦ(n), for some integer k.
Therefore, gx = gy+kΦ(n) (mod n)

= gy (gΦ(n))k (mod n)
= gy (1)k (mod n)
= gy .

Suppose gx = gy (mod n).
Because the sequence of powers of g generates every element
of < g >, and because | < g > | = Φ(n), then the sequence of powers
of g is periodic with period Φ(n)). Therefore, if gx = gy (mod n), we
must have x = y (mod Φ(n)).

Prof. Shlomo Kipnis 62 Fall 2007/2008

Modular Powers (VI)

Theorem: If p > 2 is a prime and e ≥ 1, then the equation
x2 = 1 (mod pe) has only two solutions: x = 1 or x = -1.
Proof:

Let n = pe. Niven-Zucekrman Theorem implies that Zn
* is cyclic.

Let g be a generator of Zn
*.

Equation x2 = 1 (mod n) is written – (gindn,g(x))2 = gindn,g(1) (mod n).

The above equation is equivalent to (2 • indn,g(x)) = 0 (mod Φ(n)).

Solving the linear equation in indn,g(x) , we note that
Φ(n) = pe (1–1 /p) = (p – 1) pe-1, which is an even number.

Therefore, gcd(2, Φ(n)) = 2, and equation (2 • indn,g(x)) = 0 (mod Φ(n))
has exactly two solutions – indn,g(x) = 0 or indn,g(x) = Φ(n)/2 .

The two solutions for indn,g(x) result in solutions x = 1 or x = -1.

Prof. Shlomo Kipnis 63 Fall 2007/2008

Modular Powers (VII)

Definition: A number x is a nontrivial square root of 1,
modulo n, if it satisfies the equation x2 = 1 (mod n) but x is
neither 1 nor -1 modulo n.

Example: 6 is a nontrivial square root of 1 modulo 35.

Theorem: if there exists a nontrivial square root of 1,
modulo n, then n is composite.

Proof:
From previous Theorem – n cannot be a prime greater than 2.

If n = 2, then all the square root are trivial.
Since n must be greater than 2, we get that n must be composite.

Prof. Shlomo Kipnis 64 Fall 2007/2008

Modular Powers (VIII)

Modular Exponentiation: Raising a number a to the
power of another number b, modulo n. That is, computing
ab (mod n).

Repeated Multiplication: Successive multiplications
by the value of a takes linear time in the size of b.

Repeated Squaring: Successive squaring of the number
a leads to an algorithm that takes logarithmic time in the
size of b.

Notation: Let < bk, bk-1, …, b1, b0 > be the binary
representation of the exponent b.

Prof. Shlomo Kipnis 65 Fall 2007/2008

Modular Powers (IX)

Algorithm:

Modular-Exponentiation(a, b, n)
1 c ← 0
2 d ← 1
3 for i ← k downto 0 do
4 c ← 2 • c
5 d ← (d • d) mod n
6 if bi = 1
7 then c ← c + 1
8 d ← (d • a) mod n
9 return d

Prof. Shlomo Kipnis 66 Fall 2007/2008

Modular Powers (X)

Example: a=7 b=560 n=561

i 9 8 7 6 5 4 3 2 1 0

bi 1 0 0 0 1 1 0 0 0 0

c 1 2 4 8 17 35 70 140 280 560

d 7 49 157 526 160 241 298 166 67 1

Observation: If the inputs a, b, and n are k-bit long,
then the total number of arithmetic operations is O(k)
and the total number of bit operations is O(k3).

12

Prof. Shlomo Kipnis 67 Fall 2007/2008

Fields (I)

Definition: A Field F = (S, +, •) is a set S with two binary
operators + and •, for which the following properties hold:

1. Additive Group: The structure (S, +) is an additive group
with an identity element denoted by 0.

2. Multiplicative Group: The structure (S-{0}, •) is a
multiplicative group with an identity element denoted by 1.

3. Commutativity: Operators + and • are commutative.

4. Distributivity: For any three elements a, b, c ∈ S,
we have a • (b + c) = a • b + a • c.

Prof. Shlomo Kipnis 68 Fall 2007/2008

Fields (II)

Examples:

Zp – the integers modulo prime p

Q – the rational numbers

R – the real numbers

C – the complex numbers

Prof. Shlomo Kipnis 69 Fall 2007/2008

Fields (III)

Zp – the integers modulo prime p:

It is a commutative group with addition modulo p

It is a commutative group with multiplication modulo p

It obeys the distributive law

Example:

GF(5) = Z5 = ({0, 1, 2, 3, 4}, +5 , •5)

GF(2) = Z2 = ({0, 1}, XOR, AND)

Prof. Shlomo Kipnis 70 Fall 2007/2008

Fields (VI)

GF(22)
Elements – { 0, 1, a, b }
Addition –

0+0=0 1+0=1 a+0=a b+0=b
0+1=1 1+1=0 a+1=b b+1=a
0+a=a 1+a=b a+a=0 b+a=1
0+b=b 1+b=a a+b=1 b+b=0

Multiplication –
0•0=0 1•0=0 a•0=0 b•0=0
0•1=0 1•1=1 a•1=a b•1=b
0•a=0 1•a=a a•a=b b•a=1
0•b=0 1•b=b a•b=1 b•b=a

Prof. Shlomo Kipnis 71 Fall 2007/2008

Polynomials (I)

Definition: Polynomial c(x) = Σ cixi , where the

coefficients ci are from some field.

Definition: The degree of polynomial is the highest

exponent of x having a non-zero coefficient.

Definition: A polynomial with leading coefficient of 1
is called a monic.

Operations on Polynomials:

Addition:

Multiplication: xdcxdxc i

i

i

0j
jj-i

i

i
i

i

i
i ∑ ∑∑∑ 










=•

=

()xcxdxc i

i
ii

i

i
i

i

i
i d∑∑∑ +=+

Prof. Shlomo Kipnis 72 Fall 2007/2008

Polynomials (II)

Properties:

There is a zero polynomial – z(x) = 0.

There is a unity polynomial – u(x) = 1.

Polynomial addition and multiplication are associative,
commutative, and distributive.

The additive inverse of a polynomial is the polynomial
with inverse coefficients in the field.

What is the multiplicative inverse of a polynomial ???

There is a notion of polynomial division with remainders.

13

Prof. Shlomo Kipnis 73 Fall 2007/2008

Polynomials (III)

Polynomial Division:

For any two polynomials:
p(x) – the dividend polynomial, and
d(x) – the divisor polynomial,
there are two unique polynomials:
q(x) – the quotient polynomial, and
r(x) – the remainder polynomial,
such that – p(x) = q(x) d(x) + r(x)
and the degree of r(x) is smaller than the degree of d(x).

If r(x) is zero, then we say that d(x) divides p(x).

Division algorithm is very similar to long division of numbers.

Prof. Shlomo Kipnis 74 Fall 2007/2008

Polynomials (IV)

Example of Polynomial Division:

Let the polynomials’ coefficients be over Z5

Let p(x) = x5 + x4 + x3 + x2 + x + 1
and d(x) = 2x3 + 3x + 1

Then q(x) = 3x2 + 3x + 1

and r(x) = 4x2

Prof. Shlomo Kipnis 75 Fall 2007/2008

Polynomials (V)

Polynomial Modular Operations:

Given a non-zero polynomial m(x), we can represent
any polynomial p(x) as its remainder r(x) when divided
by m(x). We write r(x) = p(x) mod m(x).

We can add, subtract, and multiply polynomials a(x)
and b(x) modulo m(x).

We can divide polynomial a(x) by polynomial b(x), in
modulo m(x), if the multiplicative inverse of polynomial
b(x) exists in modulo m(x).

The greatest common divisor of two polynomials is the
highest-degree monic polynomial dividing both of them.

Prof. Shlomo Kipnis 76 Fall 2007/2008

Polynomials (VI)

Polynomial Greatest Common Divisor Example:

Let the polynomials’ coefficients be over Z5

gcd(2x4+3x3+4x2+2x+1 , 4x3+1) =

gcd(4x3+1 , 4x2+4x+4) =

gcd(4x2+4x+4 , x2+x+1) =

gcd(x2+x+1 , 0) =

x2+x+1

Prof. Shlomo Kipnis 77 Fall 2007/2008

Polynomials (VII)

Irreducible Polynomial:

A polynomial p(x) with coefficients from a field F is called
irreducible if and only if it can only be divided by u(x)=1
and by itself p(x).

Examples of polynomials with coefficients from Z2:
x2 = x • x composite
x2 + 1 = (x+1) • (x+1) composite
x2 + x = x • (x+1) composite
x2 + x + 1 irreducible

Prof. Shlomo Kipnis 78 Fall 2007/2008

Polynomials (VIII)

Evaluating Polynomials:

A polynomial p(x) with coefficients from a field F can be
evaluated for any value v ∈ F. The result p(v) is a value
in the field F.

A root of a polynomial p(x) with coefficients from field F
is a value v ∈ F such that p(v) = 0.

Claim: Element v ∈ F is a root of polynomial p(x) if and
only if the degree-1 polynomial (x-v) is a factor of p(x).

Conclusion: Polynomial p(x) can be uniquely written as

a product Π (x-vi)
ki where vi are different roots of p(x).

14

Prof. Shlomo Kipnis 79 Fall 2007/2008

Galois Fields(I)

Finite Fields:

The characteristics of a finite field is the minimal number of times
that 1 can be added to itself until the result becomes 0.

The characteristics of a finite field must be a prime number.

If the characteristics of a finite field F is p ≥ 2, then the number of
elements in F must be a power of p – that is – pn for some n ≥ 1.

For a given prime p ≥ 2 and an integer n ≥ 1, there is only one field
of size q = pn. This field is called the Galois Field of order q and is
denoted GF(q).

There could be many ways to represent GF(q).

Prof. Shlomo Kipnis 80 Fall 2007/2008

Galois Fields(II)

Useful Representation of GF(q):
A useful representation of GF(q), for q = pn, is as all the pn vectors

of length n, where each component of a vector is a number in Zp.

Addition of two elements in GF(q) is done by component-wise

addition in Zp of the two n-component vectors, which correspond to
the two elements in GF(q).

Multiplication of two elements in GF(q) is done by multiplying the
two polynomials, which are derived from the corresponding two
n-component vectors, by treating the vector components as the
coefficients of the polynomials. The result need to be taken modulo
a fixed irreducible polynomial of degree n.

A polynomial is irreducible if its only divisors are 1 and itself.

Prof. Shlomo Kipnis 81 Fall 2007/2008

Galois Fields(III)

Example of GF(28):
The field GF(28) has 28 = 256 elements.

The underlying field of characteristics 2 is Zp = ({0,1} , XOR, AND).

Each element in GF(28) can be represented by an octet (8 bits).

Addition of two elements in GF(28) (octets) is done by XORing the
two octets bit-by-bit. Each element in is its own additive inverse.

Multiplication of two elements in GF(28) (octets) is done by first
multiplying the two polynomials (each of degree at most 7), which
are obtained by treating the 8 bits of each octet as the coefficients
of the polynomials. Then, the resulting polynomial is taken modulo
the irreducible polynomial m(x) = x8+x4+x3+x+1.

Example: {57} + {83} = {D4} and {57} • {83} = {C1}.
Prof. Shlomo Kipnis 82 Fall 2007/2008

Mathematics of AES
Fields used in AES:

AES uses arithmetic over the field GF(28):
- Each byte (octet) in AES represents an element in GF(28).
- Addition of two octets is bit-wise XOR of the two octets.
- Multiplication of two octets is like polynomial multiplication modulo
the irreducible polynomial x8+x4+x3+x+1 over Z2.

AES also uses polynomials (of degree up to 3) with coefficients in
GF(28), that is, with 8-bit vectors as coefficients:
- Addition of two polynomials is bit-wise XOR of the four 8-bit vectors.
- Multiplication of two polynomials is polynomial multiplication modulo
the irreducible polynomial x4+1 over GF(28).

AES also uses polynomials (of degree up to 7) with coefficients in Z2.
- For these operations, the irreducible polynomial x8+1 over Z2 is used.

1

Prof. Shlomo Kipnis 1 Fall 2007/2008

Public-Key Cryptography I

Prof. Shlomo Kipnis
November 28, 2007

Prof. Shlomo Kipnis 2 Fall 2007/2008

Public-Key Model

Entity A has two keys
Prv(A) – Private Key of A, kept secretly only by A
Pub(A) – Public Key of A, made public to the world

Two functions used for encryption/decryption:
ENC – uses the public key
DEC – uses the private key
Such that DEC [ENC (M, Pub(A)) , Prv(A)] = M

Two functions used for signature/verification:
SIGN – uses the private key
VER – uses the public key
Such that VER [SIGN (M, Prv(A)) , Pub(A)] = yes / no

Prof. Shlomo Kipnis 3 Fall 2007/2008

Public-Key Encryption

Anyone knowing Pub(A) can encrypt message M for A

Only A can decrypt, using Prv(A), message M that was
encrypted for him

ENC DECM MC

Pub(A) Prv(A)
A

Prof. Shlomo Kipnis 4 Fall 2007/2008

Public-Key Signatures

Only A can sign, using Prv(A), some message M

Anyone knowing Pub(A) can verify that message M is
signed properly by A

SIGN VERM yes/noM

Pub(A)Prv(A)
A

S[M, Prv(A)]

Prof. Shlomo Kipnis 5 Fall 2007/2008

History of Public-Key Schemes (I)

1976 – Diffie & Hellman suggested the public-key model
for encryption and signatures

1976 – Diffie & Hellman developed public-key protocol
for key-exchange based on the Discrete Log Problem

1976 – Merkle suggested a public-key encryption
method based on the Knapsack Problem

1977 – Rivest, Shamir, Adelman developed the RSA
public-key scheme for encryption and signatures based
on the Number Factoring Problem

Prof. Shlomo Kipnis 6 Fall 2007/2008

History of Public-Key Schemes (II)

1980’s – Lamport suggested a one-time-signature
scheme based on Hash Functions

1980’s – El-Gamal developed public-key protocols for
encryption and signatures based on the Discrete Log
Problem

1980’s – Various researchers developed public-key
schemes based on Elliptic Curves

2

Prof. Shlomo Kipnis 7 Fall 2007/2008

Public-Key Schemes – Requirements (I)

The encryption function, the decryption function, the
signature function, and the verification function should
all be known functions

The encryption function, the decryption function, the
signature function, and the verification function should
all be easy to compute when the relevant keys (public
or private) are given

Given the encryption and decryption functions (or the
signature and verification function), and given the public
key – it should be hard to find the private key

Prof. Shlomo Kipnis 8 Fall 2007/2008

Public-Key Schemes – Requirements (II)

Given a cipehrtext and the public key – it should be hard
to find the plaintext

Given many pairs of (plaintext, ciphertext) and given the
public key – it should be hard to find the private key

Given many pairs of (message, signature) and given the
public key – it should be hard to find the private key

Given many pairs of (message, signature) and given the
public key – it should be hard to find the signature of a
new (unseen) message

Prof. Shlomo Kipnis 9 Fall 2007/2008

Knapsack Public-Key Encryption (I)

Simple Integer Knapsack Problem:

Given weight vector K = (k1, k2, . . ., kn), where each ki is integer

Given selection vector X = (x1, x2, . . ., xn), where each xi is 0 or 1

Capacity of the selected items is C = K•X = Σ ki xi

Given the weight vector K and the selection vector X, it is easy to
compute the capacity C

Given the weight vector K and the capacity C, it is an NP-hard
problem to find the selection vector X

Prof. Shlomo Kipnis 10 Fall 2007/2008

Knapsack Public-Key Encryption (II)

The encryption scheme:

Public-Key is vector K = (k1, k2, . . ., kn), where each ki is integer

Message is vector M = (x1, x2, . . ., xn), each xi is 0 or 1

Cipher is number C = K•M = Σ ki xi

Problem:

There could be more than one decryption for a given cipher C

Example:

K = (1, 2, 3, 5)

C = 6 decrypts to M = (1, 1, 1, 0) and also to M’ = (1, 0, 0, 1)

Prof. Shlomo Kipnis 11 Fall 2007/2008

Knapsack Public-Key Encryption (III)

Super-Increasing Integer Knapsack Problem:

Public-Key will be of the form K = (k1, k2, . . ., kn), where each ki

is integer, and where for each i we have ki > k1 + k2 + . . . + ki-1

For message M = (x1, x2, . . ., xn), where each xi is 0 or 1 – the
cipher C = K•M = Σ ki xi can be easily computed

For a given cipher C, decryption is unique and easy:
- Find the largest index i for which C > ki

- The element ki must be in the knapsack – meaning xi = 1
- Repeat this process with new capacity C – ki

Problem:

Anyone who knows Public-Key K can decrypt a cipher C
Prof. Shlomo Kipnis 12 Fall 2007/2008

Knapsack Public-Key Encryption (IV)

Scrambled Super-Increasing Integer Knapsack Problem:

Choose random super-increasing vector K = (k1, k2, . . ., kn), where
each ki is integer and for each i we have ki > k1 + k2 + . . . + ki-1

Choose integer m such that m > k1 + k2 + . . . + kn

Choose integer w relatively prime to m – that is – gcd(m,w) = 1

Calculate w-1 – that is a number such that ww-1 = 1 (mod m)

Public-Key is defined as:
K* = (k*

1, k*
2, . . ., k*

n) = (wk1 (mod m), wk2 (mod m), . . ., wkn (mod m)),
which is a scrambled (and not super-increasing) form of K

Private-Key consists of three things:
m, w-1, and the selected super-increasing vector K

3

Prof. Shlomo Kipnis 13 Fall 2007/2008

Knapsack Public-Key Encryption (V)

Scrambled Super-Increasing Integer Knapsack Problem:

Encrypting a message M = (x1, x2, . . ., xn) with the Public-Key
K* = (k*

1, k*
2, . . ., k*

n) is done by computing C* = K*•M = Σ k*
i xi

Decrypting a cipher C* with the Private-Key is done as follows:
- Calculate C = w-1C* (mod m)
- Use C and the super-increasing vector K to find message M

Decryption works since:
C = w-1C* (mod m)

= w-1 Σ k*
i xi (mod m)

= Σ w-1k*
i xi (mod m)

= Σ ki xi (mod m)
= Σ ki xi

and from C and the vector K, one can decrypt M
Prof. Shlomo Kipnis 14 Fall 2007/2008

Knapsack Public-Key Encryption (VI)

In 1976, Merkle suggested the Integer Knapsack
Problem as the basis for a Public-Key encryption
scheme

Although the general Integer Knapsack Problem is
indeed an NP-Hard Problem, the Super-Increasing
Integer Knapsack Problem is not NP-Hard

In 1977, Shamir broke the Public-Key encryption
scheme that was based on the Super-Increasing
Integer Knapsack Problem

Prof. Shlomo Kipnis 15 Fall 2007/2008

One-Time Signatures with Hash (I)

Private and Public Keys

Entity A invents a one-time-private-key Prv(A) suitable
for signing one message M of length n bits:
Prv(A) is n ordered pairs of values (Xi, Yi) for i = 1, 2, . . . N,
where Xi and Yi are very large random numbers

Entity A publishes matching one-time-public-key Pub(A):
Pub(A) is n ordered pairs of values (H(Xi), H(Yi))
for i = 1, 2, . . . N, where H is a good and known hash
function

Prof. Shlomo Kipnis 16 Fall 2007/2008

One-Time Signatures with Hash (II)

Signing Message M

M is a message of length n bits

If i-th bit of M is 0 – then entity A discloses Xi

If i-th bit of M is 1 – then entity A discloses Yi

The signature of M is the collection of n values of either
Xi or Yi for each of the bits of M

Verifying Signature of Message M

If i-th bit of M is 0 – check if H(Xi) appears in Pub(A)

If i-th bit of M is 1 – check if H(Yi) appears in Pub(A)

Prof. Shlomo Kipnis 17 Fall 2007/2008

One-Time Signatures with Hash (III)

Question: Why is the signature good?

Answer-1: An opponent cannot change any bit of M,
because he does not know the other value (Xi or Yi),
and because he cannot find collisions of the hash
function.

Answer-2: An opponent that sees M and its signature
cannot find the private key Prv(A), because he cannot
invert the hash function.

Prof. Shlomo Kipnis 18 Fall 2007/2008

One-Time Signatures with Hash (IV)

Question: Why is this a one-time signature scheme?

Answer: Seeing two different messages and their
signatures allows creating signatures for other messages
even without the knowledge of the private key Prv(A).

Practicality: The scheme is not practical since the keys
are huge and one-time.

4

Prof. Shlomo Kipnis 19 Fall 2007/2008

Hard Number Theory Problems

Observation: It is easy to compute gx modulo prime p to
obtain y = gx (mod p). But, given p, g, and y, it is difficult to
compute the discrete logarithm x = indp,g(y).

This is the basis of the Diffie-Hellman, El-Gamal, and
DSS Public-Key schemes.

Observation: It is easy to compute the product of two
primes p and q to obtain n = pq. But it is difficult to factor
the composite number n into its two prime factors p and q.

This is the basis of the RSA Public-Key scheme.

Prof. Shlomo Kipnis 20 Fall 2007/2008

Discrete Logarithm (I)

Definition: If g is a generator of Zn
* and a is any element

in Zn
*, then there exists a z such that gz = a (mod n). This

z is called the discrete logarithm or index of a, modulo n,

to the base g. We denote this value as indn,g(a).

Examples: ind7,3(1) = 0 ind7,3(2) = 2
ind7,3(3) = 1 ind7,3(4) = 4
ind7,3(5) = 5 ind7,3(6) = 3

Prof. Shlomo Kipnis 21 Fall 2007/2008

Discrete Logarithm (II)

Discrete Exponentiation Problem:
Given g a generator of Zn

* and given a value x ∈ Zn
*, find

the y ∈ Zn
* such that y = gx (mod n).

Observation: Computing discrete exponents can be done
very efficiently.

Discrete Logarithm Problem:
Given g a generator of Zn

* and given a value y ∈ Zn
*, find

the x ∈ Zn
* such that x = indn,g(y).

Observation: We don’t have an efficient algorithm for
computing discrete logarithms.

Prof. Shlomo Kipnis 22 Fall 2007/2008

Discrete Logarithm (III)

Known Algorithms:

Fastest known algorithm can find discrete logarithm in
modulo p in about O(e (1.923 (ln p)1/3 (ln ln p)2/3)) steps

Algorithm is based on the Generalized Number Sieve
Algorithm for number factoring

Prof. Shlomo Kipnis 23 Fall 2007/2008

Number Factoring (I)

Observation: Factoring a large composite number n is
considered to be a very difficult task (although detecting
whether a large number is prime or composite had proven
to be a relatively simple task).

Observation: Trying to divide a large number n by all the
“small” integers successively will yield an O(√n) algorithm.

Observation: Best known methods for factoring a large
number n still require time exponential in the length of n.

Observation: It is infeasible with today’s computers and
algorithms to factor an arbitrary 1024-bit number.

