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Basically there are quite a lot of changes and the paper discusses them thoroughly. I am going to 

talk about the differences that sound more interesting to me. 

Introduction  
By any reasonable standard, the HTTP/1.0 protocol has been stunningly successful. As a 

measure of its popularity, HTTP accounted for about 75% of Internet backbone traffic in a 

(somewhat) recent study.  

HTTP/1.0 evolved from the original ``0.9'' version of HTTP. The process leading to HTTP/1.0 

involved significant debate, but never produced a formal specification. The HTTP Working Group 

(HTTP-WG) of the Internet Engineering Task Force (IETF) produced a document (RFC1945) that 

described the ``common usage'' of HTTP/1.0, but did not attempt to create a formal standard 

out of the many variant implementations. Instead, over a period of roughly four years, the 

HTTP-WG developed an improved protocol, known as HTTP/1.1. 

The HTTP/1.1 specification is almost three times as long as RFC1945, reflecting an increase in 

complexity, clarity, and specificity. Even so, numerous rules are implied by the HTTP/1.1 

specification, rather than being explicitly stated. 

We’ll now discuss some areas in which there have been significant changes. 

Extensibility  
The HTTP/1.1 effort assumed, from the outset, that compatibility with the installed base of HTTP 

implementations was mandatory. Because the HTTP/1.1 effort took over four years, and 

generated numerous interim draft documents, many implementers deployed systems using the 

“HTTP/1.1” protocol version before the final version of the specification was finished. This 

created another compatibility problem: the final version had to be substantially compatible with 

these pseudo-HTTP/1.1 versions, even if the interim drafts turned out to have errors in them. 
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The compatibility issue also underlined the need to include, in HTTP/1.1, as much support as 

possible for future extensibility. That is, if a future version of HTTP were to be designed, it 

should not be hamstrung by any additional compatibility problems.  

Note that HTTP has always specified that if an implementation receives a header that it does not 

understand, it must ignore the header. This rule allows a multitude of extensions without any 

change to the protocol version, although it does not by itself support all possible extensions.  

Version numbers  

In many cases the version number in an HTTP message can be used to deduce the capabilities of 

the sender. A companion document to the HTTP specification clearly specified the ground rules 

for the use and interpretation of HTTP version numbers.  

The version number in an HTTP message refers to the hop-by-hop sender of the message, not 

the end-to-end sender. Thus the message's version number is directly useful in determining 

hop-by-hop message-level capabilities, but not very useful in determining end-to-end 

capabilities. For this reason, as well as to support debugging, HTTP/1.1 defines a Via header 

that describes the path followed by a forwarded message. The path information includes the 

HTTP version numbers of all senders along the path and is recorded by each successive 

recipient. Note that only the last of multiple consecutive HTTP/1.0 senders will be listed, 

because HTTP/1.0 proxies will not add information to the Via header.)  

Upgrading to other protocols  

In order to ease the deployment of incompatible future protocols, HTTP/1.1 includes the new 

Upgrade request header. By sending the Upgrade header, a client can inform a server of the 

set of protocols it supports as an alternate means of communication. The server may choose to 

switch protocols, but this is not mandatory.  

Caching  
Caching is effective because a few resources are requested often by many users, or repeatedly 

by a given user. Caches are employed in most Web browsers and in many proxy servers. Caching 

improves user-perceived latency by eliminating the network communication with the origin 

server. Caching also reduces bandwidth consumption, by avoiding the transmission of 

unnecessary network packets. Reduced bandwidth consumption also indirectly reduces latency 

for un-cached interactions, by reducing network congestion. Finally, caching can reduce the load 

on origin servers (and on intermediate proxies), further improving latency for un-cached 

interactions.  

One risk with caching is that the caching mechanism might not be “semantically transparent”: 

that is, it might return a response different from what would be returned by direct 

communication with the origin server. While some applications can tolerate non-transparent 

responses, many Web applications (electronic commerce, for example) cannot.  



Caching in HTTP/1.0  

HTTP/1.0 provided a simple caching mechanism. An origin server may mark a response, using 

the Expires header, with a time until which a cache could return the response without 

violating semantic transparency. Further, a cache may check the current validity of a response 

using what is known as a conditional request: it may include an If-Modified-Since header in 

a request for the resource, specifying the value given in the cached response's Last-Modified 

header. The server may then either respond with a 304 (Not Modified) status code, implying 

that the cache entry is valid, or it may send a normal 200 (OK) response to replace the cache 

entry.  

HTTP/1.0 also included a mechanism, the Pragma: no-cache header, for the client to indicate 

that a request should not be satisfied from a cache.  

The HTTP/1.0 caching mechanism worked moderately well, but it had many conceptual 

shortcomings. It did not allow either origin servers or clients to give full and explicit instructions 

to caches; therefore, it depended on a body of heuristics that were not well-specified. This led 

to two problems: incorrect caching of some responses that should not have been cached, and 

failure to cache some responses that could have been cached. The former causes semantic 

problems; the latter causes performance problems.  

Caching in HTTP/1.1  

In HTTP/1.1 terminology, a cache entry is fresh until it reaches its expiration time, at which point 

it becomes stale. A cache need not discard a stale entry, but it normally must revalidate it with 

the origin server before returning it in response to a subsequent request. However, the protocol 

allows both origin servers and end-user clients to override this basic rule.  

