Key Differences between HTTP/1.0 and
HTTP/1.1"

Dina Zeliger, Advanced Topics in Database Theory

Basically there are quite a lot of changes and the paper discusses them thoroughly. | am going to
talk about the differences that sound more interesting to me.

Introduction

By any reasonable standard, the HTTP/1.0 protocol has been stunningly successful. As a
measure of its popularity, HTTP accounted for about 75% of Internet backbone traffic in a
(somewhat) recent study.

HTTP/1.0 evolved from the original "0.9" version of HTTP. The process leading to HTTP/1.0
involved significant debate, but never produced a formal specification. The HTTP Working Group
(HTTP-WG) of the Internet Engineering Task Force (IETF) produced a document (RFC1945) that
described the “"common usage" of HTTP/1.0, but did not attempt to create a formal standard
out of the many variant implementations. Instead, over a period of roughly four years, the
HTTP-WG developed an improved protocol, known as HTTP/1.1.

The HTTP/1.1 specification is almost three times as long as RFC1945, reflecting an increase in
complexity, clarity, and specificity. Even so, numerous rules are implied by the HTTP/1.1
specification, rather than being explicitly stated.

We'll now discuss some areas in which there have been significant changes.

Extensibility

The HTTP/1.1 effort assumed, from the outset, that compatibility with the installed base of HTTP
implementations was mandatory. Because the HTTP/1.1 effort took over four years, and
generated numerous interim draft documents, many implementers deployed systems using the
“HTTP/1.1” protocol version before the final version of the specification was finished. This
created another compatibility problem: the final version had to be substantially compatible with
these pseudo-HTTP/1.1 versions, even if the interim drafts turned out to have errors in them.

! Based on a the paper Key Differences between HTTP/1.0 and HTTP/1.1 by Balachander Krishnamurthy,
Jeffrey C. Mogul and David M. Kristol (can be found at
http://www.research.att.com/~bala/papers/hOvh1.html)

http://www.research.att.com/~bala/papers/h0vh1.html

The compatibility issue also underlined the need to include, in HTTP/1.1, as much support as
possible for future extensibility. That is, if a future version of HTTP were to be designed, it
should not be hamstrung by any additional compatibility problems.

Note that HTTP has always specified that if an implementation receives a header that it does not
understand, it must ignore the header. This rule allows a multitude of extensions without any
change to the protocol version, although it does not by itself support all possible extensions.

Version numbers

In many cases the version number in an HTTP message can be used to deduce the capabilities of
the sender. A companion document to the HTTP specification clearly specified the ground rules
for the use and interpretation of HTTP version numbers.

The version number in an HTTP message refers to the hop-by-hop sender of the message, not
the end-to-end sender. Thus the message's version number is directly useful in determining
hop-by-hop message-level capabilities, but not very useful in determining end-to-end
capabilities. For this reason, as well as to support debugging, HTTP/1.1 defines a Via header
that describes the path followed by a forwarded message. The path information includes the
HTTP version numbers of all senders along the path and is recorded by each successive
recipient. Note that only the last of multiple consecutive HTTP/1.0 senders will be listed,
because HTTP/1.0 proxies will not add information to the Via header.)

Upgrading to other protocols

In order to ease the deployment of incompatible future protocols, HTTP/1.1 includes the new
Upgrade request header. By sending the Upgrade header, a client can inform a server of the
set of protocols it supports as an alternate means of communication. The server may choose to
switch protocols, but this is not mandatory.

Caching

Caching is effective because a few resources are requested often by many users, or repeatedly
by a given user. Caches are employed in most Web browsers and in many proxy servers. Caching
improves user-perceived latency by eliminating the network communication with the origin
server. Caching also reduces bandwidth consumption, by avoiding the transmission of
unnecessary network packets. Reduced bandwidth consumption also indirectly reduces latency
for un-cached interactions, by reducing network congestion. Finally, caching can reduce the load
on origin servers (and on intermediate proxies), further improving latency for un-cached
interactions.

One risk with caching is that the caching mechanism might not be “semantically transparent”:
that is, it might return a response different from what would be returned by direct
communication with the origin server. While some applications can tolerate non-transparent
responses, many Web applications (electronic commerce, for example) cannot.