Prof. Shlomo Kipnis 24 Fall 2007/2008

Number Factoring (II)

Pollard-Rho Heuristic:
Pollard-Rho(n)
1 i ← 1
2 x1 ← Random(0, n-1)
3 y ← x1
4 k ← 2
5 while TRUE do
6 i ← i + 1
7 xi ← (xi-1)2 – 1 mod n
8 d ← gcd(y – xi , n)
9 if (d ≠ 1) and (d ≠ n)
10 then print d
11 if i = k
12 then y ← xi
13 k ← 2k

5

Prof. Shlomo Kipnis 25 Fall 2007/2008

Number Factoring (III)

Ideas of the Pollard-Rho Heuristic:

The algorithm generates a sequence of {xi} by xi ← f(xi-1) mod n.
This sequence happens to be “randomly distributed” modulo n.

The sequence {xi} is very likely to repeat after O(√n) steps.

If p is a factor of n, then the sequence is also very likely to repeat
after O(√p) steps.

Once the sequence enters a cycle modulo p, it stays within the
cycle forever.

Inside the cycle modulo p, the sequence will find a the value of p
(or a multiple of p) in about O(√p) steps.

The algorithm is not guaranteed to terminate…

Prof. Shlomo Kipnis 26 Fall 2007/2008

Number Factoring (IV)

Known Algorithms:

Pollard-Rho heuristic can find small factors p of n in
about O(n1/4) steps

Generalized Number Sieve Algorithm can factor a
number n in order L(1/3, n)1.923+o(1) steps, where

L(α, n) = e((ln n)α(ln ln n)1-α)

Prof. Shlomo Kipnis 27 Fall 2007/2008

Primality Testing (I)

Definition: The prime distribution function π(n) specifies
the number of primes that are less than or equal to n.

Example: π(10) = 4

Prime Number Theorem: 1
nln n /

π(n)lim =





Observation: The approximation n / ln n gives reasonably
accurate estimates of π(n) even for small n.

Example: π(109) = 50,847,534 where n / ln n ≈ 48,254,942.

Prof. Shlomo Kipnis 28 Fall 2007/2008

Primality Testing (II)

Observation: We can estimate the probability that a
randomly chosen integer n will turn out to be prime as
1 / ln n.

Observation: We would need to examine approximately
ln n integers chosen randomly near n in order to find a
prime that is the same length as n.

Example: To find a 512-bit prime might require testing
approximately ln 2512 ≈ 355 randomly chosen 512-bit
numbers for primality. (Actually, the number of tests can
be cut in half, since we don’t need to test even integers.)

Prof. Shlomo Kipnis 29 Fall 2007/2008

Primality Testing (III)

Observation: A simple approach of testing whether a
number n is prime or not involves trying to divide n by all
the numbers 2, 3, … √n. This approach takes time that is
proportional to √n, which is exponential in the length of n.

Conclusion: Trial division can be used only for small
values of n, or if n happens to have a small prime factor.
If this is the case, there is a further advantage of being
able to identify one of the factors of n.

Conclusion: For large n, we need to develop another
algorithm for detecting whether n is prime or composite.

Prof. Shlomo Kipnis 30 Fall 2007/2008

Primality Testing (IV)

Definition: Zn
+ = {1, 2, …, n-1}.

Observation: If n is prime, then Zn
+ = Zn

*.

Definition: We say that n is base-a pseudoprime if n is
composite and an-1 = 1 (mod n).

Observation: If n is prime, then n is base-a pseudoprime
for every a ∈ Zn

+ (because of Fermat’s theorem).

Observation: If for some a ∈ Zn
+, we detect that n is not

base-a pseudoprime, then n must be composite.

6

Prof. Shlomo Kipnis 31 Fall 2007/2008

Primality Testing (V)

Idea: Test whether n is prime or composite, by checking
whether n is base-a pseudoprime for a = 2.

Observation: A randomly chosen 1024-bit number that
is base-2 pseudoprime has a chance of less than 10-41 of
actually being composite.

Idea: Test whether n is prime or composite, by checking
whether n is base-a pseudoprime for many a ∈ Zn

+.

Problem: There are some (very rare) composite n, such
that for all a ∈ Zn

+, we have that n is base-a pseudoprime.
These numbers are called Carmichael numbers.

Prof. Shlomo Kipnis 32 Fall 2007/2008

Primality Testing (VI)

Miller-Rabin Primality-Test:

1. Try s ≥ 1 randomly chosen base values a ∈ Zn
+.

2. While computing the modular powers an-1 (mod n), check
whether a nontrivial square root of 1 is detected.

Observation: The Miller-Rabin procedure uses the
representation n-1 = 2tu , where t ≥ 1 and u is odd.
Therefore, an-1 = (au)2t (mod n), so that an-1 (mod n) is
computed by first computing au (mod n), and then
squaring the result t times successively.

Prof. Shlomo Kipnis 33 Fall 2007/2008

Primality Testing (VII)

Miller-Rabin Algorithm:

Witness(a, n)
1 Let n-1 = 2tu , where t ≥ 1 and u is odd
2 x0 ← Modular-Exponentiation(a, u, n)
3 for i ← 1 to t do
4 xi ← (xi-1)2 mod n
5 if (xi = 1) and (xi-1 ≠ 1) and (xi-1 ≠ n-1)
6 then return TRUE
7 if (xt ≠ 1)
8 then return TRUE
9 return FALSE

Prof. Shlomo Kipnis 34 Fall 2007/2008

Primality Testing (VIII)

Observation: Procedure Witness(a, n) returns TRUE if it
clearly detects that a is a witness to non-primality of n.
It returns FALSE if it were not able to use a to find a proof
to non-primality of n (which doesn’t mean that n is prime).

Miller-Rabin(n, s)
1 for j ← 1 to s do
2 a ← Random(1, n-1)
3 if Witness(a, n)
4 then return COMPOSITE /// definitely
5 return PRIME /// almost surely

Prof. Shlomo Kipnis 35 Fall 2007/2008

Primality Testing (IX)

Theorem: If n is an odd composite number, then
the number of witnesses to the compositeness of n is
at least (n-1)/2.

Proof: (omitted)

Theorem: For any odd integer n ≥ 2 and any positive
integer s, the probability that Miller-Rabin(n, s) errs is
at most 2-s.

Proof: Based on the previous theorem and the trial of s
independent tests of witnesses.

Prof. Shlomo Kipnis 36 Fall 2007/2008

Primality Testing (X)

Observation: Running time of one call to Witness(a, n) is
O(log n) word-steps (multiplications, additions, etc). Typical
range of n is between 512-bit numbers to 2048-bit numbers.

Observation: Running time of one call to Miller-Rabin(n, s) is
O(s) steps of getting random base a and calling Witness(a, n).
Typical values of s are between 10 and 100.

Observation: Finding a prime number (with a very small
probability of error) near a given number n requires O(ln n)
trials of calling the Miller-Rabin(x, s) routine with different
values of x near n, until one call returns the result PRIME.

1

Prof. Shlomo Kipnis 1 Fall 2007/2008

Public-Key Cryptography II

Prof. Shlomo Kipnis
December 3, 2007

Prof. Shlomo Kipnis 2 Fall 2007/2008

Public-Key Schemes

Diffie-Hellman Key Exchange

El-Gamal Encryption

El-Gamal Signature

Digital Signature Standard

RSA encryption and signature

Prof. Shlomo Kipnis 3 Fall 2007/2008

Diffie-Hellman Key Exchange (I)

Large prime P is known to the world

Generator g of Z*
P is known to the world

A and B do not share any secret value

The D-H Protocol:
A picks at random a number X ∈ {1, 2, . . . , P-1} and
sends to B the value gX (mod P)
B picks at random a number Y ∈ {1, 2, . . . , P-1} and
sends to A the value gY (mod P)
A computes (gY)X = gXY (mod P)
B computes (gX)Y = gXY (mod P)
A and B now share the secret value gXY (mod P)

Prof. Shlomo Kipnis 4 Fall 2007/2008

Diffie-Hellman Key Exchange (II)

A B
P - large prime
g - generator of Z*

P

Pick random
X in Z*

P

Pick random
Y in Z*

P

gX (mod P)

gY (mod P)

Compute
(gY)X = gXY

Compute
(gX)Y = gXY

Prof. Shlomo Kipnis 5 Fall 2007/2008

Diffie-Hellman – Man-in-the-Middle

A B
P - large prime
g - generator of Z*

P

Pick random
X in Z*

P

Pick random
Y in Z*

P

gX (mod P)

gY (mod P)

Compute
(gS)X = gXS

Compute
(gR)Y = gRY

E

Pick random
R in Z*

P

gR (mod P)

gS (mod P) Pick random
S in Z*

P

Compute
(gY)R = gRY

Compute
(gX)S = gXS

Prof. Shlomo Kipnis 6 Fall 2007/2008

Working with Diffie-Hellman Protocol

When opponent is assumed to be passive (it can only
eavesdrop but it cannot change messages):

Protected line

Eye-sight line

With Additional authentication between A and B:

Authenticated D-H using digital signatures

2

Prof. Shlomo Kipnis 7 Fall 2007/2008

El-Gamal Encryption (I)

Large prime P is known to the world

Generator g of Z*
P is known to the world

A picks random Private Key: X ∈ {1, 2, . . . , P-1}
A publishes Public Key: Y = gX (mod P)

B wishes to encrypt for A message M such that 0<M<P:

B picks at random K ∈ {1, 2, . . . , P-1}

B sends to A two values:

C1 = gK (mod P) and C2 = M•YK (mod P)

A computes C2 / C1
X = M (mod P)

Prof. Shlomo Kipnis 8 Fall 2007/2008

El-Gamal Encryption (II)

A BP - large prime
g - generator of Z*

P

Pick random
X in Z*

P

Pick random
K in Z*

P

Y = gX (mod P)

C1 = gK (mod P)

Compute
C2 / C1

X = M

Message M
such that 0 < M < P

C2 = M•YK (mod P)

Prof. Shlomo Kipnis 9 Fall 2007/2008

El-Gamal Signatures (I)

Large prime P is known to the world

Generator g of Z*
P is known to the world

A picks random Private Key: X ∈ {1, 2, . . . , P-1}
A publishes Public Key: Y = gX (mod P)

A wishes to sign message M such that 0<M<P-1:
A picks random K ∈ Z*

P that is relatively prime to P-1

A computes a = gK (mod P)

A computes b = K–1 • (M – X•a) (mod (P-1))

A sends the message M and the signature S = (a, b)

B verifies signature by checking if Ya • ab = gM (mod P)
Prof. Shlomo Kipnis 10 Fall 2007/2008

El-Gamal Signatures (II)

Signature is valid since:
Ya • ab = gM (mod P) iff b = K–1 • (M – X•a) (mod (P-1))

Signature is hard to forge since key K is random and
unknown to the attacker.

The scheme generates a per-message randomized
signature (using the random key K)

Prof. Shlomo Kipnis 11 Fall 2007/2008

Digital Signature Standard (I)

DSS – Digital Signature Standard (mid 1990’s)

Variation of El-Gamal and Schnorr signature schemes

DSS can be used only for signatures and not for
encryption or key-exchange

Uses the SHA-1 hash function

Uses a random per-message mask (key)

Prof. Shlomo Kipnis 12 Fall 2007/2008

Digital Signature Standard (II)

DSS parameters:

Random prime q (160 bits)

Prime p (between 512 and 1024 bits), such that q
divides p-1

Number g = h(p-1)/q (mod p), where h is a number
between 1 and p-1, such that g is greater than 1

Private Key: Random X such that 1< X < q

Public Key: Y = gX (mod P)

Random Per-Message Mask: 1 < K < q

3

Prof. Shlomo Kipnis 13 Fall 2007/2008

Digital Signature Standard (III)

Signature:

Given message M (any length)

Compute H(M), where H is the hash function SHA-1

Compute r = (gK (mod p)) (mod q)

Compute s = (K–1 • (H(M) + X•r)) (mod q)

Signature of M is the pair (r, s)

Send message M of any length and the signature (r, s)
of length 320 bits

Prof. Shlomo Kipnis 14 Fall 2007/2008

Digital Signature Standard (IV)

Verification:

Received message M’

Received signature (r’, s’)

Compute H(M’), where H is the hash function SHA-1

Compute w = (s’)-1 (mod q)

Compute u1 = H(M’) • w (mod q)

Compute u2 = (r’) • w (mod q)

Compute v = ((gu1 • Yu2) (mod p)) (mod q)

Test whether v = r’

Prof. Shlomo Kipnis 15 Fall 2007/2008

RSA Key Generation

Pick two large primes – p and q – about 500 bits each

Compute – N = p • q – result will be about 1000 bits

Compute Φ(N) = (p-1)(q-1)

Pick e relatively prime to Φ(N) – that is GCD(e,Φ(N)) = 1

Calculate d inverse of e modulo Φ(N):
(that is – calculate d such that d • e = 1 +k • Φ(N))

Public Key: (e,N)

Private Key: (d,N)

Prof. Shlomo Kipnis 16 Fall 2007/2008

RSA Encryption & Decryption

Encryption:

Use public-key (e,N) to encrypt message M<N:
C = Me (mod N)

Send only C

Decryption:

Use private-key (d,N) to decrypt cipher C<N:
M = Cd (mod N)

Prof. Shlomo Kipnis 17 Fall 2007/2008

RSA Signature & Verification

Signature:

Use private-key (d,N) to sign message M<N:
S = Md (mod N)

Send both M and S

Verification:

Use public-key (e,N) to check signature S on message M:
check whether Se = M (mod N)

Prof. Shlomo Kipnis 18 Fall 2007/2008

RSA Key-Exchange

A has private key (dA,NA) and public key (eA,NA)

B has private key (dB,NB) and public key (eB,NB)

A and B wish to create a new symmetric key K:

A sends an encrypted random R1 to B: (R1)
eB (mod NB)

B sends an encrypted random R2 to A: (R2)
eA (mod NA)

A recovers R2 and computes: K = H(R1 ⊕ R2)

B recovers R1 and computes: K = H(R1 ⊕ R2)

4

Prof. Shlomo Kipnis 19 Fall 2007/2008

Why RSA Works

Need to show that (Me)d = Med = M (mod N)

Consider modulo P:
Med = MkΦ(N)+1 (mod P)

= M•MkΦ(N) (mod P)
= M•Mk(p-1)(q-1) (mod P)
= M•(M(p-1))k(q-1) (mod P)
= M•(1)k(q-1) (mod P)
= M (mod p)

Same argument holds modulo q

Chinese Remainders Theorem – argument holds for N
Prof. Shlomo Kipnis 20 Fall 2007/2008

RSA Key Generation Considerations

Primes p and q should be of about the same length
(about half the length of N).

Primes p and q should be unrelated.

Public exponent e can be small. This will increase the
efficiency of encryption and of signature verification:
- with e = 3 encryption will be 2 multiplications
- with e = 216 + 1 encryption will be 17 multiplications

Private exponent d must be large to disallow searching
on small values.

Use different p, q, N, e, d for different users.

Prof. Shlomo Kipnis 21 Fall 2007/2008

RSA Encryption Considerations

Message should not be small:

M=1 gives C=1

Small M and small e can produce C that is less than
the modulo N. In this case the attacker can compute
the e-th root of C to reveal M

Message should be random:

To avoid identifying old messages from their ciphers

To encrypt differently for different users

To overcome message size issues
Prof. Shlomo Kipnis 22 Fall 2007/2008

RSA Multiplicative Nature

RSA has a multiplicative nature:

If messages M1 and M2 encrypt to ciphers C1 and C2,
then the message M1

i•M2
j (mod N) encrypts to the

cipher C1
i•C2

j (mod N)

If the signatures of messages M1 and M2 are S1 and S2,
then the signature of message M1

i•M2
j (mod N) is

S1
i•S2

j (mod N)

The multiplicative nature of RSA is problematic for
applications such as encryption and signature

The multiplicative nature of RSA is exploited by some
applications such as anonymous cash, voting, etc.

Prof. Shlomo Kipnis 23 Fall 2007/2008

RSA Blinding

Signing an unknown message:

Having someone sign some message M without
letting him know what he signs:
- pick a random number r
- compute b = re (mod N)
- compose new (random) message X = M • b (mod N)
- let the signature of X be Y = Xd (mod N)
- compute signature S of M as S = Y / r (mod N)

Useful in anonymous cash, voting, etc.

BUT - can also get the decryption of some message by
blindly signing a “random” text

Prof. Shlomo Kipnis 24 Fall 2007/2008

RSA Padding

Pad the message M is a particular frame with:

fixed fields to identify the message

random fields to randomize the operation

Padding the message:

passes distinguishability tests

prevents detection of repeated messages

allows using small messages M

allows using small public exponents e

5

Prof. Shlomo Kipnis 25 Fall 2007/2008

PKCS #1 Version 1.5

PKCS – Public Key Cryptographic Standards – define
how to use the RSA schemes properly

PKCS #1 version 1.5:

00 02 padding 00 message

First two bytes are 0002

Next eight bytes are random pad (not 0)

Used in SSL and SSH

Still subject to chosen plaintext attack (about 106 texts)
Prof. Shlomo Kipnis 26 Fall 2007/2008

PKCS #1 Version 2.0

PKCS #1 version 2.0:

Uses OAEP (Optimal Asymmetric Encryption Padding)

Use two cryptographic functions g() and h()

Cipher contains “proof” of knowledge of plaintext

0kplaintext random

ts

+

+

g()

h()

Prof. Shlomo Kipnis 27 Fall 2007/2008

Efficiency of Signature Schemes

All Schemes are computationally intensive

Always sign (short) hash of the message

RSA:

Key generation is very slow (primes p, q, etc.)

Signing is slow (large d)

Verifying can be fast (small e)

DSS:

Key generation is reasonable (primes p, q, etc.)

Signing is fast (most work can be done in advance)

Verifying is slow (many exponentiations)

Prof. Shlomo Kipnis 28 Fall 2007/2008

Summary – Required Key Lengths (est.)

Year AES RSA, DH, EG EC

1990 62 768 120

2000 70 1028 139

2010 78 1369 160

2020 86 1881 188

2030 93 2493 215

2040 101 3214 244

1

Prof. Shlomo Kipnis 1 Fall 2007/2008

Public-Key Cryptography III

Prof. Shlomo Kipnis
December 5, 2007

Prof. Shlomo Kipnis 2 Fall 2007/2008

Optimizing Cryptographic Algorithms

Symmetric cryptography is about 100 to 1000 times
faster than public-key cryptography

DH, El-Gamal, DSS, RSA require modular exponentiation
(that is, many modular multiplications) of big numbers

Brute-force approach – use specialized cryptographic
hardware accelerators

Software approach – optimize the algorithms used to
perform the arithmetic

Prof. Shlomo Kipnis 3 Fall 2007/2008

Modular Multiplication of Big Numbers

Need to calculate r = A • B (mod N)

Done in two steps:
x = A • B
r = x mod N

A, B, N may be numbers with thousands of bits

Computers do not support operations on such big
numbers – so we need to develop routines for
multiplying and dividing big numbers

Prof. Shlomo Kipnis 4 Fall 2007/2008

Multiplication of Big Numbers

To calculate A • B – view A and B as arrays of cells
(e.g., bytes, shorts, longs)

Cell multiplication is done using the computer’s cell
operations – using base b=2c (where c is the cell size):
bytes – base 28

shorts – base 216

longs – base 232

Time: n2 cell multiplications, where n is the number of
cells in A and B. (Note: additions are not counted.)

Prof. Shlomo Kipnis 5 Fall 2007/2008

Karatsuba’s Fast Multiplication (I)

Divide A into high half AH and low half AL

Divide B into high half BH and low half BL

Now, we have:
C = A•B = AH•BH•2k + AH•BL•2k/2 + AL•BH•2k/2 + AL•BL

= AH•BH•2k + (AH•BL + AL•BH)•2k/2 + AL•BL

(which use four half-size multiplications and some
additions)

Note that multiplication of a number by 2k is only a shift
left of the number by k positions

Prof. Shlomo Kipnis 6 Fall 2007/2008

Karatsuba’s Fast Multiplication (II)

But, we also have:
AH•BL + AL•BH = (AH + AL)•(BH + BL) – AH•BH – AL•BL

Therefore we get:
C = A•B = AH•BH•2k + AH•BL•2k/2 + AL•BH•2k/2 + AL•BL

= AH•BH•2k + [(AH+AL)•(BH+BL) – AH•BH – AL•BL]•2k/2 + AL•BL

(which use three half-size multiplications and some
additions)

Applying this scheme recursively 3 to 4 times can save
between 60% to 70% of the multiplications

2

Prof. Shlomo Kipnis 7 Fall 2007/2008

Division of Big Numbers (I)

We need to calculate Q = U / V with remainder r.
(Actually, we need to find r and not Q.)

We shall use cells in base b (as in the multiplication):
U = U1 U2 . . . Un

V = V1 V2 . . . Vn

Q = Q1 Q2 . . . Qn

We will normalize U and V (by left shifts) until we will
have V1 ≥ b/2 (where b is the base).

At the end of the division, we will de-normalize as
needed.

Prof. Shlomo Kipnis 8 Fall 2007/2008

Division of Big Numbers (II)

First verify that U (or whatever is left of U) ≥ V

Initial assessment for Qi (marked q below)
if (U1 = V1) q = b – 1
else q = (U1 • b + U2) / V1

Initial correction for q:
decrement q while V2 • q > (U1 • b + U2 – q • V1) • b + U3

Multiply q • V and decrement from U

A final (-1) correction for q might be needed

Prof. Shlomo Kipnis 9 Fall 2007/2008

Division of Big Numbers (III)

Time complexity of long division of cells:

- n2 operations of cell multiplication

- n operations of cell division

Prof. Shlomo Kipnis 10 Fall 2007/2008

Optimizing Modular Multiplication

Use largest cell possible on the computer:
doubling the cell size 4 times faster.

But remember – we need to obtain the full result of the
cell multiplication.
Example: If cell size = 32 bit, we need 64 bits of result.

Choose a convenient divisor (V1=1 and V2=0) if possible.

There is motivation to code certain parts in assembler.

Montgomery reduction (not explained here).

Prof. Shlomo Kipnis 11 Fall 2007/2008

Modular Exponentiation (I)

We want to compute d = AB mod N

Denote the bits of B as b[k-1] b[k-2] … b[1] b[0]

Algorithm 1 – Scanning the bits of the exponent from
least to most (from right to left).

Intuition – generate increasing powers of A, and
multiply by the relevant powers.
(Because the bits of B – b[k-1] b[k-2] …b[2] b[1] b[0]
correspond to the following powers of A –
A2k-1 A2k-2 … A4 A2 A)

Prof. Shlomo Kipnis 12 Fall 2007/2008

Modular Exponentiation (II)

Code for Algorithm 1:

P = A;

d = 1;

for i = 0 to k-1 do

{

if (b[i] == 1) d = d * P mod N;

P = P * P mod N;

}

return(d);

3

Prof. Shlomo Kipnis 13 Fall 2007/2008

Modular Exponentiation (III)

We want to compute d = AB mod N

Denote the bits of B as b[k-1] b[k-2] … b[1] b[0]

Algorithm 2 – Scanning the bits of the exponent from
most to least (from left to right).