In HTTP/1.0, a cache revalidated an entry using the If-Modified-Since header. This header 

uses absolute timestamps with one-second resolution, which could lead to caching errors either 

because of clock synchronization errors, or because of lack of resolution. Therefore, HTTP/1.1 

introduces the more general concept of an opaque cache validator string, known as an entity 

tag. If two responses for the same resource have the same entity tag, then they must (by 

specification) be identical. Because an entity tag is opaque, the origin server may use any 

information it deems necessary to construct it (such as a fine-grained timestamp or an internal 

database pointer), as long as it meets the uniqueness requirement. Clients may compare entity 

tags for equality, but cannot otherwise manipulate them. HTTP/1.1 servers attach entity tags to 

responses using the ETag header.  

HTTP/1.1 includes a number of new conditional request-headers, in addition to If-Modified-

Since. The most basic is If-None-Match, which allows a client to present one or more entity 

tags from its cache entries for a resource. If none of these matches the resource's current entity 

tag value, the server returns a normal response; otherwise, it may return a 304 (Not Modified) 

response with an ETag header that indicates which cache entry is currently valid. Note that this 



mechanism allows the server to cycle through a set of possible responses, while the If-

Modified-Since mechanism only generates a cache hit if the most recent response is valid.  

HTTP/1.1 also adds new conditional headers called If-Unmodified-Since and If-Match, 

creating other forms of preconditions on requests.  

The Cache-Control header  

In order to make caching requirements more explicit, HTTP/1.1 adds the new Cache-Control 

header, allowing an extensible set of cache-control directives to be transmitted in both requests 

and responses. The set defined by HTTP/1.1 is quite large, so we concentrate on several notable 

members.  

Because the absolute timestamps in the HTTP/1.0 Expires header can lead to failures in the 

presence of clock skew, HTTP/1.1 can use relative expiration times, via the max-age directive. 

(It also introduces an Age header, so that caches can indicate how long a response has been 

sitting in caches along the way.)  

Because some users have privacy requirements that limit caching beyond the need for semantic 

transparency, the private and no-store directives allow servers and clients to prevent the 

storage of some or all of a response. However, this does not guarantee privacy; only 

cryptographic mechanisms can provide true privacy.  

Some proxies transform responses (for example, to reduce image complexity before 

transmission over a slow link), but because some responses cannot be blindly transformed 

without losing information, the no-transform directive may be used to prevent 

transformations.  

Bandwidth optimization  
Network bandwidth is almost always limited. HTTP/1.0 wastes bandwidth in several ways that 

HTTP/1.1 addresses. A typical example is a server's sending an entire (large) resource when the 

client only needs a small part of it. There was no way in HTTP/1.0 to request partial objects. 

Also, it is possible for bandwidth to be wasted in the forward direction: if a HTTP/1.0 server 

could not accept large requests, it would return an error code after bandwidth had already been 

consumed. What was missing was the ability to negotiate with a server and to ensure its ability 

to handle such requests before sending them.  

Range requests  

 A client may need only part of a resource. For example, it may want to display just the 

beginning of a long document, or it may want to continue downloading a file after a transfer was 

terminated in mid-stream. HTTP/1.1 range requests allow a client to request portions of a 

resource. While the range mechanism is extensible to other units (such as chapters of a 

document, or frames of a movie), HTTP/1.1 supports only ranges of bytes. A client makes a 

range request by including the Range header in its request, specifying one or more contiguous 



ranges of bytes. The server can either ignore the Range header, or it can return one or more 

ranges in the response.  

If a response contains a range, rather than the entire resource, it carries the 206 (Partial 

Content) status code. This code prevents HTTP/1.0 proxy caches from accidentally treating the 

response as a full one, and then using it as a cached response to a subsequent request. In a 

range response, the Content-Range header indicates the offset and length of the returned 

range.  

Range requests can be used in a variety of ways:  

1. To read the initial part of an image, to determine its geometry and therefore do page 

layout without loading the entire image 

2. To complete a response transfer that was interrupted (either by the user or by a 

network failure)  

3. To read the tail of a growing object. 

Expect and 100 (Continue)  

Some HTTP requests (for example, the PUT or POST methods) carry request bodies, which may 

be arbitrarily long. If, the server is not willing to accept the request, perhaps because of an 

authentication failure, it would be a waste of bandwidth to transmit such a large request body.  

HTTP/1.1 includes a new status code, 100 (Continue), to inform the client that the request body 

should be transmitted. When this mechanism is used, the client first sends its request headers, 

and then waits for a response. If the response is an error code, such as 401 (Unauthorized), 

indicating that the server does not need to read the request body, the request is terminated. If 

the response is 100 (Continue), the client can then send the request body, knowing that the 

server will accept it.  

However, HTTP/1.0 clients do not understand the 100 (Continue) response. Therefore, in order 

to trigger the use of this mechanism, the client sends the new Expect header, with a value of 

100-continue. 

Because not all servers use this mechanism (the Expect header is a relatively late addition to 

HTTP/1.1, and early “HTTP/1.1” servers did not implement it), the client must not wait 

indefinitely for a 100 (Continue) response before sending its request body. HTTP/1.1 specifies a 

number of somewhat complex rules to avoid either infinite waits or wasted bandwidth. 