Caching in HTTP/1.0

HTTP/1.0 provided a simple caching mechanism. An origin server may mark a response, using
the Expires header, with a time until which a cache could return the response without
violating semantic transparency. Further, a cache may check the current validity of a response
using what is known as a conditional request: it may include an If-Modified-Since headerin
a request for the resource, specifying the value given in the cached response's Last-Modified
header. The server may then either respond with a 304 (Not Modified) status code, implying
that the cache entry is valid, or it may send a normal 200 (OK) response to replace the cache
entry.

HTTP/1.0 also included a mechanism, the Pragma: no-cache header, for the client to indicate
that a request should not be satisfied from a cache.

The HTTP/1.0 caching mechanism worked moderately well, but it had many conceptual
shortcomings. It did not allow either origin servers or clients to give full and explicit instructions
to caches; therefore, it depended on a body of heuristics that were not well-specified. This led
to two problems: incorrect caching of some responses that should not have been cached, and
failure to cache some responses that could have been cached. The former causes semantic
problems; the latter causes performance problems.

Caching in HTTP/1.1

In HTTP/1.1 terminology, a cache entry is fresh until it reaches its expiration time, at which point
it becomes stale. A cache need not discard a stale entry, but it normally must revalidate it with
the origin server before returning it in response to a subsequent request. However, the protocol
allows both origin servers and end-user clients to override this basic rule.

In HTTP/1.0, a cache revalidated an entry using the If-Modified-Since header. This header
uses absolute timestamps with one-second resolution, which could lead to caching errors either
because of clock synchronization errors, or because of lack of resolution. Therefore, HTTP/1.1
introduces the more general concept of an opaque cache validator string, known as an entity
tag. If two responses for the same resource have the same entity tag, then they must (by
specification) be identical. Because an entity tag is opaque, the origin server may use any
information it deems necessary to construct it (such as a fine-grained timestamp or an internal
database pointer), as long as it meets the uniqueness requirement. Clients may compare entity
tags for equality, but cannot otherwise manipulate them. HTTP/1.1 servers attach entity tags to
responses using the ETag header.

HTTP/1.1 includes a number of new conditional request-headers, in addition to If-Modified-
Since. The most basic is If-None-Match, which allows a client to present one or more entity
tags from its cache entries for a resource. If none of these matches the resource's current entity
tag value, the server returns a normal response; otherwise, it may return a 304 (Not Modified)

response with an ETag header that indicates which cache entry is currently valid. Note that this

mechanism allows the server to cycle through a set of possible responses, while the If-
Modified-Since mechanism only generates a cache hit if the most recent response is valid.

HTTP/1.1 also adds new conditional headers called If-Unmodified-Since and If-Match,
creating other forms of preconditions on requests.

The Cache-Control header

In order to make caching requirements more explicit, HTTP/1.1 adds the new Cache-Control
header, allowing an extensible set of cache-control directives to be transmitted in both requests
and responses. The set defined by HTTP/1.1 is quite large, so we concentrate on several notable
members.

Because the absolute timestamps in the HTTP/1.0 Expires header can lead to failures in the
presence of clock skew, HTTP/1.1 can use relative expiration times, via the max-age directive.
(It also introduces an Age header, so that caches can indicate how long a response has been
sitting in caches along the way.)

Because some users have privacy requirements that limit caching beyond the need for semantic
transparency, the private and no-store directives allow servers and clients to prevent the
storage of some or all of a response. However, this does not guarantee privacy; only
cryptographic mechanisms can provide true privacy.

Some proxies transform responses (for example, to reduce image complexity before
transmission over a slow link), but because some responses cannot be blindly transformed
without losing information, the no-transform directive may be used to prevent
transformations.

Bandwidth optimization

Network bandwidth is almost always limited. HTTP/1.0 wastes bandwidth in several ways that
HTTP/1.1 addresses. A typical example is a server's sending an entire (large) resource when the
client only needs a small part of it. There was no way in HTTP/1.0 to request partial objects.
Also, it is possible for bandwidth to be wasted in the forward direction: if a HTTP/1.0 server
could not accept large requests, it would return an error code after bandwidth had already been
consumed. What was missing was the ability to negotiate with a server and to ensure its ability
to handle such requests before sending them.