Intuition – if d = AB mod N, then
AB0 mod N = d2 mod N
AB1 mod N = d2•A mod N

Prof. Shlomo Kipnis 14 Fall 2007/2008

Modular Exponentiation (IV)

Code for Algorithm 2:

d = 1;

for i = k-1 downto 0 do

{

d = d * d mod N;

if (b[i] == 1) d = d * A mod N;

}

return(d);

Prof. Shlomo Kipnis 15 Fall 2007/2008

Modular Exponentiation (V)

Time analysis of Algorithm 1 and Algorithm 2 shows that
both take, on the average, 3k/2 modular multiplications:

There is one modular multiplication in every round of
the loop (and there are k iterations of the loop)

There is one modular multiplication for every bit of 1
in B (and, on the average, B will have k/2 bits of 1)

Prof. Shlomo Kipnis 16 Fall 2007/2008

Optimizing Modular Exponentiation

If possible – choose convenient parameters:

Small exponent

Sparse exponent (few bits of 1)

Two scenarios:

Fixed base

Fixed exponent

Prof. Shlomo Kipnis 17 Fall 2007/2008

Fixed-Base Exponentiation (I)

Fixed-base exponentiation – compute gB (mod p)

Used in Diffie-Hellman, in El-Gamal, and in DSS

Idea: pre-compute powers of g once and use them later

Pre-computation (only once):
For each i = 0 … k-1, compute g[i] = g2i mod p

To compute gB (mod p), where B = b[k-1] b[k-2] … b[1] b[0],
multiply (in modulo p) all the g[i] for which b[i]=1

Space: k powers of g

Time: k/2 modular multiplications (on average)
Prof. Shlomo Kipnis 18 Fall 2007/2008

Fixed-Base Exponentiation (II)

One can reduce the number of computations even more at
the expense of using more space

Idea: pre-compute powers of g for k/w windows of w bits

Pre-computation (only once):
For each i = 0 … k/w-1 compute 2w powers of g:
(g2iw)0, (g2iw)1, (g2iw)2, (g2iw)3, . . . , (g2iw)(2w-1)

To compute gB (mod p), multiply the relevant powers

Space: (k/w)•2w powers of g

Time: (k/w)•(2w–1)/2w modular multiplications (on average)

4

Prof. Shlomo Kipnis 19 Fall 2007/2008

Fixed-Exponent Exponentiation (I)

Fixed-exponent exponentiation – compute MB (mod N)

Used in RSA

Idea: Divide B into k/w windows of w bits, and compute
the 2w powers of M once at the beginning:

For each i = 0 … 2w-1, compute MP[i] = Mi mod N

Compute MB (mod p), where B = b[k-1] b[k-2] … b[1] b[0],
by calculating values of successive w-bit windows in B,
and multiplying by the appropriate values of MP

Prof. Shlomo Kipnis 20 Fall 2007/2008

Fixed-Exponent Exponentiation (II)
MP[0] = 1;
MP[1] = M;
for i = 2 to 2W-1 do

MP[i] = (MP[i-1] * M) mod N;
d = 1;
j = w;
val = 0;
for i = k-1 downto 0 do
{

d = (d * d) mod N;
val = (2 * val) + b[i];
j = j – 1;
if (j == 0 || i == 0)
{

d = d * MP[val] mod N;
j = w;
val = 0;

}
}

Prof. Shlomo Kipnis 21 Fall 2007/2008

Fixed-Exponent Exponentiation (III)

Time: 2w-2 modular multiplications for pre-computation,
and k + (k/w) • (2w-1)/2w modular multiplications (on the
average) during the exponentiation

Optimal window size minimizes the expression:
(2w-2) + (k/w) • (2w-1)/2w (for a given k)

Example: k = 1024
w=4 => 254 modular multiplications
w=5 => 229 modular multiplications
w=6 => 230 modular multiplications
w=7 => 272 modular multiplications

Prof. Shlomo Kipnis 22 Fall 2007/2008

Fixed-Exponent Exponentiation (IV)

Improvement: Sliding window method with window of
size w-bits

Idea: Pre-compute the following powers of M:
M3, M5, M7 … M2w -1

and process the exponent in windows that start and end
with bits of 1

1

Prof. Shlomo Kipnis 1 Fall 2007/2008

People Authentication I

Prof. Shlomo Kipnis
December 10, 2007

Prof. Shlomo Kipnis 2 Fall 2007/2008

Authentication Objectives

User identification (name, id, etc.)

User validation (proof of identity)

Resource identification (name, address, etc.)

Resource validation (proof of identity)

Access control (permission lists)

Monitoring (online, offline)

Auditing (logs, books)

Other . . .

Prof. Shlomo Kipnis 3 Fall 2007/2008

Authentication Considerations

Accuracy Level

Validation Time

Processing Power

Operating Costs

System Reliability

Ease of Forging

Ease of Use

Portability

Transferability

Revocability

Prof. Shlomo Kipnis 4 Fall 2007/2008

Authentication Methods

1. Memorable Data – something the user knows:
PIN, passwords, pass phrases, personal information

2. Biometrics – something the user is/has:
finger prints, palm geometry, retina scan, iris scan,
face recognition, signature characteristics, typing
characteristics, DNA recognition

3. Tokens – something the user holds:
ID card, paper card, key, smart card, crypto token

Prof. Shlomo Kipnis 5 Fall 2007/2008

Passwords (I)

Desirable Properties:

Password should be easy to remember

Password should be hard to guess

Problem:

Cannot achieve desirable two properties above
with (current) humans

Prof. Shlomo Kipnis 6 Fall 2007/2008

Passwords (II)

Password length at a university (study in early 1990’s):

Length Number Percentage
1 55 0.4
2 87 0.6
3 212 2
4 449 3
5 1260 9
6 3035 22
7 2917 21
8 5772 42

2

Prof. Shlomo Kipnis 7 Fall 2007/2008

Passwords (III)

Common Situation:

Short passwords (between 4 and 8 characters)

English words (few thousands)

Names (few hundreds)

Personal data (easy to obtain)

Combinations of above (easy to compute)

Passwords are written somewhere (easy to find)

Some passwords are weak (find weakest point)

Password in many systems (break one – break all)

Prof. Shlomo Kipnis 8 Fall 2007/2008

Passwords (IV)

Attacks on Passwords:

Sniffing communication lines

Searching for passwords

Password guessing

Online dictionary attacks

Offline password cracking

Social engineering

Prof. Shlomo Kipnis 9 Fall 2007/2008

Passwords (V)

Internet Worm:

Created by student in Cornell in 1987

Broke to 1000’s of computers in several hours

Used holes in the email protocol

Searched passwords from a 400-word dictionary

Used same login on multiple computers

Had a bug which brought computers down – it
infected same computer many times

Prof. Shlomo Kipnis 10 Fall 2007/2008

Passwords (VI)

How / Where Passwords are Stored:

Not hidden and not access-protected (some PC’s)

Hidden but not access-protected (some appliances)

Access-protected (Unix, NT, other OS)

Encrypted (but where is the key stored)

Hashed (Unix, NT, other OS)

Protected server (distributed systems)

Prof. Shlomo Kipnis 11 Fall 2007/2008

Passwords (VII)

Unix “salt” Mechanism:

When user A opens an account, a password pwA is defined,
and a random 12-bit saltA is selected

The Unix password file stores both saltA and the value of
h(pwA, saltA) at the entry for user A

When a user attempts to log on as A and types some pw,
the system takes saltA from A’s entry in the file, computes
h(pw, saltA), and compares the result to what is stored in
the file. A match allows logging on.

This scheme makes online dictionary attacks infeasible (since
each password can be hashed in 4096 = 212 ways). This scheme
is not resilient against offline password cracking.

Prof. Shlomo Kipnis 12 Fall 2007/2008

Passwords (VIII)

Password breaking recipes:

Try default passwords used in standard system accounts

Exhaustively search all short passwords

Try words from online dictionaries

Collect and try data that is related to users (user names, family
member names, birth dates, identification numbers, etc.)

Try common combinations of user data (e.g., reverse writing,
adding digits at end of passwords, etc.)

Look for written passwords

Observe password typing patterns

3

Prof. Shlomo Kipnis 13 Fall 2007/2008

Passwords (IX)

Password breaking recipes (continued):

Use a Trojan horse to steal users’ passwords

Eavesdrop to communication lines

Get access to passwords files

Analyze the (hashed / encrypted) passwords file

Get from machine to machine with OS facilities and/or with
known passwords

Pretend to be a legitimate user and ask the administrator to
issue you a new password

Pretend to be a legitimate administrator and ask the user to
disclose the password

Prof. Shlomo Kipnis 14 Fall 2007/2008

Passwords (X)

System recommendations:

Educate users of importance of password security

Monitor user accounts for suspicious behavior

Lock account after a number of unsuccessful login attempts

Keep password file encrypted or hashed

Use password strengthening mechanisms (e.g. Unix salt)

Keep password files in secure locations (directories in the file
system, special servers, etc.)

Request users to change passwords frequently

Run password cracking tests and disallow weak passwords

Use passwords only as one factor in authentication process

Prof. Shlomo Kipnis 15 Fall 2007/2008

Passwords (XI)

Password selection recommendations:

Use combinations of letters, upper-case, lower-case, digits,
other characters

Change passwords frequently

Use different passwords in different systems

Use random passwords (8-10 characters long)

Use readable passwords (16-20 characters)

Use pass-phrases (30-40 character sentences)

Prof. Shlomo Kipnis 16 Fall 2007/2008

Passwords (XII)

Password Administration Scenario:
Admin: Passwords must be changed every 90 days

User: Changes the password to the same password

Admin: Check that password is changed to a new one

User: Changes the password and changes again to the old one

Admin: Tracks last n passwords and checks that password is new

User: Changes the password n+1 times and returns to old one

Admin: Disallows more than one password change per day

User: Changes to the same password with 1, 2, 3, … at the end

Admin: Disallows passwords that are “too similar” to old ones

User: Invents a random password and writes it down on paper

Prof. Shlomo Kipnis 17 Fall 2007/2008

Passwords (XIII)

Summary:

Accurate (positive & negative)

Secret user data

Secret server data

Easy to break

Simple to operate

Portable

Transferable

Not easily revocable

Prof. Shlomo Kipnis 18 Fall 2007/2008

Biometrics (I)

Biometrics consists of checking physical, biological or
physiological properties of a person

Certain properties are highly unique to each person

Need to select properties that are:

Easy to detect

Provide high levels of accuracy

Need to maintain database of biometrics parameters

4

Prof. Shlomo Kipnis 19 Fall 2007/2008

Biometrics (II)

Finger prints

Palm geometry

Retina scan

Iris scan

Face recognition

Signature characteristics

Typing characteristics

DNA recognition
Prof. Shlomo Kipnis 20 Fall 2007/2008

Biometrics (III)

Finger Prints:

2-D geometry

3-D geometry

Liveliness checks (pulse, temperature, etc)

Capacitance / resistance checks

Relatively accurate

Needs maintenance

Acceptance level is increasing

Prof. Shlomo Kipnis 21 Fall 2007/2008

Biometrics (IV)

Palm Geometry:

2-D geometry

Finger lengths

Finger widths

Gaps between fingers

Good accuracy

Low maintenance

High acceptance

Prof. Shlomo Kipnis 22 Fall 2007/2008

Biometrics (V)

Retina Scan:

2-D map of blood vessels

Blood vessels are warmer than
surrounding tissues

Detected by IR radiation

Highly accurate

Expensive (special equipment)

Invasive (low acceptance)

Prof. Shlomo Kipnis 23 Fall 2007/2008

Biometrics (VI)

Iris Scan:

2-D map of iris texture

Detection by camera

Relatively accurate

Inexpensive

Non-invasive (high acceptance)

Prof. Shlomo Kipnis 24 Fall 2007/2008

Biometrics (VII)

Face Recognition:

2-D image

Bone-muscle model

Under-skin thermal radiation

Detection by camera / IR

Good accuracy

Non-invasive

5

Prof. Shlomo Kipnis 25 Fall 2007/2008

Biometrics (VIII)

Signature Characteristics:

2-D image

Dynamic signature

Online test

Speed, pressure, angles, etc.

Highly accurate

Low maintenance

High acceptance

Prof. Shlomo Kipnis 26 Fall 2007/2008

Biometrics (IX)

Typing Characteristics:

Dynamic typing parameters

Speed, gaps, letter patterns

Online test

Could be tacit

Highly accurate

Low maintenance

High acceptance

Prof. Shlomo Kipnis 27 Fall 2007/2008

Biometrics (X)

DNA Recognition:

DNA matching against
known patterns

Sample could be taken
from external tissues

Highly accurate

Expensive (equipment)

Conceived as invasive

Not widely used (yet)

Prof. Shlomo Kipnis 28 Fall 2007/2008

Biometrics (XI)

Biometric System Components:

Sensor

Server

DB

Device

Biometric
Sample

Digitized
Sample

Sample
Query

Command

Prof. Shlomo Kipnis 29 Fall 2007/2008

Biometrics (XII)

Accuracy levels:

FAR – False Accept Ratio

FRR – False Reject Ratio

Accuracy
Level

Measurement
Complexity

FRR

FAR

Prof. Shlomo Kipnis 30 Fall 2007/2008

Biometrics (XIII)

Biometrics – Summary:

Not totally accurate (positive & negative)

Private data (not secret data)

Easy to steal data

Costly to operate

Portable

Non-transferable

Non-revocable

1

Prof. Shlomo Kipnis 1 Fall 2007/2008

People Authentication II

Prof. Shlomo Kipnis
December 12, 2007

Prof. Shlomo Kipnis 2 Fall 2007/2008

Authentication Tokens

Authentication Tokens:

Mechanical tokens

Cryptographic tokens

Assist in opening / remembering / computing

Prof. Shlomo Kipnis 3 Fall 2007/2008

Mechanical Tokens

Mechanical Tokens:

Keys (to physical locks)

Paper cards (passports, letters, documents, etc.)

Plastic cards (ID cards, bank cards, pass cards, etc.)

Prof. Shlomo Kipnis 4 Fall 2007/2008

Cryptographic Tokens

Cryptographic Tokens:

Password list cards

Password chain cards

Challenge-Response cards

One-Time-Password (OTP) cards

Prof. Shlomo Kipnis 5 Fall 2007/2008

Password List Cards (I)
Password List – Paper Card:

PW1
PW2
. . .

PWN Server

PW1

PW2

. . .
PWNPWi

User has paper list of N one-time passwords

User sends one password at a time

User erases used passwords

Server stores password list and compares to received passwords

Server disallows passwords that were used before
Need to re-instantiate the setup after N uses

Prof. Shlomo Kipnis 6 Fall 2007/2008

Password List Cards (II)

Password List – Memory Card:

PW1
PW2
. . .

PWN Server

PW1

PW2

. . .
PWNPWi

PWi

Card keeps N one-time passwords

User+Card send one password at a time

Card erases used passwords

Server stores password list and compares to received passwords

Server disallows passwords that were used before
Need to re-instantiate the setup after N uses

2

Prof. Shlomo Kipnis 7 Fall 2007/2008

Password List Cards (III)

Active “man-in-the-middle” attack:

Server

PW1

PW2

. . .
PWN

PWi

User sends password PWi to the server

Attacker pretends to be the server towards the user – it gets the
password PWi and informs the user that there is no service

Attacker later uses password PWi and pretends to be the user
towards the server

PW1
PW2
. . .

PWN

Attacker PWi

No Service
Try Later

Prof. Shlomo Kipnis 8 Fall 2007/2008

Password List Cards (IV)

Advantages:

Passwords can be arbitrarily strong

Passwords are one-time

Simple and inexpensive

Disadvantages:

Large storage at the user side

Large storage at the server side (for each user)

Method is sensitive to the user losing the card

Method is sensitive to breaking into the server

A “man-in-the-middle” attacker can steal and use passwords

Prof. Shlomo Kipnis 9 Fall 2007/2008

Password Chain Cards (I)

Password Chain – S/Key:

(X0 , N) Server XN

XN-i = H(N-i) (X0)

Hash
EngineXN-i

User card stores seed X0 and length N of a hash chain
Server stores end of the hash chain XN = H(N) (X0)
At use i, user gets and submits password XN-i = H(N-i) (X0)
Server accepts the user if XN-i+1 = H (XN-i)
User card replaces N with N-1
Server updates end of chain to be XN-i instead of XN-i+1

Prof. Shlomo Kipnis 10 Fall 2007/2008

Password Chain Cards (II)

Password Chain – Improvements:
Card can store several intermediate values between seed X0
and end XN in order to accelerate the computations.
Card can start from X0 and make N computations to find XN .
While doing so, card can record value of Xj , where j = 9N/10,
and so about 10% of future computations can start from Xj .
This scheme uses less storage and amortizes computation time.

X0 , . . .
Xj , . . .
N

Server XN

XN-i = H(N-i) (X0)

Hash
Engine

XN-i

Prof. Shlomo Kipnis 11 Fall 2007/2008

Password Chain Cards (III)

Active attacks:
Man-in-the-middle:
User sends a password to the server;
Attacker pretends to be the server and gets the password;
Attacker later uses the password to impersonate the user.

Server penetration:
Attacker creates a new hash chain from a seed known to it;
Attacker attempts to “plant” the end of the chain at the server.

Server XNXN-i

XN-i

Attacker

No Service
Try Later

(X0 , N)

Hash
Engine

XN-i

Change end
of chain

Prof. Shlomo Kipnis 12 Fall 2007/2008

Password Chain Cards (IV)

Advantages:

Passwords are strong

Passwords are one-time

Small storage at the user side

Small storage at the server side (for each user)

Method is insensitive to stealing data from the server

Disadvantages:

Requires hardware at the user side

Method is sensitive to the user losing the card

Method is sensitive to stealing and using passwords

Method is sensitive to injecting data at the server

3

Prof. Shlomo Kipnis 13 Fall 2007/2008

Challenge-Response Cards (I)

Challenge-Response Card:

Server
K

R = H(C, K)

K

Hash
Engine

C

user name

User activates card
User identifies to the server
Server sends challenge C to user
Card computes response R based on challenge C and secret K
Server verifies the response R using challenge C and secret K

Prof. Shlomo Kipnis 14 Fall 2007/2008

Challenge-Response Cards (II)

Types of challenges:

Sequence number (by user / by server)

Time stamp (by user / by server)

Random value (by server)

Properties:

User card with simple CPU and small storage

Server with strong CPU and small storage per user

Server needs to “remember” its challenge to each user

Prof. Shlomo Kipnis 15 Fall 2007/2008

Sequence Challenge Cards (I)

Sequence Challenge Card:

Server
K

R = H(Count, K)

K

Hash
Engine

user name

Count
Count

User activates card
User identifies to the server
Card computes value based on counter C and secret K
Server verifies the value using counter C and secret K
Option 1: Server maintains counter synchronization with each user

Option 2: Server sends its own counter as challenge

Count

Prof. Shlomo Kipnis 16 Fall 2007/2008

Sequence Challenge Cards (II)

Advantages:
Passwords are strong and one-time

Small storage at the user side

Small storage at the server side (for each user)

Some options may reduce communication load on the server

Disadvantages:
Requires hardware at the user side

Method is sensitive to the user losing the card

Some options require counter synchronization

Some options are sensitive to stealing and using passwords

Method is sensitive to injecting data at the server

Prof. Shlomo Kipnis 17 Fall 2007/2008

Time Challenge Cards (I)

Time Challenge Card:

Server
K

R = H(Time, K)

K

Hash
Engine

Time

user name

Time

User activates card
User identifies to the server
Card computes value based on current time T and secret K
Server verifies the value using current time T and secret K
Option 1: Server maintains clock synchronization with each user

Option 2: Server sends its own clock reading as challenge

Time

Prof. Shlomo Kipnis 18 Fall 2007/2008

Time Challenge Cards (II)

Advantages:
Passwords are strong and one-time

Small storage at the user side

Small storage at the server side (for each user)

Some options may reduce communication load on the server

Disadvantages:
Requires hardware at the user side

Method is sensitive to the user losing the card

Some options require time synchronization

Some options are sensitive to stealing and using passwords

Method is sensitive to injecting data at the server

4

Prof. Shlomo Kipnis 19 Fall 2007/2008

Random Challenge Cards (I)

Random Challenge Card:

Server
K

R = H(C, K)

K

Hash
Engine

C

user name

User activates card
User identifies to the server
Server sends random challenge C to user
Card computes response R based on random C and secret K
Server verifies the response R using random C and secret K
Server needs to “remember” its random challenge to each user

Random
Number

Generator

Prof. Shlomo Kipnis 20 Fall 2007/2008

Random Challenge Cards (II)

Advantages:
Passwords are strong and one-time

Small storage at the user side

Small storage at the server side (for each user)

No need to maintain synchronization between server and users

Method is resilient against stealing and using passwords

Disadvantages:
Requires hardware at the user side

Requires involvement of the server in any authentication

Method is sensitive to the user losing the card

Method is sensitive to injecting data at the server

Prof. Shlomo Kipnis 21 Fall 2007/2008

One-Time-Password Cards (I)

OTP Card – Option 1:

KServer

OTP = H(Time, K)

K

Hash
Engine

Time
PIN

user name

Time

User identifies to the server
User activates card by entering PIN
Card locks after several erroneous attempts of PIN
Card computes OTP based on time T and secret K
OTP is good only for 60 seconds
Server verifies OTP using time T and secret K

Prof. Shlomo Kipnis 22 Fall 2007/2008

One-Time-Password Cards (II)

OTP Card – Option 2:

K
PIN

Server

OTP = H(Time, K, PIN)

K

Hash
Engine

Time
PIN

user name

Time

User identifies to the server
User activates card and enters PIN
Card computes OTP based on time T, secret K, and user’s PIN
OTP is good only for 60 seconds
Server verifies OTP using time T, secret K, and user’s PIN
Server disqualifies card after several erroneous attempts

Prof. Shlomo Kipnis 23 Fall 2007/2008

One-Time-Password Cards (III)

Advantages:
Passwords are strong and one-time

Small storage at the user side

Small storage at the server side (for each user)

Method reduces communication load on the server

Method is insensitive to the user losing the card

Method is resilient against stealing and using passwords

Disadvantages:
Requires expensive hardware at the user side

Method requires time synchronization between server and users

Method is sensitive to injecting data at the server

Prof. Shlomo Kipnis 24 Fall 2007/2008

Crypto Tokens

Summary:

Highly accurate (positive & negative)

Secret data / code

Some tokens are hard to forge

Relatively easy to use

Operation may be costly

Portable

Some are transferable

Some are revocable

1

Prof. Shlomo Kipnis 1 Fall 2007/2008

Authentication Protocols I

Prof. Shlomo Kipnis
December 17, 2007

Prof. Shlomo Kipnis 2 Fall 2007/2008

One-Sided Authentication Protocols

Typically, clients authenticate to servers with:

Password protocols

Secret-key protocols

Typically, servers authenticate to clients or to other
servers with:

Secret-key protocols

Public-key protocols

Zero-Knowledge protocols

Prof. Shlomo Kipnis 3 Fall 2007/2008

Password Protocols (I)