Compression  

One well-known way to conserve bandwidth is through the use of data compression. While 

most image formats (GIF, JPEG, MPEG) are pre-compressed, many other data types used in the 

Web are not. One study showed that aggressive use of additional compression could save 

almost 40% of the bytes sent via HTTP. While HTTP/1.0 included some support for compression, 



it did not provide adequate mechanisms for negotiating the use of compression, or for 

distinguishing between end-to-end and hop-by-hop compression.  

HTTP/1.1 makes a distinction between content-codings, which are end-to-end encodings that 

might be inherent in the native format of a resource, and transfer-codings, which are always 

hop-by-hop. Compression can be done either as a content-coding or as a transfer-coding. 

HTTP/1.0 includes the Content-Encoding header, which indicates the end-to-end content-

coding(s) used for a message; HTTP/1.1 adds the Transfer-Encoding header, which indicates 

the hop-by-hop transfer-coding(s) used for a message.  

HTTP/1.1 (unlike HTTP/1.0) carefully specifies the Accept-Encoding header, used by a client 

to indicate what content-codings it can handle, and which ones it prefers. HTTP/1.1 also 

includes the TE header, which allows the client to indicate which transfer-codings are 

acceptable, and which are preferred. 

Network connection management  
HTTP almost always uses TCP as its transport protocol. The original HTTP design used a new TCP 

connection for each request, so each request incurred the cost of setting up a new TCP 

connection. Since most Web interactions are short this was highly inefficient.  

Web pages frequently have embedded images, sometimes many of them, and each image is 

retrieved via a separate HTTP request. The use of a new TCP connection for each image retrieval 

serializes the display of the entire page on the connection-setup latencies for all of the requests. 

To resolve these problems, Padmanabhan and Mogul recommended the use of persistent 

connections and the pipelining of requests on a persistent connection.  

The Connection header  

Given the use of intermediate proxies, HTTP makes a distinction between the end-to-end path 

taken by a message, and the actual hop-by-hop connection between two HTTP 

implementations.  

HTTP/1.1 introduces the concept of hop-by-hop headers: message headers that apply only to a 

given connection, and not to the entire path. The use of hop-by-hop headers creates a 

potential problem: if such a header were to be forwarded by a naive proxy, it might mislead the 

recipient.  

Therefore, HTTP/1.1 includes the Connection header. This header lists all of the hop-by-hop 

headers in a message, telling the recipient that these headers must be removed from that 

message before it is forwarded. This extensible mechanism allows the future introduction of 

new hop-by-hop headers; the sender need not know whether the recipient understands a new 

header in order to prevent the recipient from forwarding the header.  



Because HTTP/1.0 proxies do not understand the Connection header, however, HTTP/1.1 

imposes an additional rule. If a Connection header is received in an HTTP/1.0 message, then it 

must have been incorrectly forwarded by an HTTP/1.0 proxy. Therefore, all of the headers it lists 

were also incorrectly forwarded, and must be ignored.  

The Connection header may also list connection-tokens, which are not headers but rather per-

connection Boolean flags. For example, HTTP/1.1 defines the token close to permit the peer to 

indicate that it does not want to use a persistent connection. Again, the Connection header 

mechanism prevents these tokens from being forwarded.  

Persistent Connections  

 HTTP/1.0, in its documented form, made no provision for persistent connections. Some 

HTTP/1.0 implementations, however, use a Keep-Alive header to request that a connection 

persist. This design did not interoperate with intermediate proxies; HTTP/1.1 specifies a more 

general solution.  

In recognition of their desirable properties, HTTP/1.1 makes persistent connections the default. 

HTTP/1.1 clients, servers, and proxies assume that a connection will be kept open after the 

transmission of a request and its response. The protocol does allow an implementation to close 

a connection at any time, in order to manage its resources, although it is best to do so only after 

the end of a response.  

Because an implementation may prefer not to use persistent connections if it cannot efficiently 

scale to large numbers of connections or may want to cleanly terminate one for resource-

management reasons, the protocol permits it to send a Connection: close header to inform 

the recipient that the connection will not be reused.  

Pipelining  

Although HTTP/1.1 encourages the transmission of multiple requests over a single TCP 

connection, each request must still be sent in one contiguous message, and a server must send 

responses (on a given connection) in the order that it received the corresponding requests. 

However, a client need not wait to receive the response for one request before sending another 

request on the same connection. In fact, a client could send an arbitrarily large number of 

requests over a TCP connection before receiving any of the responses. This practice, known as 

pipelining, can greatly improve performance. It avoids the need to wait for network round-trips, 

and it makes the best possible use of the TCP protocol.  

Message transmission  
HTTP messages may carry a body of arbitrary length. The recipient of a message needs to know 

where the message ends. The sender can use the Content-Length header, which gives the 

length of the body. However, many responses are generated dynamically. Without buffering the 



entire response (which would add latency), the server cannot know how long it will be and 

cannot send a Content-Length header.  

When not using persistent connections, the solution is simple: the server closes the connection. 

This option is available in HTTP/1.1, but it defeats the performance advantages of persistent 

connections.  

The Chunked transfer-coding  

 HTTP/1.1 resolves the problem of delimiting message bodies by introducing the Chunked 

transfer-coding. The sender breaks the message body into chunks of arbitrary length, and each 

chunk is sent with its length prepended; it marks the end of the message with a zero-length 

chunk. The sender uses the Transfer-Encoding: chunked header to signal the use of 

chunking.  