Range requests

A client may need only part of a resource. For example, it may want to display just the
beginning of a long document, or it may want to continue downloading a file after a transfer was
terminated in mid-stream. HTTP/1.1 range requests allow a client to request portions of a
resource. While the range mechanism is extensible to other units (such as chapters of a
document, or frames of a movie), HTTP/1.1 supports only ranges of bytes. A client makes a
range request by including the Range header in its request, specifying one or more contiguous

ranges of bytes. The server can either ignore the Range header, or it can return one or more
ranges in the response.

If a response contains a range, rather than the entire resource, it carries the 206 (Partial
Content) status code. This code prevents HTTP/1.0 proxy caches from accidentally treating the
response as a full one, and then using it as a cached response to a subsequent request. In a
range response, the Content-Range header indicates the offset and length of the returned
range.

Range requests can be used in a variety of ways:

1. Toread the initial part of an image, to determine its geometry and therefore do page
layout without loading the entire image

2. To complete a response transfer that was interrupted (either by the user or by a
network failure)

3. Toread the tail of a growing object.

Expect and 100 (Continue)

Some HTTP requests (for example, the PUT or POST methods) carry request bodies, which may
be arbitrarily long. If, the server is not willing to accept the request, perhaps because of an
authentication failure, it would be a waste of bandwidth to transmit such a large request body.

HTTP/1.1 includes a new status code, 100 (Continue), to inform the client that the request body
should be transmitted. When this mechanism is used, the client first sends its request headers,
and then waits for a response. If the response is an error code, such as 401 (Unauthorized),
indicating that the server does not need to read the request body, the request is terminated. If
the response is 100 (Continue), the client can then send the request body, knowing that the
server will accept it.

However, HTTP/1.0 clients do not understand the 100 (Continue) response. Therefore, in order
to trigger the use of this mechanism, the client sends the new Expect header, with a value of
100-continue.

Because not all servers use this mechanism (the Expect header is a relatively late addition to
HTTP/1.1, and early “HTTP/1.1” servers did not implement it), the client must not wait
indefinitely for a 100 (Continue) response before sending its request body. HTTP/1.1 specifies a
number of somewhat complex rules to avoid either infinite waits or wasted bandwidth.

Compression

One well-known way to conserve bandwidth is through the use of data compression. While
most image formats (GIF, JPEG, MPEG) are pre-compressed, many other data types used in the
Web are not. One study showed that aggressive use of additional compression could save
almost 40% of the bytes sent via HTTP. While HTTP/1.0 included some support for compression,

it did not provide adequate mechanisms for negotiating the use of compression, or for
distinguishing between end-to-end and hop-by-hop compression.

HTTP/1.1 makes a distinction between content-codings, which are end-to-end encodings that
might be inherent in the native format of a resource, and transfer-codings, which are always
hop-by-hop. Compression can be done either as a content-coding or as a transfer-coding.

HTTP/1.0 includes the Content-Encoding header, which indicates the end-to-end content-
coding(s) used for a message; HTTP/1.1 adds the Transfer-Encoding header, which indicates
the hop-by-hop transfer-coding(s) used for a message.

HTTP/1.1 (unlike HTTP/1.0) carefully specifies the Accept-Encoding header, used by a client
to indicate what content-codings it can handle, and which ones it prefers. HTTP/1.1 also
includes the TE header, which allows the client to indicate which transfer-codings are
acceptable, and which are preferred.

Network connection management

HTTP almost always uses TCP as its transport protocol. The original HTTP design used a new TCP
connection for each request, so each request incurred the cost of setting up a new TCP
connection. Since most Web interactions are short this was highly inefficient.

Web pages frequently have embedded images, sometimes many of them, and each image is
retrieved via a separate HTTP request. The use of a new TCP connection for each image retrieval
serializes the display of the entire page on the connection-setup latencies for all of the requests.

To resolve these problems, Padmanabhan and Mogul recommended the use of persistent
connections and the pipelining of requests on a persistent connection.

The Connection header

Given the use of intermediate proxies, HTTP makes a distinction between the end-to-end path
taken by a message, and the actual hop-by-hop connection between two HTTP
implementations.

HTTP/1.1 introduces the concept of hop-by-hop headers: message headers that apply only to a
given connection, and not to the entire path. The use of hop-by-hop headers creates a
potential problem: if such a header were to be forwarded by a naive proxy, it might mislead the
recipient.