A typical password authentication protocol:

Verifies
PWA

A

PWA

A S

Knows
PWA

A: h(PWA)
B: h(PWB)
C: h(PWC)

Prof. Shlomo Kipnis 4 Fall 2007/2008

Password Protocols (II)

A

PWA

Verifies
PWA

A S

Knows
PWA

A: h(PWA)
B: h(PWB)
C: h(PWC)

E

A

PWA

Verifies
PWA

Password sniffing and replay attack:

Prof. Shlomo Kipnis 5 Fall 2007/2008

Password Protocols (III)

Password guessing / cracking attack:

Verifies
PW2

A S

Knows
PWA

A: h(PWA)
B: h(PWB)
C: h(PWC)

E
A

PW1 Verifies
PW1

A

PW2

Prof. Shlomo Kipnis 6 Fall 2007/2008

Password Protocols (IV)

Advantages:

Simple implementations

No need for hardware at the client

Work with humans

Useful over secure channels

Disadvantages:

Password sniffing and replay attacks

Password guessing and cracking attacks

Dictionary attacks on password DB

2

Prof. Shlomo Kipnis 7 Fall 2007/2008

Secret-Key Protocols (I)

A S

Knows
KAS

Verifies
R = f(C, KAS)

A

Response R = f(C, KAS) A: KAS

B: KBS

C: KCS

Nonce C Selects
nonce C

Computes R

A typical secret-key protocol:

Prof. Shlomo Kipnis 8 Fall 2007/2008

Secret-Key Protocols (II)

Nonce C can be based on:

Counter

Time stamp

Random value

Function f can be:

Hash function (usually fast)

MAC function (usually fast)

Encryption function (usually slower than hash or MAC)

Prof. Shlomo Kipnis 9 Fall 2007/2008

Secret-Key Protocols (III)

A S

Knows
KAS

Checks R

A

Response R = g–1(C, KAS)

A: KAS

B: KBS

C: KCS

Nonce C = g(R, KAS)

Selects response R
and computes C

Retrieves R

Another secret-key protocol:

Prof. Shlomo Kipnis 10 Fall 2007/2008

Secret-Key Protocols (IV)

Function g should be invertible – an encryption function
might be the preferred choice

Nonce C is computed from a response R that can be
recognized by the client A and by the server S. The
response R should have a particular format and a
server-challenge field (such as a time stamp)

Protocol can achieve bi-directional authentication, since
the client can check that the response R indeed has the
right format and that the server-challenge is acceptable
(such as that the time stamp is correct)

Prof. Shlomo Kipnis 11 Fall 2007/2008

Secret-Key Protocols (V)

A S

Knows
KAS

Retrieves and
verifies time

A, R = h(time, KAS) A: KAS

B: KBS

C: KCS

A 1-message authentication protocol:

Properties:

Uses an invertible function h

Requires good clock synchronization

Allows attacks within time window

Server does not need to keep state for authentication
Prof. Shlomo Kipnis 12 Fall 2007/2008

Secret-Key Protocols (VI)

A S

Knows
KAS

Retrieves and
verifies time

A, time, R = H(time, KAS) A: KAS

B: KBS

C: KCS

Another 1-message authentication protocol:

Properties:

Uses a hash function H

Requires good clock synchronization

Can use very fine time window to prevent attacks

Server does not need to keep state for authentication

3

Prof. Shlomo Kipnis 13 Fall 2007/2008

Secret-Key Protocols (VII)

Advantages:

Resilient against sniffing and replay attacks

Resilient against key guessing and cracking

Efficient implementations of symmetric crypto

Some versions can achieve bi-directional authentication

Disadvantages:

Requires hardware at client and server

Might not be strong if keys are derived from passwords

Allows getting encryptions or decryptions of chosen texts

Possibility of attacks on key DB at the server

Prof. Shlomo Kipnis 14 Fall 2007/2008

Secret-Key Protocols (VIII)

Usage Notes:

Need to establish long-term secret keys KAS at the client and
the server

A random number is best as nonce, but they are expensive to
generate (especially at busy servers)

A time stamp as nonce is a good choice if clocks are highly
synchronized and if there are secure ways of re-synchronizing
clients and servers

A counter as nonce requires a non-volatile memory at the
server (so that it does not re-start its counter every time it is
shut down and restarted)

Prof. Shlomo Kipnis 15 Fall 2007/2008

Public-Key Protocols (I)

A typical public-key protocol:

A S

Knows
Prv(A)

Verifies R
using Pub(A)

A

Response R = F [C, Prv(A)]
A: Pub(A)
B: Pub(B)
C: Pub(C)

Nonce C
Selects
nonce C

Computes R

Prof. Shlomo Kipnis 16 Fall 2007/2008

Public-Key Protocols (II)

Nonce C can be based on:

Counter

Time stamp

Random value

Function F should be similar to a “signature” (as it uses
the client’s private key on some text)

The server verifies the “signature” using the client’s
public key

Prof. Shlomo Kipnis 17 Fall 2007/2008

Public-Key Protocols (III)

Another public-key protocol:

A S

Knows
Prv(A)

Checks R

A

Response R = F–1[C, Prv(A)]

A: Pub(A)
B: Pub(B)
C: Pub(C)

Nonce C = F [R, pub(A)]

Selects response R
and computes C

using Pub(A)

Retrieves R

Prof. Shlomo Kipnis 18 Fall 2007/2008

Public-Key Protocols (IV)

Function F should be similar to an “encryption” function
(as it uses the client’s public key on some text)

The client decrypts the “encrypted” challenge using its
private key

There is no short way of achieving a bi-directional
authentication in these protocols since everyone knows
the public key of the client

4

Prof. Shlomo Kipnis 19 Fall 2007/2008

Public-Key Protocols (V)

Advantages:

Resilient against sniffing and replay attacks

Resilient against key guessing and cracking

Servers do not store sensitive data

Disadvantages:

Slower implementations of asymmetric crypto

May require specialized hardware

Allows getting “decryptions” or “signatures” of chosen texts

Require using special frames (such as PKCS)

Possibility of learning something about private keys

Prof. Shlomo Kipnis 20 Fall 2007/2008

Public-Key Protocols (VI)

Problems:

Computing with the private key on values supplied by
another party may be interpreted as a “signature”

Public-key system may leak some information on the
private key in the computation:

Example: The Discrete Log Problem may leak low order bits
of the private key

Inefficient for authentication purposes due to the
overhead needed in padding and wrapping the data
to be “signed”

Prof. Shlomo Kipnis 21 Fall 2007/2008

Zero-Knowledge Protocols (I)

Party A has private-key Prv(A)

World knows public-key Pub(A)

Authentication protocol is based on Prv(A) and Pub(A)

Requirements:

Completeness – A will always succeed in proving its identity

Soundness – an imposter will fail with probability approaching 1

Zero-Knowledge – an eavesdropper will not gain any knowledge
about Prv(A)

Prof. Shlomo Kipnis 22 Fall 2007/2008

Zero-Knowledge Protocols (II)

Zero-Knowledge Protocol based on Discrete-Log Problem

Infrastructure:

Known to the World: large prime p

Known to the World: generator g of Z*
p

Private Key: A picks random x ∈ {1, 2, . . . , p-1}

Public Key: A publishes y = gx (mod p)

Prof. Shlomo Kipnis 23 Fall 2007/2008

Zero-Knowledge Protocols (III)

Every time that A wants to prove its identity to B:

Repeat the following process for t rounds:

1. Commit: A picks random value k ∈ {1, 2, . . . , p-1}
and sends to B the value s = gk (mod p)

2. Challenge: B sends to A random challenge c ∈ {0, 1}

3. Response: A sends to B response r = k+c•x (mod (p-1))

4. Verify: B checks whether gr = s•yc (mod p)

Prof. Shlomo Kipnis 24 Fall 2007/2008

Zero-Knowledge Protocols (IV)

Proof of the “completeness” property:

A knows the private key x. So, it can always commit on some
random value k, compute the random value s, get a random
challenge c, and respond with correct value r that will convince
B that A passes the verification test.

Note: In the case of a challenge c = 0, the response r does not
involve the private key x.

Note: In the case of a challenge c = 1, the response r involves
the private key x in a way that an eavesdropper cannot learn
the value of x since a random k is added to x to produce the
response r.

5

Prof. Shlomo Kipnis 25 Fall 2007/2008

Zero-Knowledge Protocols (V)

Proof of the “soundness” property:
Imposter E does not know x. The protocol requires E to commit
to some value s before getting a challenge c. E has two options.

Option 1: E prepares to a challenge of c = 0.

- E chooses random k and commits to the value s = gk (mod p).
- If c is indeed 0, then E replies with r = k and passes the test.

- But if c is 1, then E does not know the correct value r = k + x.

Option 2: E prepares to a challenge of c = 1.

- E chooses random k and commits to the value s = gk / y (mod p).
- If c is indeed 1, then E replies with r = k and passes the test.

- But if c is 0, then E does not know the correct value r = k – x.

In each of the t verification rounds, E will fail with probability ½.
Therefore, E will fail in the verification with probability 1 – (½)t.

Prof. Shlomo Kipnis 26 Fall 2007/2008

Zero-Knowledge Protocols (VI)

Proof of the “zero knowledge” property:
The three values < s, c, r >, which are exchanged in each round
of the protocol, are uniformly distributed over the three spaces
< Z*

p , {0,1} , Z*
p >. In addition, these three values satisfy the

relationship gr = s•yc (mod p) for fixed p, g, and y.

However, one can generate any number of such triplets without
knowing the value of x as follows:

- pick a random r in Z*
p

- pick a random c in {0,1}

- compute s = gr / yc (mod p)

This means that seeing any number of “correct” such triplets
< s, c, r > does not leak any knowledge of x.

Prof. Shlomo Kipnis 27 Fall 2007/2008

Zero-Knowledge Protocols (VII)

Improvements to the Zero-Knowledge Protocol based on
the Discrete-Log Problem:

Selecting the value of c in the protocol to be between 0 and 2n–1
will reduce the success probability of an imposter from ½ to (½)n.
This allows cutting the number of rounds by a factor of n while
attaining the same success probability of a n imposter.

In each round, the party wishing to prove its identity picks n
independent random values: k1, k2, . . . , kn and commits to n
independent values: s1, s2, . . . , sn. The verifying party provides
n independent challenges: c1, c2, . . . , cn, and then the proving
party responds with n responses: r1, r2, . . . , rn. This allows cutting
the number of rounds by a factor of n.

Prof. Shlomo Kipnis 28 Fall 2007/2008

Zero-Knowledge Protocols (VIII)

Transforming a ZK Proof into a ZK Signature:
Pick t random values k1, k2, . . . , kt and commit to t
random values s1, s2, . . . , st (where si = gki (mod p))
Concatenate the t commitment values s1, s2, . . . , st to
the message M and call the result M*

Take a hash of M* and use the bits of H(M*) as the
challenge bits c1, c2, . . . , ct

The signature will consist of:
- the message M
- the t commitments s1, s2, . . . , st

- the t responses r1, r2, . . . , rt, for ri = ki + ci • x (mod (p-1))

1

Prof. Shlomo Kipnis 1 Fall 2007/2008

Authentication Protocols II

Prof. Shlomo Kipnis
December 19, 2007

Prof. Shlomo Kipnis 2 Fall 2007/2008

Mutual Authentication Protocols

Mutual authentication is done when both the client
needs to authenticate to the server and the server
needs to authenticate to the client

Each side can use a different method to authenticate:

Password protocols

Secret-key protocols

Public-key protocols

Usually, the more sensitive party will request that the
less sensitive party will authenticate first

Prof. Shlomo Kipnis 3 Fall 2007/2008

Symmetric Mutual Authentication (I)

A B
Knows

KAB

Verifies
F(C1 , KAB)

A

R1 = F(C1 , KAB)

C1

Knows
KAB

B

R2 = F(C2 , KAB)

C2

Verifies
F(C2 , KAB)

Prof. Shlomo Kipnis 4 Fall 2007/2008

Symmetric Mutual Authentication (II)

A B
Knows

KAB

Verifies
F(C1 , KAB)

A , C2

B , C1 , R2 = F(C2 , KAB)

Knows
KAB

R1 = F(C1 , KAB)

Verifies
F(C2 , KAB)

Optimized (3 messages instead of 6 messages), while
reversing the order of the authentication:

Prof. Shlomo Kipnis 5 Fall 2007/2008

Symmetric Mutual Authentication (III)

Reflection attack (with 2 sessions) on optimized protocol:

X B

Does Not
Know KAB

Verifies
F(C1 , KAB)

A , C2

B , C1 , R2 = F(C2 , KAB)
Knows

KAB

R1 = F(C1 , KAB)

X B

Does Not
Know KAB

A , C1

B , C3 , R1 = F(C1 , KAB) Knows
KAB

abort session

Prof. Shlomo Kipnis 6 Fall 2007/2008

Symmetric Mutual Authentication (IV)

Reflection attack (with 2 sessions) on optimized protocol:

A and B know KAB and X tries to impersonate as A
In session #1:

X sends to B challenge C2

B sends to X challenge C1

In session #2:
X sends to B challenge C1

B replies to X with R1 = F(C1 , KAB)

Back in session #1:
X sends to B the value R1 = F(C1 , KAB) from session #2

B verifies F(C1 , KAB) and believes X to be A

2

Prof. Shlomo Kipnis 7 Fall 2007/2008

Symmetric Mutual Authentication (V)

Optimized (4 messages instead of 6 messages), while
preserving the order of the authentication:

A B

Knows
KAB

Verifies
F(C1 , KAB)

A , C2

B , C1

Knows
KAB

R1 = F(C1 , KAB)

Verifies
F(C2 , KAB)

R2 = F(C2 , KAB)

Prof. Shlomo Kipnis 8 Fall 2007/2008

Symmetric Mutual Authentication (VI)

Ways to overcome reflection attacks:

Preserve order in the authentication process:
the client should finish its authentication before the
server finishes its authentication

Use different types of messages:
“from client to server” and “from server to client”

Introduce an additional self-nonce before applying
the authentication function:
- A sends to B nonce C1

- B replies to A with N1 and with R1 = F(C1 , N1, KAB),
where N1 is a new nonce introduced by B

Prof. Shlomo Kipnis 9 Fall 2007/2008

Asymmetric Mutual Authentication (I)

A B

Knows Prv(A)
and Pub(B)

Verifies R1
with Pub(A)

A

R1 = F(C1 , Prv(A))

C1

Knows Prv(B)
and Pub(A)

B

R2 = F(C2 , Prv(B))

C2

Verifies R2
with Pub(B)

Prof. Shlomo Kipnis 10 Fall 2007/2008

Asymmetric Mutual Authentication (II)

Optimized (4 messages instead of 6 messages), while
preserving the order of authentication:

A B

Knows Prv(A)
and Pub(B)

Verifies R1
with Pub(A)

A , C2

B , C1

Knows Prv(B)
and Pub(A)

R1 = F(C1 , Prv(A))

Verifies R2
with Pub(B)

R2 = F(C2 , Prv(B))

Prof. Shlomo Kipnis 11 Fall 2007/2008

Session Key Establishment (I)

Principles:

Use the long-term (symmetric or asymmetric) keys
only infrequently to authenticate the parties and to
establish session keys

Session keys will be used to encrypt and authenticate
data transmitted between the two parties after initial
authentication of the parties

The establishment of a session key should be tied to
the authentication protocol between the parties

Prof. Shlomo Kipnis 12 Fall 2007/2008

Session Key Establishment (II)

Creating a session key from values exchanged in a
secret-key authentication:

Use the values of the nonce C1, the nonce C2, and
the long-term key KAB to create the session key K

Use a function K = g(KAB , C1 , C2) that cannot be
easily predicted or injected into the protocols

Such schemes do not protect conversations that were
held in the past and/or conversations that will be
held in the future (if the attacker manages to break
into party A or party B and steal the key KAB)

3

Prof. Shlomo Kipnis 13 Fall 2007/2008

Session Key Establishment (III)

Protecting past conversations with secret keys:

Change the secret key shared between party A and party B on
a regular basis at predetermined time periods

Let KAB[i] be the i-th secret key

Option 1: At the end of time period i, send KAB[i+1] encrypted
with KAB[i] from one party to the other

Option 2: At the end of time period i, compute KAB[i+1] from
KAB[i] using a one-way function at both parties

If key KAB[i] is revealed by an attacker, past conversations that
were protected with KAB[j], for j < i, cannot be broken

If key KAB[i] is revealed by an attacker, future conversations
that will be protected with KAB[j], for j ≥ i, can be broken

Prof. Shlomo Kipnis 14 Fall 2007/2008

Session Key Establishment (IV)

Protecting past & future conversations with secret keys:

Change the secret key shared between party A and party B on
a regular basis at predetermined time periods

Let KAB[i] be the i-th secret key

There is no relation between keys KAB[i] and KAB[j], for j ≠ i

Option: At the end of time period i, physically install new key
KAB[i+1] at parties A and B

If key KAB[i] is revealed by an attacker, past conversations that
were protected with KAB[j], for j < i, cannot be broken

If key KAB[i] is revealed by an attacker, future conversations
that will be protected with KAB[j], for j ≥ i, cannot be broken

Prof. Shlomo Kipnis 15 Fall 2007/2008

Session Key Establishment (V)

Creating a session key from values exchanged in a
public-key authentication:

Option 1: Party A invents a session key K and sends it to party
B encrypted with B’s public key. After the session, both parties
erase K.

Problem: Attacker E can impersonate party A.

Option 2: Party A invents a session key K and sends it to party
B encrypted with B’s public key and signed with A’s private key.
After the session, both parties erase K.

Problem: Attacker E that breaks into party B will be able to
understand past conversations.

Prof. Shlomo Kipnis 16 Fall 2007/2008

Session Key Establishment (VI)

Creating a session key from values exchanged in a
public-key authentication (continued):

Option 3: Party A invents a random number C1 and sends it
to party B encrypted with B’s public key. Party B invents a
random number C2 and sends it to party A encrypted with A’s

public key. Both parties compute session key K = C1 ⊕ C2. In
this scheme there is no need to sign the messages. After the
session, both parties erase K.

Problem: Attacker E that breaks into both party A and party B
will be able to understand past conversations.

Prof. Shlomo Kipnis 17 Fall 2007/2008

Session Key Establishment (VII)

Creating a session key from values exchanged in a
public-key authentication (continued):

Option 4: Authenticated Diffie-Hellman Key Exchange.
There is a large prime p and a generator g of Z*

p.
Party A picks a random X and sends to B the value gX (mod p).
Party B picks a random Y and sends to A the value gY (mod p).
Both parties compute session key K = gXY (mod p).
After the session, both parties erase X, Y and K.
Note: The D-H key shares may need to be signed.

Property: Session keys are always new. Attacker E that breaks
into both party A and party B cannot learn anything about past
conversations and about future conversations.

Prof. Shlomo Kipnis 18 Fall 2007/2008

Session Key Establishment (VIII)

Creating a session key from values exchanged in a
one-sided public-key authentication:

Assume that only party B has public/private keys.

Option 1: Party A invents a session key K and sends it to party
B encrypted with B’s public key. After the session both parties
erase K.

Option 2: Party A and party B perform a D-H key exchange.
Only party B signs its D-H key share.

Property: In both options above, only party B authenticates to
party A. However, party B is assured that it is speaking with
the same party all the time. Authentication of party A can be
done later (for instance, by using a password protocol).

4

Prof. Shlomo Kipnis 19 Fall 2007/2008

Protecting User Passwords (I)

Schemes for protecting user passwords between
user A and server B:

Option 1: Party A and party B perform an unauthenticated D-H
key exchange. Party A then sends its password encrypted with
the key K = gXY (mod p) to party B.

Problem: Attacker can impersonate B towards Party A.

Option 2: Party A and party B perform a D-H key exchange in
which only party B authenticates itself (or its D-H key share).
Party A then sends its password to party B encrypted with the
key K = gXY (mod p).

Problem: Party A needs to be able to authenticate party B.

Prof. Shlomo Kipnis 20 Fall 2007/2008

Protecting User Passwords (II)

Schemes for protecting user passwords between
user A and server B (continued):

Option 3: Party B sends nonce C to party A. Party A encrypts
nonce C under a key derived from its password.

Problem: Attacker can launch off-line dictionary attacks on the
encrypted password.

Option 4: Party A uses one-time passwords derived from a
password chain with a seed x1 = h(pw). Party B keeps the end
of the hash chain.

Problem: Attacker can steal passwords by impersonating the
server (party B).

Prof. Shlomo Kipnis 21 Fall 2007/2008

Protecting User Passwords (III)

Schemes for protecting user passwords between
user A and server B (continued):

Option 5: Strong Password Protocol.
Party A and party B both know w = h(pw).
Party A sends Ew(gX (mod p)) to party B.
Party B sends Ew(gY (mod p)) to party A.
Both parties compute key K = gXY (mod p).
Party A sends EK(C1) to party B.
Party B sends EK(C2 C1) to party A.
Party A sends EK(C2) to party B.

Attacker cannot identify password w since, for each value of w
yields possible values of gX (mod p) and gY (mod p).

Prof. Shlomo Kipnis 22 Fall 2007/2008

Authentication Principles (I)

Use message frames to distinguish directionality and to
distinguish functionality

Add type and direction information to packets

Use different functions for party authentication,
message authentication, encryption, signatures, etc.

Use only strong and well tested functions

Use only proven (tested) authentication protocols

Authenticate each party separately in the protocols

Derive communication keys immediately following the
authentication

Prof. Shlomo Kipnis 23 Fall 2007/2008

Authentication Principles (II)

Expose master key minimally
Space – disk, main memory, etc.

Time – only for short durations

Use – only to derive session keys

Authority – only to authorized programs

Derive session keys from master key
Session keys to be used in communication

Master key only to generate / protect session keys

Change session keys at pre-defined frequency
Based on time

Based on amount of data

Prof. Shlomo Kipnis 24 Fall 2007/2008

Authentication Principles (III)

Use different keys for different security functions
(authentication, encryption, signatures, etc.)

Use different keys for different directions of
communication

Use good nonce in protocols to defuse replay attacks

Add own random values to messages before hashing or
signing them

Anchor initial authentication in nonce that cannot be
predicted or derived in the protocols

5

Prof. Shlomo Kipnis 25 Fall 2007/2008

Authentication Principles (IV)

Use passwords rarely and carefully

Protect passwords in the communication protocols

Add characteristics information to each session (session
ID, sequence numbers, etc.)