This mechanism allows the sender to buffer small pieces of the message, instead of the entire 

message, without adding much complexity or overhead. All HTTP/1.1 implementations must be 

able to receive chunked messages.  

The Chunked transfer-coding solves another problem, not related to performance. In HTTP/1.0, 

if the sender does not include a Content-Length header, the recipient cannot tell if the 

message has been truncated due to transmission problems. This ambiguity leads to errors, 

especially when truncated responses are stored in caches.  

Trailers  
Chunking solves another problem related to sender-side message buffering. Some header fields, 

such as Content-MD5 (a cryptographic checksum over the message body), cannot be computed 

until after the message body is generated. In HTTP/1.0, the use of such header fields required 

the sender to buffer the entire message.  

In HTTP/1.1, a chunked message may include a trailer after the final chunk. A trailer is simply a 

set of one or more header fields. By placing them at the end of the message, the sender allows 

itself to compute them after generating the message body.  

The sender alerts the recipient to the presence of message trailers by including a Trailer 

header, which lists the set of headers deferred until the trailer. This alert, for example, allows a 

browser to avoid displaying a prefix of the response before it has received authentication 

information carried in a trailer.  

HTTP/1.1 imposes certain conditions on the use of trailers, to prevent certain kinds of 

interoperability failure. For example, if a server sends a lengthy message with a trailer to an 

HTTP/1.1 proxy that is forwarding the response to an HTTP/1.0 client, the proxy must either 

buffer the entire message or drop the trailer. Rather than insist that proxies buffer arbitrarily 

long messages, which would be infeasible, the protocol sets rules that should prevent any 

critical information in the trailer (such as authentication information) from being lost because of 



this problem. Specifically, a server cannot send a trailer unless either the information it contains 

is purely optional, or the client has sent a TE: trailers header, indicating that it is willing 

to receive trailers (and, implicitly, to buffer the entire response if it is forwarding the message to 

an HTTP/1.0 client).  

Internet address conservation  
Companies and organizations use URLs to advertise themselves and their products and services. 

When a URL appears in a medium other than the Web itself, people seem to prefer “pure 

hostname” URLs; i.e., URLs without any path syntax following the hostname. These are often 

known as “vanity URLs”, but in spite of the implied disparagement, it's unlikely that non-purist 

users will abandon this practice, which has led to the continuing creation of huge numbers of 

hostnames.  

IP addresses are widely perceived as a scarce resource. The Domain Name System (DNS) allows 

multiple host names to be bound to the same IP address. Unfortunately, because the original 

designers of HTTP did not anticipate the “success disaster” they were enabling, HTTP/1.0 

requests do not pass the hostname part of the request URL. For example, if a user makes a 

request for the resource at URL http://example1.org/home.html, the browser sends a message 

with the Request-Line  

GET /home.html HTTP/1.0 

to the server at example1.org. This prevents the binding of another HTTP server hostname, such 

as exampleB.org to the same IP address, because the server receiving such a message cannot 

tell which server the message is meant for. Thus, the proliferation of vanity URLs causes a 

proliferation of IP address allocations.  

The Internet Engineering Steering Group (IESG), which manages the IETF process, insisted that 

HTTP/1.1 take steps to improve conservation of IP addresses. Since HTTP/1.1 had to 

interoperate with HTTP/1.0, it could not change the format of the Request-Line to include the 

server hostname. Instead, HTTP/1.1 requires requests to include a Host header that carries the 

hostname. This converts the example above to:  

GET /home.html HTTP/1.1 

Host: example1.org 

If the URL references a port other than the default (TCP port 80), this is also given in the Host 

header.  

Clearly, since HTTP/1.0 clients will not send Host headers, HTTP/1.1 servers cannot simply reject 

all messages without them. However, the HTTP/1.1 specification requires that an HTTP/1.1 

server must reject any HTTP/1.1 message that does not contain a Host header.  

http://example1.org/home.html


Error notification  
HTTP/1.0 defined a relatively small set of sixteen status codes, including the normal 200 (OK) 

code. Experience revealed the need for finer resolution in error reporting.  

The Warning header  

HTTP status codes indicate the success or failure of a request. For a successful response, the 

status code cannot provide additional advisory information, in part because the placement of 

the status code in the Status-Line, instead of in a header field, prevents the use of multiple 

status codes.  

HTTP/1.1 introduces a Warning header, which may carry any number of subsidiary status 

indications. The intent is to allow a sender to advise the recipient that something may be 

unsatisfactory about an ostensibly successful response.  

HTTP/1.1 defines an initial set of Warning codes, mostly related to the actions of caches along 

the response path. For example, a Warning can mark a response as having been returned by a 

cache during disconnected operation, when it is not possible to validate the cache entry with 

the origin server.  

The Warning codes are divided into two classes, based on the first digit of the 3-digit code. One 

class of warnings must be deleted after a successful revalidation of a cache entry; the other class 

must be retained with a revalidated cache entry. Because this distinction is made based on the 

first digit of the code, rather than through an exhaustive listing of the codes, it is extensible to 

Warning codes defined in the future.  

Other new status codes  

There are 24 new status codes in HTTP/1.1. Two of the more notable additions include: 

 409 (Conflict), returned when a request would conflict with the current state of the 

resource. For example, a PUT request might violate a versioning policy.  