Therefore, HTTP/1.1 includes the Connection header. This header lists all of the hop-by-hop
headers in a message, telling the recipient that these headers must be removed from that
message before it is forwarded. This extensible mechanism allows the future introduction of
new hop-by-hop headers; the sender need not know whether the recipient understands a new
header in order to prevent the recipient from forwarding the header.

Because HTTP/1.0 proxies do not understand the Connection header, however, HTTP/1.1
imposes an additional rule. If a Connection header is received in an HTTP/1.0 message, then it
must have been incorrectly forwarded by an HTTP/1.0 proxy. Therefore, all of the headers it lists
were also incorrectly forwarded, and must be ignored.

The Connection header may also list connection-tokens, which are not headers but rather per-
connection Boolean flags. For example, HTTP/1.1 defines the token close to permit the peer to
indicate that it does not want to use a persistent connection. Again, the Connection header
mechanism prevents these tokens from being forwarded.

Persistent Connections

HTTP/1.0, in its documented form, made no provision for persistent connections. Some
HTTP/1.0 implementations, however, use a Keep-Alive header to request that a connection
persist. This design did not interoperate with intermediate proxies; HTTP/1.1 specifies a more
general solution.

In recognition of their desirable properties, HTTP/1.1 makes persistent connections the default.
HTTP/1.1 clients, servers, and proxies assume that a connection will be kept open after the
transmission of a request and its response. The protocol does allow an implementation to close
a connection at any time, in order to manage its resources, although it is best to do so only after
the end of a response.

Because an implementation may prefer not to use persistent connections if it cannot efficiently
scale to large numbers of connections or may want to cleanly terminate one for resource-
management reasons, the protocol permits it to send a Connection: close header to inform
the recipient that the connection will not be reused.

Pipelining

Although HTTP/1.1 encourages the transmission of multiple requests over a single TCP
connection, each request must still be sent in one contiguous message, and a server must send
responses (on a given connection) in the order that it received the corresponding requests.
However, a client need not wait to receive the response for one request before sending another
request on the same connection. In fact, a client could send an arbitrarily large number of
requests over a TCP connection before receiving any of the responses. This practice, known as
pipelining, can greatly improve performance. It avoids the need to wait for network round-trips,
and it makes the best possible use of the TCP protocol.

Message transmission

HTTP messages may carry a body of arbitrary length. The recipient of a message needs to know
where the message ends. The sender can use the Content-Length header, which gives the
length of the body. However, many responses are generated dynamically. Without buffering the

entire response (which would add latency), the server cannot know how long it will be and
cannot send a Content-Length header.

When not using persistent connections, the solution is simple: the server closes the connection.
This option is available in HTTP/1.1, but it defeats the performance advantages of persistent
connections.

The Chunked transfer-coding

HTTP/1.1 resolves the problem of delimiting message bodies by introducing the Chunked
transfer-coding. The sender breaks the message body into chunks of arbitrary length, and each
chunk is sent with its length prepended; it marks the end of the message with a zero-length
chunk. The sender uses the Transfer-Encoding: chunked header to signal the use of
chunking.

This mechanism allows the sender to buffer small pieces of the message, instead of the entire
message, without adding much complexity or overhead. All HTTP/1.1 implementations must be
able to receive chunked messages.

The Chunked transfer-coding solves another problem, not related to performance. In HTTP/1.0,
if the sender does not include a Content-Length header, the recipient cannot tell if the
message has been truncated due to transmission problems. This ambiguity leads to errors,
especially when truncated responses are stored in caches.

Trailers

Chunking solves another problem related to sender-side message buffering. Some header fields,
such as Content-MD5 (a cryptographic checksum over the message body), cannot be computed
until after the message body is generated. In HTTP/1.0, the use of such header fields required
the sender to buffer the entire message.

In HTTP/1.1, a chunked message may include a trailer after the final chunk. A trailer is simply a
set of one or more header fields. By placing them at the end of the message, the sender allows
itself to compute them after generating the message body.

The sender alerts the recipient to the presence of message trailers by includinga Trailer
header, which lists the set of headers deferred until the trailer. This alert, for example, allows a
browser to avoid displaying a prefix of the response before it has received authentication
information carried in a trailer.