Prof. Shlomo Kipnis 26 Fall 2007/2008

Nonce Selection

Nonce – unique identifier that does not repeat

Nonce = sequence number:
Requires counter synchronization

Might be predicted from protocols

Nonce = time stamp:
Requires time synchronization

Might be predicted from protocols

Nonce = random number:
Cannot be predicted from protocols

Requires good random number generators

1

Prof. Shlomo Kipnis 1 Fall 2007/2008

Symmetric Key Distribution

Prof. Shlomo Kipnis
December 24, 2007

Prof. Shlomo Kipnis 2 Fall 2007/2008

Symmetric Key Distribution

Symmetric Key Distribution between Two Parties:

1. Party A physically gives party B the key in a secure
manner

2. Parties A and B deliver the key in a secure manner
(under the protection of another key)

3. A trusted third party physically gives parties A and B
the key in a secure manner

4. A trusted third party delivers the key to parties A
and B in a secure manner (under the protection of
other keys)

Prof. Shlomo Kipnis 3 Fall 2007/2008

Symmetric Key Systems

N entities – O(N2) symmetric keys

KA,B – symmetric key for A and B

Administration Problems:

Adding new entities

Removing existing entities

Changing keys

C

D

E

Z
B

A

Prof. Shlomo Kipnis 4 Fall 2007/2008

Trusted Third Parties

Trusted Third Party (TTP) – another party (besides the
communicating parties A and B) that is responsible for
managing the ”trust” in the system

Types of TTP:

Key Distribution Centers (in symmetric systems)

Certificates Authorities (in asymmetric systems)

Prof. Shlomo Kipnis 5 Fall 2007/2008

Key Distribution Centers (I)

Key Distribution Center (KDC)

N entities – O(N) symmetric keys

KA – symmetric master key
between A and KDC

Administration Issues:

Easy to add new entities

Easy to remove existing entities

Easy to change entities keys

C

D

E

Z
B

A

KDC

Prof. Shlomo Kipnis 6 Fall 2007/2008

Key Distribution Centers (II)

Advantages:

Centralized administration

One point of high security

Easy system extendibility

Easy function extendibility

Disadvantages:

KDC must be online

KDC is point of high security

Much communication through KDC

KDC may be performance bottleneck

C

D

E

Z
B

A

KDC

2

Prof. Shlomo Kipnis 7 Fall 2007/2008

KDC Operation

A wishes to communicate securely with B

A requests from KDC a session-key with B

KDC creates a symmetric session-key KAB

KDC communicates KAB securely to A
(protected with KA)

KDC communicates KAB securely to B
(protected with KB)

A and B can now communicate securely

B

A

KDC

KA

KB

A: KA

B: KB

C: KC

KDC

DB

Prof. Shlomo Kipnis 8 Fall 2007/2008

Intranet KDC Scenario (I)

A wishes to communicate securely with B:

1. A contacts KDC and requests a session-key with B

2. KDC sends to A a symmetric session-key KAB

(protected with KA)

3. KDC also sends to B the symmetric session-key KAB

(protected with KB)

4. A contacts B and requests to initiate a secure session

Prof. Shlomo Kipnis 9 Fall 2007/2008

Intranet KDC Scenario (II)

3.
K A,B

pro
tec

ted
 by

 K B

1. Session-Key Request

4. Session Request

2. K
A,B protected by K

A

BA

KDC

KA KB

KA KB

Prof. Shlomo Kipnis 10 Fall 2007/2008

Intranet KDC Scenario (III)

Scenario Properties:

KDC needs to contact B

B may be offline or busy

KDC is loaded with entity requests

A needs to be notified when B is ready

Scenario is good in tightly connected systems, and
when KDC can be loaded

Prof. Shlomo Kipnis 11 Fall 2007/2008

Internet KDC Scenario (I)

A wishes to communicate securely with B:

1. A contacts KDC and requests a session-key with B

2. KDC sends to A a symmetric session-key KAB

(protected with KA)

3. KDC also sends to A the symmetric session-key KAB

protected with KB – this is called ticket TKTB

4. A provides to B the ticket – TKTB – in order to initiate
a secure session

Prof. Shlomo Kipnis 12 Fall 2007/2008

Internet KDC Scenario (II)

4. Ticket TKTB

3. Ticket TKT
B

BA

KDC

KA KB

KA KB

1. Session-Key Request
2. K

A,B protected by K
A

3

Prof. Shlomo Kipnis 13 Fall 2007/2008

Internet KDC Scenario (III)

Scenario Properties:

A needs to deliver all data to B

KDC does not need to contact B

KDC does not need to keep state of requests

B is only contacted if and when A wishes to talk

Scenario is good in loosely connected systems,
where contact responsibility is with A, and where
KDC cannot be loaded

Prof. Shlomo Kipnis 14 Fall 2007/2008

Extranet KDC Scenario (I)

A wishes to communicate securely with B:

1. A contacts B and requests to hold a secure session

2. B contacts KDC and requests a session-key with A

3. KDC sends to B a symmetric session-key KAB

(protected with KB)

4. KDC also sends to B the symmetric session-key KAB

protected with KA – this is called ticket TKTA

5. B provides to A the ticket – TKTA – in order to have
A initiate the secure session

Prof. Shlomo Kipnis 15 Fall 2007/2008

Extranet KDC Scenario (II)

BA

KDC

KA KB

KA KB

5. Ticket TKTA

4.
Tick

et
TKT A

1. Session Request

3.
K A,B

pro
tec

ted
 by

 K B

2.
Se

ssi
on

-K
ey

 R
eq

ue
st

Prof. Shlomo Kipnis 16 Fall 2007/2008

Extranet KDC Scenario (III)

Scenario Properties:

B needs to deliver all data to A

KDC cannot / does not need to contact A

KDC does not need to keep state of requests

B is the contact point for the communication

Scenario is good in extranet-type systems, where
contact responsibility is with specific terminals, and
where KDC cannot be reached from outside

Prof. Shlomo Kipnis 17 Fall 2007/2008

Sample KDC Protocol (I)

Sample KDC Protocol with 4 Messages:

1. A → KDC : A, B, N1
A contacts the KDC with a request to establish a
secure session with B. The nonce N1 is used to
disallow replays of the protocol.

2. KDC → A : EKA(KAB, A, B, N1), EKB(KAB, B, A)
KDC sends A the session key KAB and the session
identification information A, B, and N1 encrypted
under key KA. In addition, KDC sends A a ticket for
B that contains the session key KAB and the session
identification information B and A.

Prof. Shlomo Kipnis 18 Fall 2007/2008

Sample KDC Protocol (II)

Sample KDC Protocol with 4 Messages (continued):

3. A → B : A, B, N2, EKAB(A, B, N2), EKB(KAB, B, A)
A sends B the session identification information A and
B, the nonce N2, the authenticator EKAB(A, B, N2),
and the ticket EKB(KAB, B, A) that it obtained from
the KDC.

4. B → A : B, A, EKAB(B, A, N2+1)
B sends A the session identification information B and
A, and the authenticator EKAB(B, A, N2+1).

1

Prof. Shlomo Kipnis 1 Fall 2007/2008

Kerberos

Prof. Shlomo Kipnis
December 26, 2007

Prof. Shlomo Kipnis 2 Fall 2007/2008

Kerberos History

Developed at MIT in early 1980’s

Computing shift from mainframes to workstations

Pools of distributed workstations connected to servers

Concept of ”Network Credentials”

Two commercial and non-compatible versions V4 and V5

Principles and systems are relevant until today

Concepts incorporated in DCE, AFS, NFS, NT, etc.

Prof. Shlomo Kipnis 3 Fall 2007/2008

Kerberos Environment (I)

KRB

WS1
S1

User A

Users Terminals Servers

WS2
S2

User B

WS3
S3

User C

Prof. Shlomo Kipnis 4 Fall 2007/2008

Kerberos Environment (II)

KRB consists of:

AS – Authentication Server

TGS – Ticket Granting Server

DB – Data Base of entity keys

Separation between two actions:

Authentication – logging into the “network”

Communication – holding a session between two parties

Prof. Shlomo Kipnis 5 Fall 2007/2008

Kerberos V4 Architecture (I)

Kerberos implements the ”Internet Scenario”

User A has password PWA to authenticate to KRB

KRB stores key KA that is derived from password PWA

Server B has key KB to authenticate to KRB

KRB stores key KB that is identical to the server’s key

Workstations are stateless – they don’t know the users and
their passwords, and they don’t have keys

Kerberos provides tickets to the source party (A+WS) that
requested the session, and it does not bother the destination
party (B)

Prof. Shlomo Kipnis 6 Fall 2007/2008

Kerberos V4 Architecture (II)

WSA
PWA

1 2
3

5

7

8

6

DBAS

TGS

KRB

A: KA
B: KB

BKB

4

2

Prof. Shlomo Kipnis 7 Fall 2007/2008

Kerberos V4 Protocols (I)

User A sits at workstation WS and enters his name ”A”.
At this point the new entity “A+WS” is created.

1

2

Acquiring Network Credentials:

Workstation WS contacts the Authentication Server (AS) on behalf
of user A and requests ”Network Credentials” to the entity A+WS.

Workstation WS sends to AS the following data in the clear:
< A, WS, TGS, Timestamp1 >.

Workstation WS does not yet know password PWA of user A, so
there is no way to authenticate user A to Kerberos at this point.

Prof. Shlomo Kipnis 8 Fall 2007/2008

Kerberos V4 Protocols (II)

User A now enters his password PWA.

Workstation WS computes key KA = h(PWA) and erases password
PWA from its memory.

Workstation WS decrypts the encrypted “Network Credentials”
(NCA+WS) with the key KA and erases key KA from its memory.

3

4

Acquiring Network Credentials (continued):

Authentication Server AS checks whether user A is permitted to log
in to the network from workstation WS, and if so it replies to A+WS
with the following encrypted “Network Credentials”:
NCA+WS = EKA (< KA,TGS, TGS, Timestamp2, Lifetime2, TKTTGS >), where
TKTTGS = EKKRB (< KA,TGS, A, WS, TGS, Timestamp2, Lifetime2 >).

Prof. Shlomo Kipnis 9 Fall 2007/2008

Kerberos V4 Protocols (III)

When user A wishes to get service from server B, workstation WS
contacts the Ticket Granting Server (TGS) and requests a ticket for
server B. The request consists of:
< B, TKTTGS, Auth3 >, where
Auth3 = EKA,TGS (< A, WS, Timestamp3 >).

5

6

Establishing Connection with Server:

Ticket Granting Server TGS checks whether user A is permitted to
get service to server B from workstation WS, and if so it replies to
A+WS with the following encrypted “Service Credentials”:
SCA+WS = EKA,TGS (< KA,B, B, Timestamp4, Lifetime4, TKTB >), where
TKTB = EKB (< KA,B, A, WS, B, Timestamp4, Lifetime4 >).

Prof. Shlomo Kipnis 10 Fall 2007/2008

Kerberos V4 Protocols (IV)

7

Establishing Connection with Server (continued):

8

Workstation WS decrypts the encrypted SCA+WS with the key KA,TGS.

Workstation WS contacts the server B to request a secure session.
The “Service Request” is:
SRB = < TKTB, Auth5 >, where
Auth5 = EKA,B (< A, WS, Timestamp5 >).

Server B decrypts the encrypted ticket TKTB with the key KB.

Server B decides whether it wishes to provide service to A+WS, and
if so it replies to A+WS with the following authentication data:
< Auth6 > = EKA,B (< Timestamp5 + 1 >).

Prof. Shlomo Kipnis 11 Fall 2007/2008

Kerberos V5 Architecture(I)

V5 improves over V4:

Standard message byte ordering

Multiple network address types

Multiple encryption algorithms

Arbitrary ticket lifetimes

Improved protocols

Authentication forwarding, proxying, postdating

Inter-realm authentication

Prof. Shlomo Kipnis 12 Fall 2007/2008

Kerberos V5 Architecture (II)

WSA
PWA

1 3
4

5

7

8

6

DBAS

TGS

KRB

A: KA
B: KB

BKB

2

3

Prof. Shlomo Kipnis 13 Fall 2007/2008

Kerberos V5 Architecture (III)

Standard message byte ordering:
V4 message structure is determined by the sender

V5 messages are defined with Abstract Syntax Notation (ASN.1)

Multiple network address types:
V4 uses IP addresses

V5 allows other types of addresses

Multiple encryption algorithms:
V4 uses DES for encryption

V5 allows specifying different kinds of encryption algorithms

Arbitrary ticket lifetimes:
V4 ticket lifetimes is limited by 1280 minutes

V5 ticket lifetimes can be arbitrarily long
Prof. Shlomo Kipnis 14 Fall 2007/2008

Kerberos V5 Architecture (IV)

Authentication forwarding, proxying, and postdating:

V5 allows forwarding credentials from one client to another

V5 allows proxying of credentials

V5 allows issuing postdated tickets

Inter-realm authentication:

V5 includes “realm” in the authentication protocols

Improved protocols:

V5 introduces a pre-authentication step between client and AS

V5 eliminates double encryption in messages

V5 changes the encryption mode (from PCBC to CBC)

V5 negotiates sub-session keys by the client and the server

Prof. Shlomo Kipnis 15 Fall 2007/2008

Kerberos V5 Protocols (I)

User A sits at workstation WS and enters his name ”A”.

At this point the new entity “A+WS” is created.

1

2

Acquiring Network Credentials:

User A enters his password PWA.

Workstation WS computes key KA = h(PWA) and erases password
PWA from its memory.

Workstation can optionally compute some pre-authentication data
from the user’s password.

Prof. Shlomo Kipnis 16 Fall 2007/2008

Kerberos V5 Protocols (II)

3

4

Acquiring Network Credentials (continued):

Authentication Server AS checks whether user A is permitted to
log in to the network from workstation WS, and if so it replies to
A+WS with the following two items:
(1) < RealmA, A, WS, TKTTGS >
(2) EKA (< KA,TGS, Times2, Nonce1, RealmTGS, TGS >)
where TKTTGS = EKKRB (< KA,TGS, RealmA, A, WS, Times2 >).

Workstation WS decrypts the encrypted item (2) with key KA.

Workstation WS contacts the Authentication Server (AS) on behalf
of user A and requests ”Network Credentials” to the entity A+WS.

Workstation WS sends to AS the following data in the clear:
< A, WS, RealmA, TGS, Times1, Nonce1 >, where
Times1 gives the time validity interval, and Nonce1 is random value.

There is also an option of sending the pre-authentication data.

Prof. Shlomo Kipnis 17 Fall 2007/2008

Kerberos V5 Protocols (III)

When user A wishes to get service from server B, workstation WS
contacts the Ticket Granting Server (TGS) and requests a ticket for
server B. The request consists of:
< B, Times3, Nonce3, TKTTGS, Auth3 >, where
Auth3 = EKA,TGS (< A, WS, RealmA, Timestamp3 >).

5

6

Establishing Connection with Server:

Ticket Granting Server TGS checks whether user A is permitted to
get service to server B from workstation WS, and if so it replies to
A+WS with the following two items:
(1) < RealmA, A, WS, TKTB >
(2) EKA,TGS (< KA,B, Times4, Nonce3, RealmB, B >)
where TKTB = EKB (< KA,B, RealmA, A, WS, Times4 >).

Prof. Shlomo Kipnis 18 Fall 2007/2008

Kerberos V5 Protocols (IV)

7

Establishing Connection with Server (continued):

8

Workstation WS decrypts the encrypted item (2) sent by the TGS
with key KA,TGS.

Workstation WS contacts server B and requests to hold a session by
sending the following:
< TKTB, Auth5 >, where
Auth5 = EKA,B (< A, WS, RealmA, Timestamp5, Subkey, Seq# >).
The fields Subkey and Seq# are optional.

Server B decrypts the encrypted ticket TKTB with the key KB.

Server B decides whether it wishes to provide service to A+WS, and
if so it replies to A+WS with the following authentication data:
< Auth6 > = EKA,B (< Timestamp5, Subkey, Seq# >).

4

Prof. Shlomo Kipnis 19 Fall 2007/2008

Kerberos V5 Flags and Options (I)
INITIAL:

Indicates that a ticket was issued by AS and not by a TGS.

PRE-AUTHENT:
Indicates that the user was pre-authenticated by some means before
a TGS ticket was issued.

HW-AUTHENT:
Indicates that the user was authenticated with a hardware token before
a TGS ticket was issued.

RENEWABLE:
Tells TGS that this ticket can be used to obtain a replacement ticket
that expires at a later date.

MAY-POSTDATE:
Tells TGS that a post-dated ticket may be issued based on this ticket-
granting ticket.

POSTDATED:
Indicated that this ticket has been postdated.

Prof. Shlomo Kipnis 20 Fall 2007/2008

Kerberos V5 Flags and Options (II)

INVALID:
Indicates that this ticket is invalid and must be validated by the TGS
before use.

PROXYABLE:
Tells TGS that a new service-granting ticket with a different network
address may be issued based on this ticket.

PROXYABLE:
Indicates that this ticket is a proxy.

FORWARDABLE:
Tells TGS that a new ticket-granting ticket with different network address
may be issued based on this ticket-granting ticket.

FORWARDED:
Indicates that this ticket has either been forwarded or that it was issued
based on authentication involving a forwarded ticket.

Prof. Shlomo Kipnis 21 Fall 2007/2008

Kerberos Keys (I)

Kerberos holds one master Key DB

Kerberos allows several read-only replicas of the Key DB

Each replica Key DB should be updated regularly from
the master Key DB in a secure manner (encrypted and
authenticated)

Key and password updates are done only on the master
copy of the Key DB

Updates of the replica Key DB may take some time

Kerberos allows several simultaneous key versions
Prof. Shlomo Kipnis 22 Fall 2007/2008

Kerberos Keys (II)

Kerberos session key between client and server can be
used for a long time

Client and server may wish to use different versions of
the session key to hold several communications in the
same session

Client may suggest usage of a “sub-key” and “seq-num”
in a given session, in order to distinguish between
different communications in the same session

Prof. Shlomo Kipnis 23 Fall 2007/2008

Kerberos Database (I)

name – name of the entity

key – master key of the entity

kvno – version number of the master key

max_life – maximal time for tickets

max_renewable_life – maximal time to renew tickets

k_kvno – version number of the Kerberos key under
which the key in this entry is encrypted

expiration – time when this entry will expire

Prof. Shlomo Kipnis 24 Fall 2007/2008

Kerberos Database (II)

mod_date – date of last modification

mod_name – name of last modifier

flags – are tickets forwardable, proxyable, postdateable

pw_expiration – time when password will expire

last_pw_change – time of last change of password

last_success – time of last successful login

5

Prof. Shlomo Kipnis 25 Fall 2007/2008

Kerberos Realms (I)

Each realm (domain) manages its own entities

Inter-realm communication is enabled by having one
KRB realm be a client of another KRB realm, and by
issuing tickets to communicate between realms

V4 allows communication only between entities in
neighboring realms

V5 allows communication between entities in realms
that can be reached by any chain of KRB realms

Prof. Shlomo Kipnis 26 Fall 2007/2008

Kerberos Realms (II)

WSAPWA
1 3

4

5

9

10

BKB

6

DB2AS2

TGS2

KRB2

KRB1: KKRB1
B: KB

DB1AS1

TGS1

KRB1

A: KA
KRB2: KKRB2

7

8

2

Prof. Shlomo Kipnis 27 Fall 2007/2008

DCE

DCE – Distributed Computing Environment

Created by the OSF (Open Software Foundation) in the
early 1990’s.

Extended Kerberos in several ways:

Addition of Privilege Server (PS) that defines authorizations
of different principals (users, computers, other entities)

Inclusion of privilege data in tickets

Definition of access control lists to support privileges

Prof. Shlomo Kipnis 28 Fall 2007/2008

DCE Architecture

WSAPWA
1

3
4

5

9

10

BKB

67

8

Authentication
and

Authorization

AS

TGS

DCE

A: KA
B: KB

PS

2

1

Prof. Shlomo Kipnis 1 Fall 2007/2008

Public-Key Systems

Prof. Shlomo Kipnis
December 31, 2007

Prof. Shlomo Kipnis 2 Fall 2007/2008

Public-Key Management (I)

N entities – O(N) asymmetric keys:

Prv(A) – private key of A

Pub(A) – public key of A

Management Issues:

Creating public/private keys

Distributing public keys

Revoking public keys

A: Pub(A)
B: Pub(B)
C: Pub(C)

A

B

C

D

E

Z

Prof. Shlomo Kipnis 3 Fall 2007/2008

Public-Key Management (II)

Creating Public/Private Keys:

Client creates the public/private keys. Client keeps
the private key secret and publishes the public key.

One of many public servers creates the public/private
key-pair. The server gives the client the private key
(in a secure manner), and it publishes the public key.

A highly secure Trusted-Third-Party creates the
public/private key-pair. It gives the client both the
private key and the public key (in a secure manner).

Prof. Shlomo Kipnis 4 Fall 2007/2008

Public-Key Management (III)

Distributing Public Keys:

Physical delivery to destination entities (and possibly
also physical installation at such entities)

Attachments to documents (such as E-mail docs,
Word docs, etc.)

Publication on public directories (such as bulletin
boards, LDAP servers, and web sites)

An official public-key authority that provides the
public key upon request

Prof. Shlomo Kipnis 5 Fall 2007/2008

Public-Key Management (IV)

Revoking Public Keys:

Revocation reasons:

Entity left the organization

Private key of entity was compromised

Distribution of periodic Public-Key Revocation Lists

Distribution of periodic Public-Key Activation Lists

Clients need to check at public-key directories for the
validity of public keys before using them

Prof. Shlomo Kipnis 6 Fall 2007/2008

Public-Key Management (V)

Problems:

A: Pub(A)
B: Pub(B)
C: Pub(C)

A

B

C

D

E

Z

Authenticating the public-key
information (the name of the
owner, the public key, the
validity of the pubic key, etc.)

Man-in-the-middle attacks (an
opponent replaces the correct
public key with another public
key, for which the private key is
known to the opponent)

Revocation of public keys

2

Prof. Shlomo Kipnis 7 Fall 2007/2008

Public-Key Certificates (I)

Certificate is an official document
that stands to authenticate the
data contained in it

This is to
certify that
A has the
public-key

Pub(A)

CA

Public-Key Certificate is an official
document that stands to authenticate
the binding of a particular entity with
the public-key of that entity:

Public-Key Certificate of A = < A, Pub(A) > authenticated

Prof. Shlomo Kipnis 8 Fall 2007/2008

Public-Key Certificates (II)

Certificate Properties:

It contains information that identifies its owner

It contains the certified public-key of the owner

It contains information about the validity period

It may contain some usage policies

It may contain additional extension fields

It is signed by a known authority (called a Certification Authority)

This is to
certify that

A has the
public-key

Pub(A)

CA

Prof. Shlomo Kipnis 9 Fall 2007/2008

Public-Key Certificates (III)

Certificate Properties (continued):

The certificate and the information in it
are not secret

The certificate cannot be forged

The certificate can be issued for specific
purposes and duration

The certificate can be revoked if and
when required

This is to
certify that

A has the
public-key

Pub(A)

CA

Prof. Shlomo Kipnis 10 Fall 2007/2008

Certification Authorities (I)

A Certification Authority is a body that authenticates
data in certificates

Authentication is with Private-Key of the Certification Authority

Verification is with Public-Key of the Certification Authority

Prv(CA) – must be highly confidential

Pub(CA) – must be known and highly trusted

Prof. Shlomo Kipnis 11 Fall 2007/2008

Certification Authorities (II)

Certificate Authority (CA)

N entities – O(N) asymmetric keys

Prv(A) – stored only at A
Pub(A) – signed by CA

Administration Issues:
Creating public/private keys

Creating certificates

Distributing certificates

Revoking certificates

Distributing public key of CA

A: [[Pub(A)]]
B: [[Pub(B)]]
C: [[Pub(C)]]

A

B

C

D

E

Z
CA

DIR

Prof. Shlomo Kipnis 12 Fall 2007/2008

Certification Authorities (III)

Advantages:

Communication does not involve CA

Certificates are not sensitive

Parties can have multiple CA’s

CA can be offline

Disadvantages:

CA needs to be highly secure

Problem of certificate revocation

A: [[Pub(A)]]
B: [[Pub(B)]]
C: [[Pub(C)]]

A

B

C

D

E

Z
CA

DIR

3

Prof. Shlomo Kipnis 13 Fall 2007/2008

Certification Authorities (IV)

Certificate Issuance:

A wishes to certify its public key – Pub(A)

A communicates with some CA in a secure manner

The CA verifies the identity of A (by whichever means that are
determined by the operational policies of CA)

The CA creates a PK-Certificate – containing “A” and “Pub(A)”

The CA returns the PK-Certificate to A

The CA keeps a record of A, of A’s public key, of the time, and
of the certificate issued to A

Note: The CA does not need to know Prv(A)
Prof. Shlomo Kipnis 14 Fall 2007/2008

Certification Authorities (V)

Certificate Distribution:

A may post the PK-certificate on public directories and on
web sites

A may attach the PK-certificate to documents that it sends
to others

A may communicate the PK-certificate to parties demanding
to identify A

Note: It is A’s responsibility to update or to renew the
PK-certificate as necessary (change of data, extension
of validity, lost private key, etc.)