 410 (Gone), used when a resource has been removed permanently from a server, and to 

aid in the deletion of any links to the resource.  

Most of the other new status codes are minor extensions. 

Security, integrity, and authentication  
In recent years, the IETF has heightened its sensitivity to issues of privacy and security. One 

special concern has been the elimination of passwords transmitted “in the clear”. This increased 

emphasis has manifested itself in the HTTP/1.1 specification.  

Digest access authentication  

HTTP/1.0 provides a challenge-response access control mechanism, Basic authentication. The 

origin server responds to a request for which it needs authentication with a WWW-



Authenticate header that identifies the authentication scheme (in this case, “Basic”) and 

realm. (The realm value allows a server to partition sets of resources into “protection spaces”, 

each with its own authorization database.)  

The client (user agent) typically queries the user for a username and password for the realm, 

and then repeats the original request, this time including an Authorization header that 

contains the username and password. Assuming these credentials are acceptable to it, the origin 

server responds by sending the expected content. A client may continue to send the same 

credentials for other resources in the same realm on the same server, thus eliminating the extra 

overhead of the challenge and response.  

A serious flaw in Basic authentication is that the username and password in the credentials are 

unencrypted and therefore vulnerable to network snooping. The credentials also have no time 

dependency, so they could be collected at leisure and used long after they were collected. 

Digest access authentication provides a simple mechanism that uses the same framework as 

Basic authentication while eliminating many of its flaws.  

The message flow in Digest access authentication mirrors that of Basic and uses the same 

headers, but with a scheme of “Digest”. The server's challenge in Digest access authentication 

uses a nonce (one-time) value, among other information. To respond successfully, a client must 

compute a checksum (MD5, by default) of the username, password, nonce, HTTP method of the 

request, and the requested URI. Not only is the password no longer unencrypted, but the given 

response is correct only for a single resource and method. Thus, an attacker that can snoop on 

the network could only replay the request, the response for which he has already seen. Unlike 

with Basic authentication, obtaining these credentials does not provide access to other 

resources.  

As with Basic authentication, the client may make further requests to the same realm and 

include Digest credentials, computed with the appropriate request method and request-URI. 

However, the origin server's nonce value may be time-dependent. The server can reject the 

credentials by saying the response used a stale nonce and by providing a new one. The client 

can then recompute its credentials without needing to ask the user for username and password 

again.  

In addition to the straightforward authentication capability, Digest access authentication offers 

two other features: support for third-party authentication servers, and a limited message 

integrity feature (through the Authentication-Info header).  

Proxy authentication  

Some proxy servers provide service only to properly authenticated clients. This prevents, for 

example, other clients from stealing bandwidth from an unsuspecting proxy.  

To support proxy authentication, HTTP/1.1 introduces the Proxy-Authenticate and Proxy-

Authorization headers. They play the same role as the WWW-Authenticate and 



Authorization headers in HTTP/1.0, except that the new headers are hop-by-hop, rather 

than end-to-end. Proxy authentication may use either of the Digest or Basic authentication 

schemes, but the former is preferred.  

A proxy server sends the client a Proxy-Authenticate header, containing a challenge, in a 

407 (Proxy Authentication Required) response. The client then repeats the initial request, but 

adds a Proxy-Authorization header that contains credentials appropriate to the challenge. 

After successful proxy authentication, a client typically sends the same Proxy-

Authorization header to the proxy with each subsequent request, rather than wait to be 

challenged again.  

Protecting the privacy of URIs  

The URI of a resource often represents information that some users may view as private. Users 

may prefer not to have it widely known that they have visited certain sites.  

The Referer header in a request provides the server with the URI of the resource from which 

the request-URI was obtained. This gives the server information about the user's previous page-

view. To protect against unexpected privacy violations, the HTTP/1.1 specification takes pains to 

discourage sending the Referer header inappropriately; for example, when a user enters a URL 

from the keyboard, the application should not send a Referer header describing the currently-

visible page, nor should a client send the Referer header in an insecure request if the referring 

page had been transferred securely.  

State management  

HTTP requests are stateless. That is, from a server's perspective, each request can ordinarily be 

treated as independent of any other. For Web applications, however, state can sometimes be 

useful.  

Netscape introduced “cookies” in version 1.1 of their browser as a state management 

mechanism. The IETF subsequently standardized cookies in RFC2109. The basic cookie 

mechanism is simple. An origin server sends an arbitrary piece of (state) information to the 

client in its response. The client is responsible for saving the information and returning it with its 

next request to the origin server. RFC2109 and Netscape's original specification relax this model 

so that a cookie can be returned to any of a collection of related servers, rather than just to one. 

The specifications also restricts for which URIs on a given server the cookie may be returned. A 

server may assign a lifetime to a cookie, after which it is no longer used.  

Cookies have both privacy and security implications. Because their content is arbitrary, cookies 

may contain sensitive application-dependent information. For example, they could contain 

credit card numbers, user names and passwords, or other personal information. Applications 

that send such information over unencrypted connections leave it vulnerable to snooping, and 

cookies stored at a client system might reveal sensitive information to another user of (or 

intruder into) that client.  