HTTP/1.1 imposes certain conditions on the use of trailers, to prevent certain kinds of
interoperability failure. For example, if a server sends a lengthy message with a trailer to an
HTTP/1.1 proxy that is forwarding the response to an HTTP/1.0 client, the proxy must either
buffer the entire message or drop the trailer. Rather than insist that proxies buffer arbitrarily
long messages, which would be infeasible, the protocol sets rules that should prevent any
critical information in the trailer (such as authentication information) from being lost because of

this problem. Specifically, a server cannot send a trailer unless either the information it contains
is purely optional, or the client has senta TE: trailers header, indicating that it is willing
to receive trailers (and, implicitly, to buffer the entire response if it is forwarding the message to
an HTTP/1.0 client).

Internet address conservation

Companies and organizations use URLs to advertise themselves and their products and services.
When a URL appears in a medium other than the Web itself, people seem to prefer “pure
hostname” URLs; i.e., URLs without any path syntax following the hostname. These are often
known as “vanity URLs”, but in spite of the implied disparagement, it's unlikely that non-purist
users will abandon this practice, which has led to the continuing creation of huge numbers of
hostnames.

IP addresses are widely perceived as a scarce resource. The Domain Name System (DNS) allows
multiple host names to be bound to the same IP address. Unfortunately, because the original
designers of HTTP did not anticipate the “success disaster” they were enabling, HTTP/1.0
requests do not pass the hostname part of the request URL. For example, if a user makes a
request for the resource at URL http://examplel.org/home.html, the browser sends a message
with the Request-Line

GET /home.html HTTP/1.0

to the server at examplel.org. This prevents the binding of another HTTP server hostname, such
as exampleB.org to the same IP address, because the server receiving such a message cannot
tell which server the message is meant for. Thus, the proliferation of vanity URLs causes a
proliferation of IP address allocations.

The Internet Engineering Steering Group (IESG), which manages the IETF process, insisted that
HTTP/1.1 take steps to improve conservation of IP addresses. Since HTTP/1.1 had to
interoperate with HTTP/1.0, it could not change the format of the Request-Line to include the
server hostname. Instead, HTTP/1.1 requires requests to include a Host header that carries the
hostname. This converts the example above to:

GET /home.html HTTP/1.1
Host: examplel.org

If the URL references a port other than the default (TCP port 80), this is also given in the Host
header.

Clearly, since HTTP/1.0 clients will not send Host headers, HTTP/1.1 servers cannot simply reject
all messages without them. However, the HTTP/1.1 specification requires that an HTTP/1.1
server must reject any HTTP/1.1 message that does not contain a Host header.

http://example1.org/home.html

Error notification

HTTP/1.0 defined a relatively small set of sixteen status codes, including the normal 200 (OK)
code. Experience revealed the need for finer resolution in error reporting.

The Warning header

HTTP status codes indicate the success or failure of a request. For a successful response, the
status code cannot provide additional advisory information, in part because the placement of
the status code in the Status-Line, instead of in a header field, prevents the use of multiple
status codes.

HTTP/1.1 introduces a Warning header, which may carry any number of subsidiary status
indications. The intent is to allow a sender to advise the recipient that something may be
unsatisfactory about an ostensibly successful response.

HTTP/1.1 defines an initial set of Warning codes, mostly related to the actions of caches along
the response path. For example, a Warning can mark a response as having been returned by a
cache during disconnected operation, when it is not possible to validate the cache entry with
the origin server.

The Warning codes are divided into two classes, based on the first digit of the 3-digit code. One
class of warnings must be deleted after a successful revalidation of a cache entry; the other class
must be retained with a revalidated cache entry. Because this distinction is made based on the
first digit of the code, rather than through an exhaustive listing of the codes, it is extensible to
Warning codes defined in the future.

Other new status codes
There are 24 new status codes in HTTP/1.1. Two of the more notable additions include:

e 409 (Conflict), returned when a request would conflict with the current state of the
resource. For example, a PUT request might violate a versioning policy.

e 410 (Gone), used when a resource has been removed permanently from a server, and to
aid in the deletion of any links to the resource.

Most of the other new status codes are minor extensions.

Security, integrity, and authentication

In recent years, the IETF has heightened its sensitivity to issues of privacy and security. One
special concern has been the elimination of passwords transmitted “in the clear”. This increased
emphasis has manifested itself in the HTTP/1.1 specification.

Digest access authentication

HTTP/1.0 provides a challenge-response access control mechanism, Basic authentication. The
origin server responds to a request for which it needs authentication with a W -

Authenticate header that identifies the authentication scheme (in this case, “Basic”) and
realm. (The realm value allows a server to partition sets of resources into “protection spaces”,
each with its own authorization database.)