Prof. Shlomo Kipnis 15 Fall 2007/2008

Certification Authorities (VI)

Certificate Revocation:

Party A may contact the CA to revoke its certificate

CA may initiate the revocation of A’s certificate

CA needs to issue CRL’s – Certificate Revocation Lists
on a regular basis

CRL’s should be published at “Revocation Servers”

The Revocation Servers and the CRL’s should be
approached by clients wishing to check the validity of
certain certificates

Prof. Shlomo Kipnis 16 Fall 2007/2008

Certification Authorities (VII)

Certificate Verification:

Party B, wishing to verify Pub(A), needs to check the integrity of
the PK-certificate and the CA’s signature on it. The public key of
the CA is assumed to be known to all and is highly trusted.

Party B needs also to check that the PK-certificate has not been
revoked (by checking relevant certificate-revocation directories)

Note: It is B’s responsibility to validate the data in the
PK-certificate as necessary (name, information, validity
time, etc.)

Prof. Shlomo Kipnis 17 Fall 2007/2008

X.509 Certificates

The X.509 standard is part of the X.500 series of
standards for distributed directory services

The X.509 standard defines a framework for the
provision of public-key authentication

Topics:

X.509 Certificate Structure

X.509 Certificate Fields

X.509 Certificate Extensions

Prof. Shlomo Kipnis 18 Fall 2007/2008

X.509 Certificate Structure

X.509 Version

Serial Number

Signature Parameters

Certificate Issuer

Not Before

Not After

Subject Details

Subject Public Key

Extensions

Signature

4

Prof. Shlomo Kipnis 19 Fall 2007/2008

X.509 Certificate Fields (I)

X.509 Version – current version is 3, older versions are
supported for compatibility

Serial Number – of the certificate in the issuer’s domain

Signature Parameters – algorithm and parameters of
the issuer’s public key

Certificate Issuer – name and details of issuer

Not Before – start of certificate validity period

Not After – end of certificate validity period

Prof. Shlomo Kipnis 20 Fall 2007/2008

X.509 Certificate Fields (II)

Subject Details – name and details of entity to which
the certificate is issued

Subject Public Key – algorithms, parameters, and
values of the public key of the entity to which the
certificate is issued

Extensions – variety of options to include additional
information in the authenticated certificate

Signature – of the issuer on all the fields of the
certificate

Prof. Shlomo Kipnis 21 Fall 2007/2008

X.509 Certificate Extensions (I)

Authority Key Identifier – which CA key was used

Subject Key Identifier – which entity key is certified

Key Usage – authentication, encryption, signatures, etc.

Extended Key Usage – applications and protocols in
which the key can be used

CRL Distribution Point – location of server(s) where
relevant Certificate Revocation Lists can be found

Certificate Policies – additional policy on certificate usage

Prof. Shlomo Kipnis 22 Fall 2007/2008

X.509 Certificate Extensions (II)

Policy Mapping – between domains

Subject Alternative Name – non-standard names

Issuer Alternative Name – non-standard names

Subject Directory Attributes – certificate owner attributes

Basic Constraints – basic trust constraints

Path Length Constraints – for path exploration

Name Constraints – for CA certificates

Policy Constraints – for CA certificates

1

Prof. Shlomo Kipnis 1 Fall 2007/2008

Public-Key Infrastructure

Prof. Shlomo Kipnis
January 9, 2008

Prof. Shlomo Kipnis 2 Fall 2007/2008

CA Trust Models (I)

Need for CA Trust Models:

Zillions of entities need certificates

Different non-cooperative CA’s in different domains (financial,
health, legal, business, military, government, etc.)

One CA cannot handle all entities

Need to handle multiple CA’s and interconnections between
them

Notation: CA << X >> stands for a certificate that
was issued by CA for entity X.

Prof. Shlomo Kipnis 3 Fall 2007/2008

CA Trust Models (II)

Hierarchical Model:

A B C D

X

F

Y

E G

Z

R

Root CA is trusted by all entities

Hierarchy (tree) of CA’s

Path starts at root

Prof. Shlomo Kipnis 4 Fall 2007/2008

CA Trust Models (III)

Hierarchical Model:

Proposed originally in late 1980’s in the context of the PEM
(Privacy Enhanced Mail) standard

Never really caught due to lack of compliance to one standard
and one root CA

Used internally in hierarchical organizations (large corporations,
financial institutions, military, etc.)

Party A, wishing to identify party D, needs to obtain a chain of
certificates of the form R << Y >> and Y << D >>

In the hierarchical model, each node in the tree needs to obtain
a certificate from its parent in the tree

Prof. Shlomo Kipnis 5 Fall 2007/2008

CA Trust Models (IV)

Enterprise Model:

A

B

C D

W

F

X

E

G
Y

Z H

I
Each CA certifies its own entities

Network of cross certification between CA’s

Paths go through intermediate CA’s

Prof. Shlomo Kipnis 6 Fall 2007/2008

CA Trust Models (V)

Enterprise Model:

Used since the early 1990’s as a convenient way to interconnect
organizations that maintain business connections

In wide use today, since it correlates well to inter-operational
characteristics of organizations

Party A, wishing to identify party F, needs to obtain a chain of
certificates of the form W << X >>, X << Y >>, and Y << F >>

In the enterprise model, each “leaf” node needs to obtain a
certificate from its parent “enterprise” node

In addition, an “enterprise” node needs to issue and to obtain
cross-certificates to (some) peer “enterprise” nodes

2

Prof. Shlomo Kipnis 7 Fall 2007/2008

CA Trust Models (VI)

Flat Model:

A B

X

C D E

Y

F G H

Z

List of trusted CA’s

Paths are immediate (one step)

Used in Internet Browsers

Prof. Shlomo Kipnis 8 Fall 2007/2008

CA Trust Models (VII)

Flat Model:

Used since the early 1990’s in Internet Browsers and in other
software packages

Correlates well with trust models that are used in the regular
business world today (credit cards, id cards, driver license, etc.)

To identify party E, there is a need to obtain either a certificate
of the form X << E >> or a certificate of the form Y << E >>

In the flat model, each “leaf” node needs to obtain a certificate
from one of many possible CA’s (Microsoft, GTE CyberTrust,
Verisign, Thawte, Valicert, Certisign, etc.)

Prof. Shlomo Kipnis 9 Fall 2007/2008

CA Trust Models (VIII)

Personal Model:

B

A

ME

C

E

D

F

H

G

Web-of-Trust (centered at ME)

Each user acts as CA to others

Trust threshold in paths

Used in PGP

Prof. Shlomo Kipnis 10 Fall 2007/2008

CA Trust Models (IX)

Personal Model:

Used since the early 1990’s in the PGP (Pretty Good Privacy)
package and in other utilities

Very popular with individuals wishing to define their own
web-of-trust

In the personal model, trust is gained either by immediate (one
level) certificate, or by several chains of certificates that “build
up” the level of trust (using threshold functions)

To identify party E, there is a need to obtain one chain of
certificates of the form (ME << A >> and A << E >>) AND/OR
another chain of the form (ME << B >> and B << E >>) AND/OR
another chain of the form (ME << C >> and C << E >>)

Prof. Shlomo Kipnis 11 Fall 2007/2008

CA Trust Models (X)

Summary:

No universally accepted trust model

Many models, policies, and interconnections

Existing solutions are incomplete

Problems:

Certificate path exploration

Checking certificate policies

Certificate revocation

Certificate lifetime management

Prof. Shlomo Kipnis 12 Fall 2007/2008

Public-Key Infrastructure

Infrastructure

PKI Technologies

PKI Services

Certification Services

Certificate Management

Certificate Revocation Lists

Certificate Activation Lists

3

Prof. Shlomo Kipnis 13 Fall 2007/2008

PK Infrastructure

Public-Key Infrastructure (PKI):

General Architecture

Availability

Reliability

Predictability

Comprehensive

Transparency

Standard API

Application Enabling

Prof. Shlomo Kipnis 14 Fall 2007/2008

PKI Technologies

Symmetric Cryptography – DES, 3-DES, AES:

Advantages: Cost, Speed, Simplicity

Disadvantages: Scale, Key Distribution

Hash Functions – MD5, SHA-1, HMAC:

Advantages: Cost, Speed, Simplicity, Size Reduction

Asymmetric Cryptography – DH, El-Gamal, DSS, RSA:

Advantages: Scale, Key Distribution, Signatures, Key Exchange

Disadvantages: Cost, Speed, Complexity

Prof. Shlomo Kipnis 15 Fall 2007/2008

PKI Services (I)

Policy Authority – defining policies

Certification Authority – certifying public keys

Registration Authority – registering clients

Certificate Repository – for holding certificates

Certificate Revocation – for canceling certificates

Key Backup – to overcome key losses

Key Recovery – to overcome key losses

Key Update – to renew keys automatically

Key Archive – to hold old keys

Cross Certification – to communicate between domains
Prof. Shlomo Kipnis 16 Fall 2007/2008

PKI Services (II)

Authentication – of parties

Integrity – of data

Confidentiality – of data

Non Repudiation – of documents

Secure Communication – between parties

Time Stamping – providing authenticated time services

Notarization – providing authenticated notary services

Data Archive – storing important data securely

Policy Management – enforcing policies

Prof. Shlomo Kipnis 17 Fall 2007/2008

Certificate Management (I)

Certificate Initialization:

Entity registration

Key-pair generation

Certificate creation

Key distribution

Certificate distribution

Key backup

Prof. Shlomo Kipnis 18 Fall 2007/2008

Certificate Management (II)

Certificate Lifetime:

Certificate storage

Certificate retrieval

Certificate validation

Path validation

Key recovery

Key update

4

Prof. Shlomo Kipnis 19 Fall 2007/2008

Certificate Management (III)

Certificate Cancellation:

Certificate expiration

Certificate revocation

Key history

Key archive

Data archive

Prof. Shlomo Kipnis 20 Fall 2007/2008

Certificate Management (IV)

Certificate Renewal:

Key-pair generation

Certificate creation

Key distribution

Certificate distribution

Key backup

Key history

Key archive

Old certificate archive

Prof. Shlomo Kipnis 21 Fall 2007/2008

Certificate Revocations Lists (I)

A Certificate Revocation List (CRL) is a signed data
structure that contains a list of revoked certificates

Integrity and authenticity of CRL is provided through
the digital signature on the CRL

Protocols that communicate the CRL do not need to
authenticate it

To improve performance, CRL’s can be cached and
contain references to the certificates serial numbers
rather than to the full certificates

Prof. Shlomo Kipnis 22 Fall 2007/2008

Certificate Revocations Lists (II)

Complete CRL – complete list of revoked certificates.
List must be issued regularly and be signed by the CA.

CRL Distribution Points – indication in the certificate
where to find information about certificate status.

Delta CRL – signed differential list of revoked
certificates. List must be signed by the CA.

Authority Revocation Lists (ARL) – list of CA’s that are
revoked. Must be signed by another CA.

Prof. Shlomo Kipnis 23 Fall 2007/2008

CRL Structure (I)

Signature

Extensions

……
List Of Revoked Certificates

Serial Number and Revocation Date
……

Next CRL Update

Issue Date

Issuer

Signature Parameters

Version

Prof. Shlomo Kipnis 24 Fall 2007/2008

CRL Structure (II)

Version – of CRL. current version is 1.

Signature Parameters – algorithm and parameters

Issuer – name and details of issuer

Issue Date – of this CRL

Next Issue Date – of next CRL

List of Revoked Certificates – serial number and date of
revocation for each revoked certificate

Signature – of the CA on the CRL

5

Prof. Shlomo Kipnis 25 Fall 2007/2008

CRL Schemes (I)

Complete CRL:

All the revocation information of a certain CA is kept
in a single CRL

Problems:

Scalability – CRL postings and downloads become
very large

Timeliness – CRL should have a long validity period,
since CRL downloads requires much time

Prof. Shlomo Kipnis 26 Fall 2007/2008

CRL Schemes (II)

CRL Distribution Points:

Standard method to partition the CRL information
among multiple distribution points

Client can find the distribution point in the
“Distribution Point” field stated in the certificate
extensions

Improves performance and scalability

Prof. Shlomo Kipnis 27 Fall 2007/2008

CRL Schemes (III)

Delta CRL:

Standard method to post timely revocation
information without requiring a complete CRL or CRL
Distribution Point update

Can be used in conjunction with CRL Distribution
Points to enhance performance, scalability, and
timeliness

Improves performance and scalability

Prof. Shlomo Kipnis 28 Fall 2007/2008

CRL Schemes (IV)

ARL:

Similar to a CRL, but instead of holding a list of
revoked certificates belonging to clients, it holds a
list of the revoked certificates belonging to CA’s

It is shorter, more security-sensitive, and should be
checked more often then CRLs

Usually ARL’s should be empty

Prof. Shlomo Kipnis 29 Fall 2007/2008

On-Line Revocation Service

On-Line Revocation Service (OLRS):

On-line service that returns status (“revoked” or
“valid”) of one or more certificates

Similar to credit card verification mechanism

Also known as OCSP (Online Certificates Status
Protocol)

Documented in RFC 2560

Prof. Shlomo Kipnis 30 Fall 2007/2008

Certificate Activation Lists (CAL)

Certificate Activation List (CAL):

List of all valid certificates (serial numbers and
hashes of certificate for each serial number)

Should be signed by the CA

Problems:

CAL is likely to be much larger than CRL

CAL might change more frequently

1

Prof. Shlomo Kipnis 1 Fall 2007/2008

Network Layer Security I

Prof. Shlomo Kipnis
January 14, 2008

Prof. Shlomo Kipnis 2 Fall 2007/2008

Networking Layers (I)

Communication is handled in several layers:

Link Layer –protocols that communicate data
between devices on the same physical media

Network Layer – protocols that route packets
between devices on different physical media

Transport Layer – protocols that handle
communication sessions between two stations

Application Layer – protocols that handle the
communication of objects in applications

Prof. Shlomo Kipnis 3 Fall 2007/2008

Networking Layers (II)

Link Layer

Network Layer

Transport Layer

Application Layer
Applications such as browser,
email, file transfer, etc.

Transport protocols and API
such as TCP, UDP, X.25 etc.

Communication with IP
(Internet Protocol)

Communication over Ethernet,
Token-Ring, Wireless LAN, etc.

Prof. Shlomo Kipnis 4 Fall 2007/2008

Layers Along Path

Link

Network

Link

Network

Transport

Application

Link

Network

Transport

Application

Link

Network

R
O
U
T
E
R

R
O
U
T
E
R

Prof. Shlomo Kipnis 5 Fall 2007/2008

Link Layer Addressing – use of physical network
addresses – Media Access Control (MAC) addresses
consist of unique 48-bit identification of devices

Network Layer – use Internet Protocol (IP) addresses
that consist of 32 bits (in IPv4) or 128 bits (in IPv6)

Transport Layer – use port numbers as addresses

Application Layer – use domain names, host names,
port numbers and other application data as addresses

Addressing in Different Layers

Prof. Shlomo Kipnis 6 Fall 2007/2008

Each layer passes payload and
control information such as the
destination address to the layer
underneath it
Encapsulation: each layer adds
its own header and trailer the
to payload
Header and trailer: addresses,
error detection codes, and
other control information
needed by the layer

App Data

App DataTCP Hdr

App DataTCP HdrIP Hdr

App DataTCP HdrIP HdrLink Hdr

Encapsulation by Layers

2

Prof. Shlomo Kipnis 7 Fall 2007/2008

Datagram – IP, UDP
Uni-directional sending of a packet to the destination
Packet contains source, destination, error detection code, etc.
Detection of packet corruption (but not of loss or reorder)

Connection – TCP
Establishment of a bi-directional session
Sequencing of packets
Retransmission of lost data

Client/Server – FTP, HTTP
Client sends request, server responds
Reliable pairing of response and request

Services at Different Layers

Prof. Shlomo Kipnis 8 Fall 2007/2008

Adding Security at Which Layer?

Which layer is the most
appropriate to add
security services at?

Different layers provide
different services, and it
might be necessary to add
security services at several
layers Link Layer

Network Layer

Transport Layer

Application Layer

Prof. Shlomo Kipnis 9 Fall 2007/2008

Protects all traffic including the IP headers

Path may contain multiple links (hops)

Protecting each link is possible, but:

Requires cooperation of all routers

Communication is still exposed to routers

Large overhead – decrypt/encrypt at each hop

Provides attacker with encryptions of related
plaintexts (same packet, different headers)

Link Layer Security

Prof. Shlomo Kipnis 10 Fall 2007/2008

IPSec provides following services:

Confidentiality, authentication, no-replay, etc.

Protection of all applications and data above it

Implementation in hardware, operating systems,
and/or routers and firewalls

Cons:

Hard to implement

Not always available at destination

Network Layer Security

Prof. Shlomo Kipnis 11 Fall 2007/2008

SSL – Secure Sockets Layer (by Netscape)

TLS – Transport Layer Security (by IETF)

Easy to implement and use

Widely available

Cons:

Protects only if used

Protects only end-to-end communication

Headers are exposed

Requires changing each application

Transport Layer Security

Prof. Shlomo Kipnis 12 Fall 2007/2008

Secure E-mail (PGP, S/MIME,…)

XML security

Implemented by each application

Cons:

Changes each application and operating system

Hard to implement, error prone

Wasteful of resources

No protection for headers and lower-level data

Application Layer Security

3

Prof. Shlomo Kipnis 13 Fall 2007/2008

IP Characteristics

Characteristics of Internet Protocol:

Protocol is connectionless

Protocol is unreliable

Protocol does not guarantee order of packets

IP packets can be sniffed

IP addresses can be spoofed

Prof. Shlomo Kipnis 14 Fall 2007/2008

IPSec – IP Security Protocol

Designed by IETF committee in the 1990’s

Designed for IPv4 and IPv6

Optional in IPv4 / mandatory in IPv6

Consists of following components:

Arch – IPSec Architecture (RFC 2401)

AH – Authentication Header (RFC 2402)

ESP – Encapsulating Security Payload (RFC 2406)

IKE – Internet Key Exchange (RFC 2409)

Prof. Shlomo Kipnis 15 Fall 2007/2008

IPSec Requirements

Requirements from IPSec:

Data source authentication

Data integrity protection

Data confidentiality

Guaranteed order of packets

Protection against packet replay

Access control mechanisms

Limited traffic privacy

Full compatibility with IP
Prof. Shlomo Kipnis 16 Fall 2007/2008

IPSec Operation

IPSec provides unidirectional protection to each IP
packet in a stream of IP packets

IPSec enables authenticating the content of an IP
packet using the AH protocol

IPSec enables encrypting the content of an IP packet
using the ESP protocol

IP packets that undergo protection by IPSec are still
standard IP packets at the outmost level

The algorithms, keys, and other security parameters of
IPSec are negotiated ahead of time between the sender
and the receiver of the IP stream using the IKE protocol

Prof. Shlomo Kipnis 17 Fall 2007/2008

IPSec SA (Security Association)

The properties of the secure IPSec channel created
between the sender and the receiver are stored in the
Security Association (SA) structure

The SA is unidirectional, and it contains all the data
necessary for IPSec processing of outgoing and of
incoming packets

An IPSec device stores all the active SA’s it currently
has in a data base called the SAD (Security Association
Database)

Most implementations store incoming and outgoing SA’s
in separate databases

Prof. Shlomo Kipnis 18 Fall 2007/2008

IPSec Modes of Operation

Transport Mode:

End-to-end – IPSec encapsulation is done by the source
(sender) of the original IP packet, and de-encapsulation
is done by the destination (receiver) of the IP packet

Tunnel Mode:

GW-to-GW – IPSec encapsulation and de-encapsulation
are done by gateways along the route between source
(sender) and destination (receiver)

Special case: when one of the gateways is the sender
or the receiver

4

Prof. Shlomo Kipnis 19 Fall 2007/2008

IPv4 Packet (I)

Source IP address

Destination IP address

Ver Hdr Len Type of Service Total Length

Identification

Time to Live Next Protocol

Fragment Offset

Header Checksum

Flags

Options

Payload

Padding

Prof. Shlomo Kipnis 20 Fall 2007/2008

IPv4 Packet (II)

Ver – version number (4)

Hdr Len – length of the IP Header (in units of 32 bits)

Type of Service – used by routers and gateways for
quality of service

Total Length – total length of header and payload

Identification – ID number of this IP packet to be used
by all fragments of this packet

Flags – Do-Not-Fragment and Last-Fragment

Fragment Offset – number of fragment of this IP packet

Prof. Shlomo Kipnis 21 Fall 2007/2008

IPv4 Packet (III)

Time to Live – number of hops this packet can make
before it will be discarded

Next Protocol –number of the protocol encapsulated in
this IP packet

Header Checksum – non-cryptographic checksum of
the IP packet header

Source IP Address – 32-bit IP address of the source

Destination IP Address – 32-bit IP address of the
destination

Prof. Shlomo Kipnis 22 Fall 2007/2008

IPv4 Packet (IV)

Options – extensions of the IP header with features
such as “source routing”

Padding – to align packet size to a multiple of 32 bits

Payload – the data contained in this IP packet, which is
typically a packet of another protocol (TCP, UDP, IP,
ICMP, etc.)