RFC2109 proved to be controversial, primarily because of restrictions that were introduced to 

protect privacy. Probably the most controversial of these has to do with “unverifiable 

transactions” and “third-party cookies”. Consider this scenario.  

1. The user visits http://www.example1.com/home.html 

2. The returned page contains an IMG (image) tag with a reference to 

http://ad.example.com/adv1.gif, an advertisement 

3. The user's browser automatically requests the image. The response includes a cookie 

from ad.example.com. 

4. The user visits http://www.exampleB.com/home.html 

5. The returned page contains an IMG tag with a reference to 

http://ad.example.com/adv2.gif. 

6. The user's browser automatically requests the image, sending the previously received 

cookie to ad.example.com in the process. The response includes a new cookie from 

ad.example.com 

Privacy advocates, and others, worried that:  

 The user receives, in step 3, a (“third-party”) cookie from ad.example.com, a site she 

didn't even know she was going to visit (an “unverifiable transaction”)  

 The first cookie gets returned to ad.example.com in the second image request 

If a Referer header is sent with each of the image requests to ad.example.com, then that 

site can begin to accumulate a profile of the user's interests from the sites she visited, here 

http://www.example1.com/home.html and http://www.exampleB.com/home.html. 

Such an advertising site could potentially select advertisements that are likely to be interesting 

to her. While that profiling process is relatively benign in isolation, it could become more 

personal if the profile can also be tied to a specific real person, not just a persona. For example, 

this might happen if the user goes through some kind of registration at www.example1.com.  

RFC2109 sought to limit the possible pernicious effects of cookies by requiring user agents to 

reject cookies that arrive from the responses to unverifiable transactions. RFC2109 further 

stated that user agents could be configured to accept such cookies, provided that the default 

was not to accept them. This default setting was a source of concern for advertising networks 

(companies that run sites like ad.example.com in the example) whose business model 

depended on cookies, and whose business blossomed in the interval between when the 

specification was essentially complete (July, 1996) and the time it appeared as an RFC (February, 

1997). RFC2109 has undergone further refinement in response to comments, both political and 

technical. 



Content Negotiation  
Web users speak many languages and use many character sets. Some Web resources are 

available in several variants to satisfy this multiplicity. HTTP/1.0 included the notion of content 

negotiation, a mechanism by which a client can inform the server which language(s) and/or 

character set(s) are acceptable to the user.  

Content negotiation has proved to be a contentious and confusing area. Some aspects that 

appeared simple at first turned out to be quite difficult to resolve. For example, although 

current IETF practice is to insist on explicit character set labeling in all relevant contexts, the 

existing HTTP practice has been to use a default character set in most contexts, but not all 

implementations chose the same default. The use of unlabeled defaults greatly complicates the 

problem of internationalizing the Web.  

HTTP/1.0 provided a few features to support content negotiation, but the RFC never uses that 

term and devotes less than a page to the relevant protocol features. The HTTP/1.1 specification 

specifies these features with far greater care, and introduces a number of new concepts.  

The goal of the content negotiation mechanism is to choose the best available representation of 

a resource. HTTP/1.1 provides two orthogonal forms of content negotiation, differing in where 

the choice is made: 

1. In server-driven negotiation, the more mature form, the client sends hints about the 

user's preferences to the server, using headers such as Accept-Language, Accept-

Charset, etc. The server then chooses the representation that best matches the 

preferences expressed in these headers.  

2. In agent-driven negotiation, when the client requests a varying resource, the server 

replies with a 300 (Multiple Choices) response that contains a list of the available 

representations and a description of each representation's properties (such as its 

language and character set). The client (agent) then chooses one representation, either 

automatically or with user intervention, and resubmits the request, specifying the 

chosen variant.  

Although the HTTP/1.1 specification reserves the Alternates header name for use in agent-

driven negotiation, the HTTP working group never completed a specification of this header, and 

server-driven negotiation remains the only usable form.  

Some users may speak multiple languages, but with varying degrees of fluency. Similarly, a Web 

resource might be available in its original language, and in several translations of varying 

faithfulness. HTTP introduces the use of quality values to express the importance or degree of 

acceptability of various negotiable parameters. A quality value (or qvalue) is a fixed-point 

number between 0.0 and 1.0. For example, a native speaker of English with some fluency in 

French, and who can impose on a Danish-speaking office-mate, might configure a browser to 

generate requests including 



Accept-Language: en, fr;q=0.5, da;q=0.1 

Because the content-negotiation mechanism allows qvalues and wildcards, and expresses 

variation across many dimensions (language, character-set, content-type, and content-

encoding) the automated choice of the “best available” variant can be complex and might 

generate unexpected outcomes  

Content negotiation promises to be a fertile area for additional protocol evolution. For example, 

the HTTP working group recognized the utility of automatic negotiation regarding client 

implementation features, such as screen size, resolution, and color depth. The IETF has created 

the Content Negotiation working group to carry forward with work in the area.  

Conclusion 
HTTP/1.1 differs from HTTP/1.0 in numerous ways, both large and small. While many of these 

changes are clearly for the better, the protocol description has tripled in length, and many of the 

new features were introduced without any real experimental evaluation to back them up. The 

HTTP/1.1 specification also includes numerous irregularities for compatibility with the installed 

base of HTTP/1.0 implementations.  