The client (user agent) typically queries the user for a username and password for the realm,
and then repeats the original request, this time including an Authorization header that
contains the username and password. Assuming these credentials are acceptable to it, the origin
server responds by sending the expected content. A client may continue to send the same
credentials for other resources in the same realm on the same server, thus eliminating the extra
overhead of the challenge and response.

A serious flaw in Basic authentication is that the username and password in the credentials are
unencrypted and therefore vulnerable to network snooping. The credentials also have no time
dependency, so they could be collected at leisure and used long after they were collected.
Digest access authentication provides a simple mechanism that uses the same framework as
Basic authentication while eliminating many of its flaws.

The message flow in Digest access authentication mirrors that of Basic and uses the same
headers, but with a scheme of “Digest”. The server's challenge in Digest access authentication
uses a honce (one-time) value, among other information. To respond successfully, a client must
compute a checksum (MD5, by default) of the username, password, nonce, HTTP method of the
request, and the requested URI. Not only is the password no longer unencrypted, but the given
response is correct only for a single resource and method. Thus, an attacker that can snoop on
the network could only replay the request, the response for which he has already seen. Unlike
with Basic authentication, obtaining these credentials does not provide access to other
resources.

As with Basic authentication, the client may make further requests to the same realm and
include Digest credentials, computed with the appropriate request method and request-URI.
However, the origin server's nonce value may be time-dependent. The server can reject the
credentials by saying the response used a stale nonce and by providing a new one. The client
can then recompute its credentials without needing to ask the user for username and password
again.

In addition to the straightforward authentication capability, Digest access authentication offers
two other features: support for third-party authentication servers, and a limited message
integrity feature (through the Authentication-Info header).

Proxy authentication
Some proxy servers provide service only to properly authenticated clients. This prevents, for
example, other clients from stealing bandwidth from an unsuspecting proxy.

To support proxy authentication, HTTP/1.1 introduces the Proxy-Authenticate and Proxy-
Authorization headers. They play the same role as the WWW-Authenticate and

Authorization headers in HTTP/1.0, except that the new headers are hop-by-hop, rather
than end-to-end. Proxy authentication may use either of the Digest or Basic authentication
schemes, but the former is preferred.

A proxy server sends the client a Proxy-Authenticate header, containing a challenge, in a
407 (Proxy Authentication Required) response. The client then repeats the initial request, but
adds a Proxy-Authorization header that contains credentials appropriate to the challenge.
After successful proxy authentication, a client typically sends the same Proxy-
Authorization header to the proxy with each subsequent request, rather than wait to be
challenged again.

Protecting the privacy of URIs
The URI of a resource often represents information that some users may view as private. Users
may prefer not to have it widely known that they have visited certain sites.

The Referer header in a request provides the server with the URI of the resource from which
the request-URI was obtained. This gives the server information about the user's previous page-
view. To protect against unexpected privacy violations, the HTTP/1.1 specification takes pains to
discourage sending the Referer header inappropriately; for example, when a user enters a URL
from the keyboard, the application should not send a Referer header describing the currently-
visible page, nor should a client send the Referer header in an insecure request if the referring
page had been transferred securely.

State management

HTTP requests are stateless. That is, from a server's perspective, each request can ordinarily be
treated as independent of any other. For Web applications, however, state can sometimes be
useful.

Netscape introduced “cookies” in version 1.1 of their browser as a state management
mechanism. The IETF subsequently standardized cookies in RFC2109. The basic cookie
mechanism is simple. An origin server sends an arbitrary piece of (state) information to the
client in its response. The client is responsible for saving the information and returning it with its
next request to the origin server. RFC2109 and Netscape's original specification relax this model
so that a cookie can be returned to any of a collection of related servers, rather than just to one.
The specifications also restricts for which URIs on a given server the cookie may be returned. A
server may assign a lifetime to a cookie, after which it is no longer used.

Cookies have both privacy and security implications. Because their content is arbitrary, cookies
may contain sensitive application-dependent information. For example, they could contain
credit card numbers, user names and passwords, or other personal information. Applications
that send such information over unencrypted connections leave it vulnerable to snooping, and
cookies stored at a client system might reveal sensitive information to another user of (or
intruder into) that client.