Prof. Shlomo Kipnis 23 Fall 2007/2008

Authentication Header (I)

IP HdrPayload

Original IP packet:

Transport Mode AH packet:

Tunnel Mode AH packet:

IP Hdr *AH HdrPayload

IP HdrPayload New IP HdrAH Hdr

Prof. Shlomo Kipnis 24 Fall 2007/2008

Authentication Header (II)

Transport Mode AH:

The outer IP header is (almost) the same IP header
of the original IP packet

The Authentication header is inserted between the
original IP header and the original IP payload

Tunnel Mode AH:

The outer IP header is a new IP header that may be
different from the original IP header

The Authentication header is inserted between the
new IP header and the original IP packet

5

Prof. Shlomo Kipnis 25 Fall 2007/2008

Authentication Header (III)

The AH Transformation:

When IPSec AH protocol is applied to an IP packet,
the result is still an IP packet – the outer IP packet
simply contains the AH packet

The AH packet contains either the payload of the
original IP packet (in the case of Transport Mode) or
the original IP packet (in the case of Tunnel Mode)

The outer IP packet refers to the AH packet by using
the “next protocol” value of 51, and the AH packet
refers to the internal packet with the appropriate
value of “next protocol”

Prof. Shlomo Kipnis 26 Fall 2007/2008

Authentication Header (IV)

SPI

Sequence Number

Next Protocol Payload Length Reserved Bits

Authentication Data (variable)

The AH Header:

Prof. Shlomo Kipnis 27 Fall 2007/2008

Authentication Header (V)

Next Protocol – value that indicates the protocol
contained in the AH packet

Payload Length – length of the AH header in 32-bit
words minus 2

SPI – Security Parameter Index, points to the SA in the
receiver’s SA table

Sequence Number – 32-bit counter that is used to
prevent packet replays

Authentication Data – result of the MAC (the length
depends on the authentication algorithm)

Prof. Shlomo Kipnis 28 Fall 2007/2008

Authentication Header (VI)

The AH Authentication:

In AH, the MAC is computed over the all fixed fields in
the IP packet (including fields in the IP header, fields
in the AH header, and the payload)

Before the MAC calculation, all the unpredictable or
mutable fields in the IP header are set to zero, while
all the predictable fields are set to their arrival value

Before the MAC calculation, the “Authentication Data”
field in the AH header is set to zero

Prof. Shlomo Kipnis 29 Fall 2007/2008

Authentication Header (VII)

AH Encapsulation Process:

Locate the outgoing SA

To be described later

If the relevant SA is not found – drop the packet

Set the SPI in the AH header

Increment the sequence number in the outgoing SA,
and put the new sequence number in the AH header

Calculate the authentication data

Prof. Shlomo Kipnis 30 Fall 2007/2008

Authentication Header (VIII)

AH Decapsulation Process:

Locate the incoming SA (according to the SPI)

If there is no SA that matches the SPI – drop the packet

Check if the sequence number is legal

If sequence number is not legal – drop the packet

Calculate the authentication data, and compare to the
authentication data in the packet

If authentication data do not match – drop the packet

Continue the processing according to the Next Protocol

6

Prof. Shlomo Kipnis 31 Fall 2007/2008

Encapsulating Security Payload (I)

IP HdrPayload

Original IP packet:

Transport Mode ESP packet:

Tunnel Mode ESP packet:

IP Hdr *ESP HdrPayloadESP Trl

IP HdrPayload New IP HdrESP HdrESP Trl

Prof. Shlomo Kipnis 32 Fall 2007/2008

Encapsulating Security Payload (II)

Transport Mode ESP:

The outer IP header is (almost) the same IP header
of the original IP packet

The ESP header is inserted between the original IP
header and the original IP payload, and the ESP
trailer is placed after the original IP payload

Tunnel Mode ESP:

The outer IP header is a new IP header that may be
different from the original IP header

The ESP header is inserted between the new IP
header and the original IP packet, and the ESP trailer
is placed after the original IP packet

Prof. Shlomo Kipnis 33 Fall 2007/2008

Encapsulating Security Payload (III)

The ESP Transformation:

When IPSec ESP protocol is applied to an IP packet,
the result is still an IP packet – the outer IP packet
simply contains the ESP packet

The ESP packet contains either the payload of the
original IP packet (in the case of Transport Mode) or
the original IP packet (in the case of Tunnel Mode)

The outer IP packet refers to the ESP packet by using
the “next protocol” value of 50, and the ESP packet
refers to the internal packet with the appropriate
value of “next protocol”

Prof. Shlomo Kipnis 34 Fall 2007/2008

Encapsulating Security Payload (IV)

The ESP Header + Payload + Trailer:

SPI

Sequence Number

Next ProtocolPad Length

Payload Data (variable)

IV (if needed)

Padding (0-255 bytes)

Optional Authentication Data (variable)

Prof. Shlomo Kipnis 35 Fall 2007/2008

Encapsulating Security Payload (V)

SPI – Security Parameter Index, points to the SA in the
receiver’s SA table

Sequence Number – 32-bit counter that is used to
prevent packet replays

IV – Initial Vector used to randomize the encryption

Payload Data (encrypted) – the data encrypted by the
ESP protocol (either only the payload of the original IP
packet or the whole original IP packet)

Padding (encrypted) – to align to IPv4 frame size, to
align to the encryption algorithm block size, and to hide
the true size of the payload

Prof. Shlomo Kipnis 36 Fall 2007/2008

Encapsulating Security Payload (VI)

Pad Length (encrypted) – number of bytes of padding
(between 0 and 255)

Next Protocol (encrypted) – value that indicates the
protocol contained in the ESP packet

Optional Authentication Data – result of an optional MAC
used in the ESP protocol (the length depends on the
authentication algorithm)

7

Prof. Shlomo Kipnis 37 Fall 2007/2008

Encapsulating Security Payload (VII)

The ESP Encryption & Authentication:

In ESP, the encryption is done over the Payload Data,
the Padding, the Pad Length and the Next Protocol

In ESP, there is an optional authentication (which does
not cover as many fields as the AH authentication)

The optional ESP MAC is computed over all the fields
in the ESP Header + Payload + ESP Trailer, starting
from the SPI field and ending in the Next Protocol field

Prof. Shlomo Kipnis 38 Fall 2007/2008

Encapsulating Security Payload (VIII)

ESP Encapsulation Process:

Locate the outgoing SA

To be described later

If the relevant SA is not found – drop the packet

Set the SPI in the ESP header

Increment the sequence number in the outgoing SA,
and put the new sequence number in the ESP header

If SA includes encryption, and the encryption algorithm
requires an IV – generate an IV and put the IV field in
the ESP header

Prof. Shlomo Kipnis 39 Fall 2007/2008

Encapsulating Security Payload (IX)

ESP Encapsulation Process (continued):

Pad the Payload Data (based on the IP frame size, the
encryption algorithm block size, and the required level
of payload size hiding)

Set the fields Pad Length (even if the padding is NULL)
and Next Protocol

If SA includes encryption – encrypt the Payload Data,
Padding, Pad Length, and Next Protocol fields

If SA includes authentication – compute the MAC on all
the fields starting from the SPI and ending in the Next
Protocol, and append the MAC to the packet

Prof. Shlomo Kipnis 40 Fall 2007/2008

Encapsulating Security Payload (X)

ESP Decapsulation Process:

Locate the incoming SA (according to the SPI)
If there is no SA that matches the SPI – drop the packet

Check if the sequence number is legal
If sequence number is not legal – drop the packet

If SA includes authentication, calculate the authentication
data and compare to the value in the packet

If authentication data do not match – drop the packet

If SA includes encryption, decrypt the data in the packet

Continue the processing according to the Next Protocol

1

Prof. Shlomo Kipnis 1 Fall 2007/2008

Network Layer Security II

Prof. Shlomo Kipnis
January 16, 2008

Prof. Shlomo Kipnis 2 Fall 2007/2008

Security Association (SA)

The properties of the secure IPsec channel created
between Alice and Bob are stored in the Security
Association (SA) structure

The SA is unidirectional, and it contains all the data
necessary for IPsec processing of incoming and
outgoing packets

An IPsec device stores all the active SAs it currently
have in a data base called the SAD (Security Association
Data)

Prof. Shlomo Kipnis 3 Fall 2007/2008

IPsec SA

The SA contains all the data required during IPsec
processing of incoming and outgoing packets

SPI – Security Parameter Index
A 32 bits number that together with the receiver IP address, and
the protocol (AH or ESP) uniquely identifies the SA

The IPsec sender IP address
The IPsec receiver IP address
Protocol – AH or ESP
Operation mode – Tunnel or Transport
Integrity and encryption (if relevant) algorithms and keys
Sequence number (incoming – replay window)
SA life time

For dynamic SAs only
Life time is defined either by traffic or by time

Prof. Shlomo Kipnis 4 Fall 2007/2008

IPsec Replay Protection

The sequence number is set to zero when the SA is
established

The sender increments the sequence number per
outgoing packet

If the receiver deploys replay protection then he
extracts the sequence number from the header and
checks if he had already encountered this number

To avoid dropping legal packets arriving out of order, the
receiver maintains in the SA a sliding window (minimal size 32)

Prof. Shlomo Kipnis 5 Fall 2007/2008

IPsec Replay Protection (cont.)

The sequence number field is included in the MAC
computation – an attacker that modifies this value, must
also modify the authentication data

The sequence number must not wrap during a single
key lifetime

AH Keys must be changed after less then 232 packets

Prof. Shlomo Kipnis 6 Fall 2007/2008

IPsec Data Structures

IPsec is using two data structures (define in the IPsec
architecture RFC)

SAD – Security Association Data contains all the active
SAs used by the IPsec implementation

SPD – Security Policy Data contains user defined policy.
The user defines which security services, at which level
are offered to each IP datagram

2

Prof. Shlomo Kipnis 7 Fall 2007/2008

The SPD

The SPD: Security Policy Data contains a list of rules, set
by the user. Each rule contains a set of selectors, and
an action. The rules are scanned by their order, and a
packet is processed according to the first match
Selectors can be IP addresses, IP addresses ranges,
TCP/UDP ports and more
An action

Discard
Bypass IPsec
Apply IPsec – security services, protocol, and algorithms must
be specified for this action. An implementation can also store a
pointer to the entry SAD containing a matching active SA (if
such exists)

Prof. Shlomo Kipnis 8 Fall 2007/2008

Incoming SAD

An IPsec device maintains an incoming SAD per
protocol, per interface
The SA is accessed through the SPI that appears in the
incoming packet IPsec header

……

SA3

SA2

SA1

SPI

Prof. Shlomo Kipnis 9 Fall 2007/2008

Outgoing SAD

An IPsec device maintains single outgoing SAD
The SA is accessed through the SPD

SA*SMTPTCP**

SA***net2net1

SATelnet*TCPba

SADst PortSrc PortProtocolDst IPSrc IP

Selectors

Prof. Shlomo Kipnis 10 Fall 2007/2008

Building the SAD

The IPsec SAD is built either

Manually – static SAs that use static key can be added
manually to the SAD.
Note replay protection cannot be applied with static SAs

Automatically – by a key management service

Prof. Shlomo Kipnis 11 Fall 2007/2008

A Secure IPsec Channel

Alice and Bob communicate securely using IPsec

Alice outgoing SAD and Bob incoming SAD contain a SA
that used for traffic sent from Alice to Bob

The SPI is allocated by Bob

Bob outgoing SAD and Alice incoming SAD contain an
SA that is used for traffic sent from Bob to Alice

The SPI is allocated by Alice

Prof. Shlomo Kipnis 12 Fall 2007/2008

Alice Bob

Protocol = ESP,transport mode, enc=DES3, intg = HMAC-MD5
Life time = 10 Min

Bob’s SPI = 17
Bob’s encr key = 0x0b0b0b, Bob’s intg key = 0x0a0a0a
(used by Bob for decryption and signature verification)

Protocol = ESP,transport mode, enc=AES, intg = HMAC-SHA1
Life time = 10 Min

Alice’s SPI = 13
Alice’s encr key = 0x0c0c0c, Alice’s intg key = 0x0d0d0d
(used by Alice for decryption and signature verification)

Bob’s SPI = 17

Alice’s SPI = 13

Example – an IPsec Channel

3

Prof. Shlomo Kipnis 13 Fall 2007/2008

Alice Outgoing
SAD

Bob Incoming
SAD

…

SPI=17,Alice, Bob,
DES3, HMAC-MD5

Alice,Bob

…

SASelectors

SPI=17, Alice,Bob,
DES3,HMAC-MD5

17

…

2

1

SASPI

Prof. Shlomo Kipnis 14 Fall 2007/2008

Alice Incoming
SAD

Bob Outgoing
SAD

…

Bob, Alice, AES,
HMAC-SHA1

13

…

2

1

SASPI

SPI=13, AES,
HMAC-SHA1

Bob,Alice

…

Bob, Any,
HTTP

Bob, Chris

SASelectors

Prof. Shlomo Kipnis 15 Fall 2007/2008

IPsec Transport Mode

Supplies end to end security services
End devices must be modified - TCP/IP stack in the OS
must support IPsec

Host

TCP

Application

UDP

MAC

IP

IPSEC

Host

TCP

Application

UDP

MAC

IP

IPSEC

Prof. Shlomo Kipnis 16 Fall 2007/2008

IPsec Tunnel Mode

Can be applied by Security gateways
End-systems transparent
End systems addresses are hidden

Host
MAC

Host

IP

TCP

Application

UDP

MAC

IP

TCP

Application

UDP

Security Gateway

MAC

IP

IPSEC

Protected
Data

IP

TCP

Application

UDP

MAC

IP

IPSEC

Security Gateway

Protected
Data

Prof. Shlomo Kipnis 17 Fall 2007/2008

IPsec Channel – Host and SG

Host
MAC

Host

IP

TCP

Application

UDP

MAC

IP

TCP

Application

UDP

Security Gateway

MAC

IP

IPSEC

Protected
Data

IP

TCP

Application

UDP

MAC

IP

IPSEC

Host

Protected
Data

Prof. Shlomo Kipnis 18 Fall 2007/2008

Secure VPN ImplementationSecure VPN Implementation

Server

Server
HUBHUB

MAC

IP

TCP

Application

UDP

MAC

IP

TCP

Application

UDP

Host Host

untrusted
networkRouter Router

MAC

IP

IPSEC

Protected
Data

MAC

IP

IPSEC

Protected
Data

Protected Traffic

Clear IP Headers

Security Gateway Security Gateway

4

Prof. Shlomo Kipnis 19 Fall 2007/2008

Outbound Packet Processing

1. Scan the SPD rules list for selectors match
2. If action is drop, drop packet
3. If action is bypass, forward packet
4. If action is IPsec processing, and no matching SA, drop

packet
5. Process packet according to SA
6. Forward packet

Prof. Shlomo Kipnis 20 Fall 2007/2008

Inbound Packet Processing

1. Extract SPI from packet header, and search incoming
SAD with SPI

2. If SAD doesn’t contain a matching SA, drop packet
3. Otherwise, process packet according to SA
4. If packet is illegal, drop
5. Scan SPD with clear packet: check that packet arrived

with the appropriate security services and levels
6. Forward packet to higher layers (transport mode), or to

appropriate host (tunnel mode)

Prof. Shlomo Kipnis 21 Fall 2007/2008

VPN – Virtual Private Network

Requirement I: Provide connectivity, reachability, security
and QoS identical to private network over a public (or
shared) infrastructure

Motivation : Enables users to access services residing in
the private LAN from every VPN location in a secure and
easy to use fashion

Requirement II: Many organizations use private address
spaces (often non-routable). Addresses from the same
address space must be assigned to all the VPN users

Prof. Shlomo Kipnis 22 Fall 2007/2008

VPN Types

Site to Site VPN: two sites, residing in two different
physical locations (two separate LANs), belong to the
same VPN
If the sites belong to the same organization, then the
VPN is an Intranet
If the sites belong to different organizations, then the
VPN is an Extranet

Remote Access VPN: roaming users, wish to connect
through the Internet to services in their private LAN,
and “feel like” they are at the office

Prof. Shlomo Kipnis 23 Fall 2007/2008

HUBSG

SG

Server

Server

Secure VPN

Router

Router

Router

Router
untrusted
network

Server

Router

SG

Server

CA

mng

Prof. Shlomo Kipnis 24 Fall 2007/2008

SiteSite--toto--Site Secure VPN ImplementationSite Secure VPN Implementation

Server

Server
HUBHUB

MAC

IP

TCP

Application

UDP

MAC

IP

TCP

Application

UDP

Host Host

untrusted
networkRouter Router

MAC

IP

IPSEC

Protected
Data

MAC

IP

IPSEC

Protected
Data

Protected Traffic

Clear IP Headers

Security Gateway Security Gateway

5

Prof. Shlomo Kipnis 25 Fall 2007/2008

IKE

IKE is a standard protocol for Security Association
establishment and management
IKE can be executed between

Two hosts
Two Security gateways
A host and a security gateway

IKE is a merge of two protocols ISAKMP-OAKLEY
The cryptographic authenticated key exchange is using
the Diffie-Hellman protocol
Work over UDP, port 500
A generic protocol

Prof. Shlomo Kipnis 26 Fall 2007/2008

IKE Design Requirements

Secrecy and Authenticity
Key refreshment (protected against replay)
PFS
Scalability
Privacy and Anonymity (Identity Protection)
Protection against DoS
Efficiency (no. of messages and computational)
Generic (independent of cryptographic algorithms)
Minimize protocol complexity

Prof. Shlomo Kipnis 27 Fall 2007/2008

IKE Overview

IKE is a two phase protocol
In the first phase the parties establish an ISAKMP SA, that
consists of cryptographic algorithms, authentication method and
keys
The second phase messages are protected by the ISAKMP SA
In the second phase the parties establish IPsec SAs that will be
stored in the SAD
A single IKE phase one, can protect many phase two exchanges

Prof. Shlomo Kipnis 28 Fall 2007/2008

Outbound IPsec Packet Processing

SA creation is triggered by IPsec, and done on demand
When the SPD entry doesn’t contain a pointer to a valid
SA, IPsec triggers IKE, requesting a new SA for this SPD
entry
IKE tries to run a phase two exchange to create an SA
If an ISAKMP SA required for this exchange doesn’t
exist, then IKE runs a phase one exchange, and phase
two exchange
When the next packets arrive, they are processed with
the newly created SA

Prof. Shlomo Kipnis 29 Fall 2007/2008

Why Two IKE Phases?

To fulfill the PFS requirement, every phase I exchange,
performs a DH exchange
In Phase II, DH execution is optional – phase II and the
IPsec keys can be derived from phase I exchange
Phase II is more efficient; many two phase II exchanges
can use the same set of phase I keys

Prof. Shlomo Kipnis 30 Fall 2007/2008

IKE v2

http://www.ietf.org/internet-drafts/draft-ietf-ipsec-ikev2-
04.txt
Single exchange, authenticated with either public
signature keys, or pre-shared secrets
4 message exchange
Provides PFS and identity protection
Dos protection can be requested by the responder

The responder calculates a cookie, and wait for the cookie
return by the initiator

IPsec SA establishment messages can be piggybacked
on the initial IKE exchange

6

Prof. Shlomo Kipnis 31 Fall 2007/2008

Diffie-Hellman Groups

A group for the DH key exchange specifies the global
parameters of DH.
Each group includes the definition of 2 global
parameters and the identity of the algorithm
Three of these groups are classic DH algorithm using
modular exponentiation

Prof. Shlomo Kipnis 32 Fall 2007/2008

Diffie-Hellman Groups

All these three groups (id=1,2,5) have:
Generator = 2

For group id=1:
Prime = 2^768 - 2^704 – 1 + 2^64 * { [2^638 pi] + 149686}

For group id=2:
Prime = 2^1024 - 2^960 – 1 + 2^64 * { [2^894 pi] + 129093}

For group id=5:
Prime = 2^1536 - 2^1472 – 1 + 2^64 * { [2^1406 pi] +
741804}

All these three groups (id=3,4) have:
Over Galois fields using elliptic curves.

Prof. Shlomo Kipnis 33 Fall 2007/2008

IKE Message Flow

IKE message flow always consists of a request
followed by a response.
It is the responsibility of the requester to ensure
reliability.
If the response is not received within a timeout interval,
the requestor will retransmit the request or abandon
the connection.

Prof. Shlomo Kipnis 34 Fall 2007/2008

SA Terminology

IKE-SA
used to secure IKE communication.

CHILD-SA
Created by the IKE to be used in ESP or AH security.

Prof. Shlomo Kipnis 35 Fall 2007/2008

The Two IKE Phases

Phase 1
Establishment of an IKE-SA
Mutual authentication
Creation of the first CHILD-SA.
(An expensive process which is done rarely)
Phase 2
establishing additional CHILD-SA’s
and performing “housekeeping functions”

Prof. Shlomo Kipnis 36 Fall 2007/2008

Phase 1

Establishes an IKE-SA that includes shared secret
information that can be used to efficiently establish
Child-SA’s.
Performs mutual authentication
Creates the first Child-SA

Consists of two stages

7

Prof. Shlomo Kipnis 37 Fall 2007/2008

Stage 1 - INIT

Negotiates cryptographic algorithms

Exchanges nonces

Performs a Diffie-Hellman exchange

Note: messages are not protected

Prof. Shlomo Kipnis 38 Fall 2007/2008

INIT Request

The initiator sends the following message:
HDR, SAi1, KEi, Ni

• HDR – header contains SPI, version, flags
• SAi1 – states the cryptographic algorithms the initiator

supports
• KEi – initiator’s DH value.
• Ni – initiator’s nonce.

Prof. Shlomo Kipnis 39 Fall 2007/2008

INIT Response

The responder sends the following message:
HDR, SAr1, KEr, Nr [CERTREQ]

• SAr1 – states the cryptographic algorithms the responder
selected.

• KEr – responder’s Difie-Hellman value.
• Nr – responder’s nonce.
• CERTREQ – optional certificate request

Prof. Shlomo Kipnis 40 Fall 2007/2008

SKEYSEED Generation

Each party generates the SKEYSEED which is used to
derive the keys used in IKE-SA.

Notice: separate keys are computed for each direction

Prof. Shlomo Kipnis 41 Fall 2007/2008

Authentication Stage

Authenticates the previous messages
Exchanges and proves identities
Establishes the first CHILD-SA

Messages are protected using the keys derived at the
INIT stage.
Identity protection is achieved

Prof. Shlomo Kipnis 42 Fall 2007/2008

Authentication Request

HDR, SK{ IDi, [CERT,] [CERTREQ,] [IDr,] AUTH, SAi2,
TSi, TSr }
IDi – initiator’s identity
CERT, CERTREQ – optionally presenting or requesting
certificates
IDr – specifiying the responder’s desired identity

* SK{…} indicates encription and integrity protection using SK_e and SK_a

8

Prof. Shlomo Kipnis 43 Fall 2007/2008

Authentication Request

HDR, SK{ IDi, [CERT,] [CERTREQ,] [IDr,] AUTH,
SAi2, TSi, TSr }

AUTH – authenticates the previous message and the
initiator’s identity.
(a digital signature over the first message)

SAi2, TSi, TSr – needed for first CHILD-SA

Prof. Shlomo Kipnis 44 Fall 2007/2008

Authentication Response

HDR, SK{ IDr, [CERT,] AUTH, SAr2, TSi, TSr}
IDr – responder’s identity
CERT – presenting certificates
AUTH - authenticates the previous message and the
resonder’s identity.
SAr2, TSi, TSr - needed for first CHILD-SA

Prof. Shlomo Kipnis 45 Fall 2007/2008

End of Phase 1

Signatures are verified

First CHILD-SA is established

Prof. Shlomo Kipnis 46 Fall 2007/2008

Possible DOS Attack

The response to the first Phase 1 message involves
expensive computations
This can be exploited in a DOS attack where the
attacker use IP Spoofing to flood the victim with
requests to open connection.
Can be solved using cookies

Prof. Shlomo Kipnis 47 Fall 2007/2008

Cookies

A Cookie is a field which is sent to the connection
initiator.
The initiator is expected to return the cookie.
A returned cookie is a proof that the initiator can receive
packets destined to the IP address he declared.