This increase in complexity complicates the job of client, server, and especially proxy cache 

implementers. It has already led to unexpected interactions between features, and will probably 

lead to others. Fortunately, the numerous provisions in HTTP/1.1 for extensibility should 

simplify the introduction of future modifications.  

 

 



 דינה זליגר

 

 2תרגיל  –נושאים מתקדמים במסדי נתונים 

 שימושיות של אתרי אינטרנט

  http://ozar.mof.gov.il/taxes: ננתח את השימוש של האתר של מס הכנסה

 

 !!!בעיית כיעור כללי :0בעיה 

 !על האתרלהחליף את האנשים שאחראים : תיקון

 

לא טוב אם  –אלא פשוט את הכתובת של האתר , הכותרת של העמוד אינה מכילה תוכן מועיל: 1בעיה 

 ...משתמשים בסימניות

 

 ".רשות המסים בישראל"למשל , לשנות את הכותרת של העמוד למשהו אינפורמטיבי: תיקון

 

 ...(כזאתאפשרות או לפחות אני לא מצאתי )אין אפשרות חיפוש באתר : 2בעיה 

 ('מידע וכו, הודעות, טפסים)להוסיף יכולת חיפוש : תיקון

http://ozar.mof.gov.il/taxes


 

... לא רואים את זה בתמונה אבל הם גם מרצדים צבעים שונים. הלינקים עושים כאב ראש: 3בעיה 

 (לזכותם ייאמר שמאחורי הלינקים מופיע טקסט אז לפחות זה נגיש לעיוורים)הגופנים לא תואמים 

 

 .הלינקים עיצוב זהה עם רקע אחיד ולא משתנהלתת לכל : תיקון

 

לוקח המון זמן עד שהם מגיעים וגם אפשר לפספס ואז צריך לחכות  –עם לינקים  marquee :4בעיה 

 !!!שובץ ממש מעצבן

 

 ...לאלתר ולכתוב אל הלינקים בצורה מסודרת כך שלא יברחו לשום מקום marquee-לבטל את ה :תיקון

 

מה גם שלינקים לא , קשה מאוד לקרוא את התכלת על הרקע הלבן. ים לא קריאיםלינקים בצבע :5בעיה 

 ...נראים ככה באופן סטנדרטי

 

 .הטקסט צריך להיות בצבע כהה יותר: תיקון



Dina Zeliger 

ADVANCED TOPICS IN DB THEORY – EXERCISE 3 
Compressed Tries 

WHAT IS A TRIE? 
A trie, or prefix tree, is an ordered tree data structure that is used to store an associative array where 
they keys are usually strings. Unlike a binary search tree, no node in a trie stores the key associated 
with that node. Instead, its position in the tree shows what key is associated with it. All the 
descendents of a node have a common prefix of the string associated with that node, and the root is 
associated with the empty string. Strings are usually considered null-terminated, and thus no string 
can be the prefix of another. Note that without the null-termination, a string CAN be the suffix of 
another string (i.e. “the girl” and “the girl ate”). 

Though it is most common, tries need not be keyed by character strings. The same algorithms can be 
easily adapted to serve similar functions of ordered lists of any construct. 

ADVANTAGES AND DISADVANTAGES 
• Generally, when the total set of stored keys is very sparse within their representation space, 

the trie data structure is quite wasteful in storage. 
• Comparing to a regular BST, tries have several advantages: 

o Looking up a key of length 𝑚𝑚 takes 𝑂𝑂(𝑚𝑚) time at worst case. A balanced BST 
performs 𝑂𝑂(log𝑛𝑛) comparisons where 𝑛𝑛 is the number of elements in the tree. Thus, 
in the worst case, a BST takes 𝑂𝑂(𝑚𝑚 log𝑛𝑛) time. 

o Tries can require less space when they contain a large number of short strings, 
because the keys are not stored explicitly and nodes are shared between keys with 
common initial subsequences. 

o Tries help with longest-prefix matching1

• Comparing to hash tables: 

, where we wish to find the key sharing the 
longest possible prefix of characters all unique. 

o Advantages: 
 Looking up data in a trie is faster in the worst case, 𝑂𝑂(𝑚𝑚) time, compared to 

an imperfect hash table. An imperfect hash table can have key collisions. The 
worst-case lookup speed in an imperfect hash table is 𝑂𝑂(𝑛𝑛) time, but far 
more typically is O(1), with O(m) time spent evaluating the hash. 

 There are no collisions of different keys in a trie.  

                                                                    
1 Longest prefix match is an algorithm used by routers in Internet Protocol networking to select an entry from a routing table. 
Because each entry in a routing table may specify a network, one destination address may match more than one routing table 
entry. The most specific table entry – the one with the highest subnet mask – is called the longest prefix match. It is called this 
because it is also the entry where the largest number of leading address bits in the table entry match those of the destination 
address. 



 Buckets in a trie which are analogous to hash table buckets that store key 
collisions are only necessary if a single key is associated with more than one 
value.  

 There is no need to provide a hash function or to change hash functions as 
more keys are added to a trie.  

 A trie can provide an alphabetical ordering of the entries by key. 
o Disadvantages: 

 Tries can be slower in some cases than hash tables for looking up data, 
especially if the data is directly accessed on a hard disk drive or some other 
secondary storage device where the random access time is high compared 
to main memory. 

 It is not easy to represent all keys as strings, such as floating point numbers, 
which can have multiple string representations for the same floating point 
number, e.g. 1, 1.0, 1.00, +1.0, etc. 