RFC2109 proved to be controversial, primarily because of restrictions that were introduced to
protect privacy. Probably the most controversial of these has to do with “unverifiable
transactions” and “third-party cookies”. Consider this scenario.

1. The user visits http://www.examplel.com/home.html
The returned page contains an IMG (image) tag with a reference to
http://ad.example.com/advl.gif, an advertisement

3. The user's browser automatically requests the image. The response includes a cookie
from ad.example. com.
The user visits http://www.exampleB.com/home.html

5. The returned page contains an IMG tag with a reference to
http://ad.example.com/adv2.gif.

6. The user's browser automatically requests the image, sending the previously received
cookie to ad.example. comin the process. The response includes a new cookie from
ad.example.com

Privacy advocates, and others, worried that:

e The user receives, in step 3, a (“third-party”) cookie from ad.example. com, a site she
didn't even know she was going to visit (an “unverifiable transaction”)
e The first cookie gets returned to ad.example. comin the second image request

If a Referer header is sent with each of the image requests to ad.example. com, then that
site can begin to accumulate a profile of the user's interests from the sites she visited, here
http://www.examplel.com/home.html and http://www.exampleB.com/home.html.
Such an advertising site could potentially select advertisements that are likely to be interesting
to her. While that profiling process is relatively benign in isolation, it could become more
personal if the profile can also be tied to a specific real person, not just a persona. For example,
this might happen if the user goes through some kind of registration at www.examplel. com.

RFC2109 sought to limit the possible pernicious effects of cookies by requiring user agents to
reject cookies that arrive from the responses to unverifiable transactions. RFC2109 further
stated that user agents could be configured to accept such cookies, provided that the default
was not to accept them. This default setting was a source of concern for advertising networks
(companies that run sites like ad . example. com in the example) whose business model
depended on cookies, and whose business blossomed in the interval between when the
specification was essentially complete (July, 1996) and the time it appeared as an RFC (February,
1997). RFC2109 has undergone further refinement in response to comments, both political and
technical.

Content Negotiation

Web users speak many languages and use many character sets. Some Web resources are
available in several variants to satisfy this multiplicity. HTTP/1.0 included the notion of content
negotiation, a mechanism by which a client can inform the server which language(s) and/or
character set(s) are acceptable to the user.

Content negotiation has proved to be a contentious and confusing area. Some aspects that
appeared simple at first turned out to be quite difficult to resolve. For example, although
current IETF practice is to insist on explicit character set labeling in all relevant contexts, the
existing HTTP practice has been to use a default character set in most contexts, but not all
implementations chose the same default. The use of unlabeled defaults greatly complicates the
problem of internationalizing the Web.

HTTP/1.0 provided a few features to support content negotiation, but the RFC never uses that
term and devotes less than a page to the relevant protocol features. The HTTP/1.1 specification
specifies these features with far greater care, and introduces a number of new concepts.

The goal of the content negotiation mechanism is to choose the best available representation of
a resource. HTTP/1.1 provides two orthogonal forms of content negotiation, differing in where
the choice is made:

1. In server-driven negotiation, the more mature form, the client sends hints about the
user's preferences to the server, using headers such as Accept-Language, Accept-
Charset, etc. The server then chooses the representation that best matches the
preferences expressed in these headers.

2. In agent-driven negotiation, when the client requests a varying resource, the server
replies with a 300 (Multiple Choices) response that contains a list of the available
representations and a description of each representation's properties (such as its
language and character set). The client (agent) then chooses one representation, either
automatically or with user intervention, and resubmits the request, specifying the
chosen variant.

Although the HTTP/1.1 specification reserves the Alternates header name for use in agent-
driven negotiation, the HTTP working group never completed a specification of this header, and
server-driven negotiation remains the only usable form.

Some users may speak multiple languages, but with varying degrees of fluency. Similarly, a Web
resource might be available in its original language, and in several translations of varying
faithfulness. HTTP introduces the use of quality values to express the importance or degree of
acceptability of various negotiable parameters. A quality value (or gvalue) is a fixed-point
number between 0.0 and 1.0. For example, a native speaker of English with some fluency in
French, and who can impose on a Danish-speaking office-mate, might configure a browser to
generate requests including

Accept-Language: en, fr;q=0.5, da;q=0.1

Because the content-negotiation mechanism allows qvalues and wildcards, and expresses
variation across many dimensions (language, character-set, content-type, and content-
encoding) the automated choice of the “best available” variant can be complex and might
generate unexpected outcomes

Content negotiation promises to be a fertile area for additional protocol evolution. For example,
the HTTP working group recognized the utility of automatic negotiation regarding client
implementation features, such as screen size, resolution, and color depth. The IETF has created
the Content Negotiation working group to carry forward with work in the area.