Prof. Shlomo Kipnis 48 Fall 2007/2008

Use of Cookies

When a responder detects many half-open connections,
a new policy is used.
Each new connection request that does not contain a
valid cookie is rejected.
The rejection message contains a cookie and a demand
for this cookie in a future connection request.

9

Prof. Shlomo Kipnis 49 Fall 2007/2008

Cookie Demands

No one but the creator can construct a valid cookie
Cheap to create
No resources needs to be allocated to handle each
cookie

Prof. Shlomo Kipnis 50 Fall 2007/2008

Cookie Creation

Cookie = HASH(<secret> | IPi | SPI | TS)

<secret> - a secret known only to the responder
IPi – IP address of the initiator
SPI – included in the request
TS – time stamp

(A possible problem …)

Prof. Shlomo Kipnis 51 Fall 2007/2008

Phase 2

Creating a new CHILD-SA:
Relatively cheap operation
Can be initiated by either endpoints
Provides optional perfect-forward-secrecy

All other information flow:
Will be discussed later

Prof. Shlomo Kipnis 52 Fall 2007/2008

CHILD-SA Request

A CREATE_CHILD_SA request:
HDR, SK{ SA, Ni, [KEi,] [TSi, TSr] }

• SA – The initiator’s offers for the new SA
• Ni - Initiator’s nonce
• KEi – a new DH value
• TSi, TSr – proposed traffic selectors

Prof. Shlomo Kipnis 53 Fall 2007/2008

CHILD-SA Response

A CREATE_CHILD_SA response:
HDR, SK{ SA, Nr, [KEr,] [TSi, TSr] }

• SA – The responder chosen SA offer
• Nr - Responder’s nonce
• KEr – A new DH value

(if the request had a Kei)
• TSi, TSr – selected traffic selectors

Prof. Shlomo Kipnis 54 Fall 2007/2008

PFS in IKE

Reminder:
Perfect forward secrecy means that once a connection is

closed and its keys are forgotten, even someone who
recorded all the data from the connection, and gets
access to the long term keys used to protect it, cannot
reconstruct the keys of a CHILD-SA that was created
during the connection.

10

Prof. Shlomo Kipnis 55 Fall 2007/2008

Achieving CHILD-SA PFS

The optional KE field in the establishment of a new
CHILD-SA indicates that the keys created depend on a
unique DH key exchange. Such keys achieve the PFS
quality.

Expensive procedure.
Depends on two conditions …

Prof. Shlomo Kipnis 56 Fall 2007/2008

Generating Keying Material

In the establishment of the IKE-SA a pseudo-random
function (prf) is negotiated.

The keying material for all SA’s is derived from the
output string of the prf.

Prof. Shlomo Kipnis 57 Fall 2007/2008

PRF Usage

Usually the amount of keying material needed is greater
then the prf output.
The prf is used iteretively:
Prf+ (K , S) = T1 | T2 | T3 | …
where:
T1 = prf (K , S | 0x01)
T2 = prf (K , T1 | S | 0x02)
T3 = prf (K , T2 | S | 0x03)

Prof. Shlomo Kipnis 58 Fall 2007/2008

IKE-SA Keying Material

After INIT (in Phase 1),
SKEYSEED is calculated:
SKEYSEED = prf (Ni | Nr , g^ir)

Ni, Nr – nonces of both parties
G^ir – the DH key

Prof. Shlomo Kipnis 59 Fall 2007/2008

IKE-SA Keys Derived

Five keys are derived.
SK_d – used in deriving CHILD-SA keys
SK_ai, SK_ar – authentication keys
SK_ei, SK_er – encryption keys

Notice: different keys for each direction

Prof. Shlomo Kipnis 60 Fall 2007/2008

IKE-SA Keys Deriviation

{ SK_d , SK_ai , SK_ar , SK_ei , SK_er } =
Prf+ (SKEYSEED ,
g^ir | Ni | Nr | CKY-I | CKY-R)

CKY-I , CKY-R – the cookie of both parties

11

Prof. Shlomo Kipnis 61 Fall 2007/2008

CHILD-SA Keying Material

Creation without PFS:
KEYMAT = prf+ (SK_d, Ni | Nr)

Creation with PFS:
KEYMAT = prf+ (sk_d, g^ir | Ni | Nr)

g^ir is the DH key established for this CHILD_SA

Prof. Shlomo Kipnis 62 Fall 2007/2008

CHILD-SA Keying Derivation

All keys needed for the SA created are derived from the
KEYMAT
(depends on the needs of the algorithms using this SA)

Multiple SA’s can be created at a single CHILD_SA
negotiation.

1

Prof. Shlomo Kipnis 1 Fall 2007/2008

Transport Layer Security I

Prof. Shlomo Kipnis
January 21, 2008

Prof. Shlomo Kipnis 2 Fall 2007/2008

SSL History

SSL was developed by Netscape in early 1990’s

Netscape identified need for ”session layer” security
for emerging Internet / Web applications

Other competing proposals (PCT, HTTPS, etc) came
at about the same time

SSL 3.0 became de-facto standard

Transport Layer Security (TLS) 1.0 standard is
almost identical to SSL 3.0

Prof. Shlomo Kipnis 3 Fall 2007/2008

SSL / TLS in a Nutshell

SSL provides a `secure TCP tunnel from client to server`:
Confidentiality
Authentication of server, optionally also of client
Message and connection integrity

SSL: Secure Socket Layer
Since SSL (& TLS) operate on top of `standard` Sockets API

TLS: Transport Layer Security
Since TLS (& SSL) secure TCP (the transport layer)
IETF standard version of SSL
When we describe common aspects we usually say just SSL

Many implementations, libraries, e.g. Open-SSL
Original goal and still main use: secure transfer of credit
card number…

Prof. Shlomo Kipnis 4 Fall 2007/2008

SSL/TLS Evolution

SSLv1
(1994)

SSLv3
(1995)

No client auth;
broken – weak
`randomness`,

other weaknesses

Not released

PCT
(1995)

SSLv2
(1994)

Microsoft’s improved
SSLv2: security (e.g.

strong exportable
auth.), performance

(flows)

STLP
(1996)

Microsoft’s improved
SSLv3: support for
UDP, and shared-

secret authentication

TLS (1997-1999),
RFC 2246

Substantial redesign; add
client authentication,
support for DSS, DH,

prevent truncation attack

SSLv3 but incompatible:
improved key expansion and

MAC, support DES3 and
DH+DSS for key exchange

WTLS
(1990-)

Prof. Shlomo Kipnis 5 Fall 2007/2008

SSL Functionality

Session-Layer Security:

Protection of (bi-directional) transport protocol

Security Services:

Integrity, Authenticity, Confidentiality

Client Security:

Server must be authenticated (using public-key certificates)

Server Security:

Client may be authenticated (using public-key certificates)

Security Suite:

Client and Server negotiate Algorithms and methods

Prof. Shlomo Kipnis 6 Fall 2007/2008

SSL Services

Server Authentication (mandatory)
Client Authentication (optional - if required by server)
Secure connection:

Confidentiality (Encryption) – optional, possibly weak (export)
Message Authentication
Reliability: prevent re-ordering, truncating etc.

Efficiency: allow resumption of SSL session in new
connection (no need to re-do handshake)

2

Prof. Shlomo Kipnis 7 Fall 2007/2008

SSL Architecture

SSL Record Protocol

SSL
Handshake

Protocol

Applications over SSL

SSL
Alert

Protocol

SSL
CCS

Protocol

SSL
Application
Interface

Reliable Transport Protocol (TCP/IP or X.25)

Prof. Shlomo Kipnis 8 Fall 2007/2008

SSL Protocols, Layers and Records

SSL Record Protocol/Layer
(MAC, encrypt, compress, counters)

SSL
Handshake Protocol

Application
(e.g. browser)

Reliable Transport Layer (TCP)
(original) Sockets API

SSL API
SSL

Alert

Appl. Data
record

Alert
record

CCS
record

Handshake
record

CCS=
Change
Cipher
Spec

Prof. Shlomo Kipnis 9 Fall 2007/2008

SSL Record Protocol

Application
Data

Fragment

Compress

Add MAC

Encrypt

Add SSL
Header

Fragment size at most 214 bytes

Compression is optional

MAC with shared-key

Encryption with shared-key

SSL Packet

Prof. Shlomo Kipnis 10 Fall 2007/2008

SSL Record Layer

Assumes underlying reliable communication (TCP)
Fragmentation, compression, authentication, encryption

Message sent by the application, e.g. HTTP request

Message sent by th he application, e.g. HTTP request

<16KB <16KB <16KB

Fragment

Compress
MAC
Pad (if using block cipher)

Encrypt

Send each fragment via TCP

Prof. Shlomo Kipnis 11 Fall 2007/2008

SSL Record Protocol

1. Fragments data – 16KB in a fragment
2. Compress each fragment; Compression must be

lossless and never increase length (up to 1KB Ok)
3. Authenticate by appending MAC

• Key: MAC_write_secret (from master_secret)
• MAC computed over counter || length || content
• Use counter (64 bits) to prevent replay in SSL session
• The counter value is only input to MAC, not sent

Since we assume SSL is over TCP which ensures FIFO
So why SSL adds counter to MAC at all?

4. Padding to complete block (if using block cipher)
5. Encrypt fragment (including MAC)

Prof. Shlomo Kipnis 12 Fall 2007/2008

SSL Alert & CCS Protocols

SSL Alert Protocol:

Used to deliver error messages from side to side

Contains five fatal errors and seven non-fatal errors

SSL Change Cipher Spec (CCS) Protocol:

Used to switch to agreed cipher-spec

Used in SSL Handshake Protocol

Can be used between connections

3

Prof. Shlomo Kipnis 13 Fall 2007/2008

Alert Protocol and Record

Signal state changes and indicate errors
Invoked by:

Application - to close connection (close_notify)
Connection should close with close_notify
This allows detection of truncation attack (dropping of last
messages)
Notice: close_notify is normal, not failure alert!

Handshake protocol – in case of problem
Record protocol – e.g. if MAC is not valid

Notice: easy to tear-down (denial of service)

Alert record carries alerts

Prof. Shlomo Kipnis 14 Fall 2007/2008

TLS

TLS 1.0 is very similar to SSL 3.0 with some changes:

SSL uses an older version of HMAC while TLS uses the new
version of HMAC

Use of Pseudo Random Function (PRF) in TLS

Additional Alert Codes in TLS

Some differences in the cipher suites

Some differences in client certificate types

Minor changes in some cryptographic computations

Variable padding length (before encryption) in TLS

1

Prof. Shlomo Kipnis 1 Fall 2007/2008

Transport Layer Security II

Prof. Shlomo Kipnis
January 23, 2008

Prof. Shlomo Kipnis 2 Fall 2007/2008

SSL Operation Phases (high level)

TCP Connection
Handshake

Negotiate (agree on) algorithms, methods
Authenticate server and optionally client
Establish keys

Data transfer
SSL Secure Teardown (why is this necessary?)

Client

Server

Syn
+Ack

SSL
Handsake

Data
Transfer Teardown

Prof. Shlomo Kipnis 3 Fall 2007/2008

SSL Operation Phases

Client uses SSL API to open connection
SSL Handshake protocol:

For efficiency – resume `session` if possible
If not (session not kept, new connection, override)

Establish session - algorithms and master keys
Establish connection (keys, etc.)

Data transfer (SSL Record protocol)
Teardown – use Alert protocol:

By application closing connection
Or due to error (by handshake or record protocols)

Client

Server

Syn
+Ack

SSL
Handsake

Finished

Data
Transfer

(SSL Record protocol)
Alert

(teardown)

Prof. Shlomo Kipnis 4 Fall 2007/2008

SSL Sessions and Connections

Connection:
TCP/IP connection – send/receive secure messages
Reliable: ensures Delivery, Matching, FIFO
Independent, different keys for each connection

SSL Session:
May span multiple connections for efficiency
Agree on algorithms and options

Client specifies possibilities, server chooses or rejects
Use public keys to Establish shared MasterSecret key
Server sets `session_id` so connection can resume (use existing
session, for efficiency)

Client, server may discard session
Recommended (in RFC): keep session at most 24 hours

Prof. Shlomo Kipnis 5 Fall 2007/2008

SSL Session State Variables

Session ID: 32 bytes selected by server
Peer certificate (X.509 v3)
Compression method
Cipher spec (encryption, MAC, etc.)
Is Resumable: flag: allow new connections
master_secret: 48 bytes, known to both

Derived from 48 bytes pre_master_secret (from DH key
exchange / sent encrypted by RSA)
Using random numbers chosen by server and client at 1st

connection of session
Using Pseudo-Random Function (PRF)
How?

Prof. Shlomo Kipnis 6 Fall 2007/2008

Deriving master_secret Key

master_secret = PRFpre_master_secret(
“master secret" ||Client_random || Server_random)

PRF
(Pseudo Random Function)

pre_master_secret Client_randomServer_random

master_secret

PRF is based on MD5 and SHA-1;
design differs btw SSL & TLS, see later

2

Prof. Shlomo Kipnis 7 Fall 2007/2008

SSL Connection State Variables

Session ID: 32 bytes selected by server
Server and client sequence numbers
Server_random, client_random: 32 bytes

Unique to each connection!

Cryptographic keys and Initialization Vectors (IV)
Unique to each connection (why?)
Distinct encryption and authentication (MAC) keys (why?)
Distinct keys for client to server and server to client packets
(why?)
How?

Prof. Shlomo Kipnis 8 Fall 2007/2008

Deriving Connection Keys, IVs

Key_Block = PRF master_secret (master_secret || “key expansion”
|| Server_random ||Client_random)

Split Key_Block to ClientMACKey, serverMACKey,
ClientEncryptKey,…(using fixed order)

PRF

master_secret Client_randomServer_random

IVsMAC keys Encrypt keys

Key_Block

Prof. Shlomo Kipnis 9 Fall 2007/2008

SSL Handshake Protocol

Agree on cipher suite: algorithms and options:
Symmetric and Asymmetric Encryption
Signature and MAC
Compression
Options: client authentication, export (weak) versions,…

Exchange random values
Check for session resumption.
Send certificate(s)
Establish shared keys.
Authenticate server
Optionally authenticate client
Confirm synchronization with peer

Prof. Shlomo Kipnis 10 Fall 2007/2008

SSL Handshake Protocol (I)

C S

1. Client Hello (algorithm suite, version, random1)

2. Server Hello (algorithm suite, version, random2)

3. Server Certificate (X.509 certificates)

4. Server Key Exchange (parameters, signature)

5. Server Certificate Request (type, authorities)

6. Server Hello Done

Prof. Shlomo Kipnis 11 Fall 2007/2008

SSL Handshake Protocol (II)

C S7. Client Certificate (X.509 certificates)

8. Client Key Exchange (parameters, signature)

9. Client Certificate Verify (signature)

10. Server Change Cipher Spec

11. Client Finished (hash value)

12. Server Change Cipher Spec

13. Server Finished (hash value)

Prof. Shlomo Kipnis 12 Fall 2007/2008

SSL Handshake – Overview

Client Server
Possible Cipher-suites, Client_random

Chosen cipher-suite, Server_random,Certificate

Encrypted Pre_Master_Secret

Confirmation (MAC of handshake messages)

Client, Server change to new,computed keys (`Cipher Spec`)

Confirmation (MAC of handshake messages)

Confirms algorithms, no replay, client
really sent Pre_Master_Secret

In order of
preference

3

Prof. Shlomo Kipnis 13 Fall 2007/2008

SSL Typical Handshake Messages

Client Server
ClientHello (possible cipher-suites, Client_random)

Certificate

ClientKeyExchange (Encrypted Pre_Master_Secret)

Finished (Confirmation -MAC of handshake messages)

Finished (Confirmation -MAC of handshake messages)

ServerHello (Chosen cipher-suite, Server_random)

ServerHelloDone

ChangeCipherSpec (CCS)

ChangeCipherSpec (CCS)

Client
begins
using

new key

Server
begins
using

new key

Prof. Shlomo Kipnis 14 Fall 2007/2008

Advanced Handshake Features

Session resumption

Client authentication

Ephemeral public keys
For forward security – (usually?) using Diffie-Hellman

Support for DH, with DSS signatures, is mandatory in TLS

Or, for using weak encryption public keys for export reasons
(signed by strong public key) – Often with RSA

RSA key generation is expensive – often same ephemeral (and
short, 512 bits) key used for multiple clients/sessions

Prof. Shlomo Kipnis 15 Fall 2007/2008

Handshake with Ephemeral public keys

Client Server
ClientHello

Certificate

ClientKeyExchange

Finished

ServerHello

ServerHelloDone

ChangeCipherSpec (CCS)

ChangeCipherSpec (CCS)

ServerKeyExchange

Finished

RSA/DSA
Signature

over
ephemeral
RSA key or

DH
exponent

If RSA used:
regular

(encrypted
pre-master);
If DH used:

client’s
exponent

Prof. Shlomo Kipnis 16 Fall 2007/2008

SSL Client Authentication

Usually, only the server has a certificate
Client can authenticate the server
Client sends some identification info (e.g. username, password)
to server using the SSL tunnel – after it is established

SSL also supports authentication with client certificates
Server requires certificate from client
Server signals acceptable Certificate Authorities (CAs) and
certificate formats, options etc.
Client returns appropriate certificate (chain)
Client authenticates by signing using certified public key

Client authentication using certificates is used mostly
within organizations, communities – more on this later

Prof. Shlomo Kipnis 17 Fall 2007/2008

Client Authentication Handshake
Client Server

ClientHello (ciphersuites, Client_random)

Certificate

ClientKeyExchange (Encrypted Pre_Master_Secret)

Finished

Finished

ServerHello (ciphersuite, Server_random)

ServerHelloDone

CCS

CCS

CertificateRequest

Certificate

CertificateVerify
Signature over

hash of
handshake
messages

Or certificate
chain (same for
server cert.)

Acceptable CA
and cert formats

Prof. Shlomo Kipnis 18 Fall 2007/2008

SSL Session Resumption

SSL session setup has substantial overhead
Randomness generation (both)
Transmission of certificates (both)
RSA encryption of Pre-Master-sercret (client)
RSA decryption of Pre-Master-secret (server)
Derivation of master secret and key block (both)

Problems:
Significant performance penalty (mainly on server)
Server vulnerable to clogging (DOS) attacks

Session resumption:
If client makes many connections to same server…
Server, client can re-use Pre-Master-secret from last connection
How? By identifying a session using session ID

4

Prof. Shlomo Kipnis 19 Fall 2007/2008

Session Resumption Handshake

Client Server
ClientHello (cipher-suites, resume(session_id), Client_random)

Finished (Confirmation -MAC of handshake messages)

Finished (Confirmation -MAC of handshake messages)

ServerHello (Chosen cipher-suite, session_id, Server_random)

ChangeCipherSpec (CCS)

ChangeCipherSpec (CCS)

In first session of connection (not resumed),
client does not send session_id, and only server
sends it with ServerHello to allow resumption

Prof. Shlomo Kipnis 20 Fall 2007/2008

Session Resumption Issues

Caching requires considerable server resources
Result: cache usually kept for only few minutest, not 24 hrs

Resumption conflicts with replicated (cluster) servers
TCP connections routed to arbitrary server in cluster
Solution 1: server in cluster determined by client IP address but
requests from many clients may use same NAT IP addr
Solution 2: shared storage of session information not easy!
Solution 3: SSL-session aware connection routing
Solution 4: Client side session caching – encrypted, authenticated
cache; a non-standard SSL/TLS extension

Session resumption helps only for repeating connections
SSL payments involve one (or few) connections not much help

Other possible optimizations (not standardized)
Client caching of certificates and other server info (`fast track`)
Encrypt using ephemeral, short server keys
Server encrypts Pre-Master-Secret using Client’s public key

Prof. Shlomo Kipnis 21 Fall 2007/2008

Secure Usage of SSL

Designing Secure Applications using SSL API

Validating Certificate (or certificates chain)

Server Access Control (client authentication)
Using client certificates

Using username and password, etc.

Client Access Control (server authentication)

Site spoofing attacks on browsers

Prof. Shlomo Kipnis 22 Fall 2007/2008

Designing Applications using SSL API

Several SSL toolkits (e.g. OpenSSL); slightly different APIs
Initialization tasks:

Load CA’s certificates (at clients; servers: only if using client auth)
Load keys and certificates
Seed random number generator (use collected noise)
Load allowed cipher suites

Most toolkits allow adding new (more secure?) cipher suites

In server: generate/load ephemeral DH and/or RSA keys (if used)

Connection API calls
Very similar to standard TCP (Sockets) API
But returns server (and optionally client) certificate
Need to validate certificate
Close (tear-down) connection - to identify truncation attacks

Prof. Shlomo Kipnis 23 Fall 2007/2008

Validating Certificates

Validation done by application, not SSL!!
Verify root CA is trusted

Predefined list of `trusted CAs` in application
E.g. look in your browser…

Do we really trust all of them?

Validate certificate (chain)
Validate signature(s)
Check validity/expiration dates
Check identities, constraints, key usage…
Check for revocations – SSL does not carry CRLs; application
must collect by itself if CRL’s are used.

Reminder…

	Lecture01 -- Introduction to Security
	Lecture02 -- Security Engineering
	Lecture03 -- Classical Cryptography I
	Lecture04 -- Classical Cryptography II
	Lecture05 -- Modern Cryptography
	Lecture06 -- Symmetric Cryptography I
	Lecture07 -- Symmetric Cryptography II
	Lecture08 -- Symmetric Cryptography III
	Lecture09 -- Authentication and Integrity
	Lecture10 -- Hash Functions
	Lecture11 -- Algebra and Number Theory
	Lecture12 -- Public-Key Cryptography I
	Lecture13 -- Public-Key Cryptography II
	Lecture14 -- Public-Key Crypography III
	Lecture15 -- People Authentication I
	Lecture16 -- People Authentication II
	Lecture17 -- Authentication Protocols I
	Lecture18 -- Authentication Protocols II
	Lecture19 -- Symmetric Key Distribution
	Lecture20 -- Kerberos
	Lecture21 -- Public-Key Systems
	Lecture22 -- Public-Key Infrastructure
	Lecture23 -- Network Layer Security I
	Lecture24 -- Network Layer Security II
	Lecture25 -- Transport Layer Security I
	Lecture26 -- Transport Layer Security II