OVERCOMING THE DISADVANTAGES – COMPRESSED TRIES 
When the trie is mostly static, i.e. all insertions or deletions of keys from a prefilled trie are disabled 
and only lookups are needed, and when the trie nodes are not keyed by node specific data (or if the 
node's data is common) it is possible to compress the trie representation. This application is typically 
used for compressing lookup tables when the total set of stored keys is very sparse within their 
representation space. Another option is to do updating in batches, whenever the batch size exceeds a 
threshold. 

Whereas each field in a trie has to be large enough to hold a pointer, each field in a C-trie is 
represented by a single bit. If the 𝑘𝑘-th bit of a node N on level 𝑙𝑙 is set, it indicates that one or more 
keys pass through this node N and have as (𝑙𝑙 + 1)-th substring 𝑥𝑥𝑙𝑙+1 = 𝑘𝑘. 

The structure of a node 𝑁𝑁 in level 𝑙𝑙 of a C-trie is as follows: 

• 𝑈𝑈 – 1-bit field. If 𝑈𝑈 = 0, then the node is internal and 𝐵𝐵,𝐾𝐾,𝐶𝐶 are as follows. Otherwise, the 
node is a leaf and 𝐵𝐵,𝐾𝐾,𝐶𝐶 contain the suffix 𝑥𝑥𝑙𝑙+1 … 𝑥𝑥𝑘𝑘  of the key 𝑥𝑥 = 𝑥𝑥1 … 𝑥𝑥𝑘𝑘 . Note that the 
prefix does not have to be stored since it is implicitly defined by the path from the root of the 
C-trie to the leaf. 

• 𝐵𝐵 – 1-bit field. 𝐵𝐵 is set to 1 if one of the keys passing through the node terminates at level 𝑙𝑙 
and thus corresponds to a blank field in a trie which contains a key.  

• 𝐾𝐾 – (𝑚𝑚 − 1)-bit field, each corresponding to a field in a node of a trie. 𝑚𝑚 is the number of 
characters plus the terminating sign. 

• 𝐶𝐶 – at most ⌈log2 𝑛𝑛⌉ bits where 𝑛𝑛 is the number of keys. 𝐶𝐶 is equal to the number of nonzero 
bits of the 𝐾𝐾 fields in the nodes on level 𝑙𝑙 to the left of the node 𝑁𝑁. This number equals the 
number of nodes on level 𝑙𝑙 + 1 preceding the successor of the first nonzero bit in the field 𝐾𝐾 
of node 𝑁𝑁. 

All the nodes are stored as a continuous bit string. First is the root node, which is followed by all the 
nodes in level 1 from left to right, and so on. 
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Z I V  B A R - Y O S S E F ,  I D I T  K E I D A R ,  U R I  
S C H O N F E L D

P R E S E N T E D  B Y  D I N A  Z E L I G E R

Do Not Crawl in the DUST:
Different URLs with Similar Text



DUST: A Problem

 Different URLs with Similar Text

 Examples:
 Standard Canonization:

 http://domain.name/index.html  http://domain.name

 Domain names and virtual hosts

 http://news.google.com  http://google.com/news

 Aliases and symbolic links:

 http://domain.name/~shuri  http://domain.name/people/shuri

 Parameters with little affect on content

 URL transformations: 

 http://domain.name/story_  http://domain.name/story?id=



Why Care?

 Expensive to crawl
 Access the same document via multiple URLs

 Forces us to shingle
 An expensive technique used to discover similar documents

 Ranking algorithms suffer
 References to a document split among its aliases

 Multiple identical results
 The same document is returned several times in the search 

results



DUST Buster Basic Framework

 Input: URL list

 Detect likely DUST rules

 Eliminate redundant rules

 Validate DUST rules using samples:
 Eliminate DUST rules that are “wrong”

 Further eliminate duplicate DUST rules

 First three phases DO NOT require fetching!!



DUST Buster Heuristics

 Large support principle:
 Likely DUST rules have lots of “evidence” supporting them

 A pair of URLs (u,v) is an instance of rule r, if r(u) = v 

 Support(r) = all instances (u,v) of r

 Envelope of string a in URL u is pair (p,s) s.t. u = pas

 E(a) = all envelopes of a in URLs in URL list

 |support(a b)|=|E(a) ∩E(b)|

 Small buckets principle:
 Ignore evidence that supports many different rules

 Bucket(p,s)= {a|(p,s)E(a)}

 Often do not contain similar content



More Likeliness Evidence

 Similar texts have similar sizes
 When using web server logs

 Similar texts have similar sketches
 When using previous crawl



Eliminating Redundant Rules

 Rule r refines rule q if support(r)  support(q)
 “/vlsi/”   “/labs/vlsi/”

 “/vlsi”     “/labs/vlsi”

 A substitution rule a’  b’ refines rule a  b if and 
only if there exists an envelope (c,d) such that a’=cad 
and b’=cbd
 Helps identify refinements easily

 If r refines q, remove q if supports match
 Refinement gives the full context of the substitution



Validating rules

 Fetch random SMALL sample of pages

 Check if fraction of similar pages exceeds threshold

 Why not dismiss rule with even one bad example?
 A 95% valid rule may still be worth it

 Dynamic pages change often
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