Conclusion

HTTP/1.1 differs from HTTP/1.0 in numerous ways, both large and small. While many of these
changes are clearly for the better, the protocol description has tripled in length, and many of the
new features were introduced without any real experimental evaluation to back them up. The
HTTP/1.1 specification also includes numerous irregularities for compatibility with the installed
base of HTTP/1.0 implementations.

This increase in complexity complicates the job of client, server, and especially proxy cache
implementers. It has already led to unexpected interactions between features, and will probably
lead to others. Fortunately, the numerous provisions in HTTP/1.1 for extensibility should
simplify the introduction of future modifications.

T 707

2 2°37N — 0°1N1 57072 DONTRNN DORWN]

701377 01 PW NRA YW WIRwn DR 7N

Fle Edl View Favorites Tools Help

i @1 |52 - % Course 67830 Advan. (I3 Web Pages That Suck.. @ orange - M3 Mt - | @ itpitfozee molgo.. -
= 7w 00N NI | =)
e o0 - *yn - aoon on | | F

houisn naven | 5 am> | @os6 | pmnen | onsen |y 47

3 oen
" [TORATR
v an o |

w70 16 - 3 %W 9713 DDA NIMLP'S NINIAWN TIFREY DTIWN WP WKL NAIT DTR NI DNan 21 mimyy nymn 19.03.2009
2009 noo - NTINAN NWLIN 0207 NI DDV KW Y'wn nman anotie 18.03.2009
' 100 - n nunY? 2w qpina NITOPe 6N NINIAWN NWYSA DFTIWN 4 9w 07xun 1IN nnimw'? avTin 18.03.2009
0'DIX71D D'N7WNI 031 1310 NN ATy 18.03.2009 A msw” yean
(01-03/2009) 1/2009 2" - 0"V AWNNI OIW WIN'WA VDRI 970 §UNT RINOT Dy ymn 18.03.2009 ";':::"m’;": :
(nwwn nixini 168 ') DTN DRWINE DWTN DYIYY 101N 0N NNISTN TR noe 18.03.2009 6 YTon T
2009 nmwa ‘% no1dN on - N3N 7N NYaRY 77Ta nonie 18.03.2009 R :
1/2009 a0 - 0"ww 3WNNY 0WIED DAYHAY NISVIY Ry APTA 0P1S 9 oy v 18.03.2009
® 170 4.5 - 3 7w D200 NIATID NIMNWN NW9I] DYUKI 2130 DINNA 2730 22 miimw? nymn 18.03.2009
Dpoynn 22% Y¥N DUNING DUIRYY IK¥N) VDU TIVIY YEINI 200 TR DNIF JNYY DY Donn Nien Ty nniny? aymn 18.03.2009
DNIWA TRSYT IMI0IN FWI IZIOW 9V RIFT X7 ' TIUN 7Y DRWA Inio hinimwy avTin 18.03.2009
nniPann 12.5% -3 0UNIAN DIPY 1K1 DY ANV TIYD 79 NNREA vana nninw ayTin 18.03.2009
DITUIND TIYYAKD 0N MIKA o'pioyn yTn 16.03.2009
2008 onn MW7 NOI2N 0N7 DMWY NINIT ;a7 vy 16.03.2009
A70PY 0NN N9'N AR TIWR FTaw Thnimw? avTin 16.03.2009
|Iran 1o1Ta 75% -1 nerown 1ona ovip' 50% :axying (it 931m aorow aa 100 Tva noinw? avmia 16.03.2009
D'21y7 DINA A0 NWNA Ao vmn nnowe 16.03.2009
(2008 onn maw 126/856 DUNIW NINIT) PR 0N '12N3 DMNN DAMAE DITAYAN YTy Sia? avmn 15.03.2009
OUNIKTIA D'N7WNI 031 9310 NN Ty 15.03.2009

nhama W

@ imeret | Potecten Made: 0n
N P eE®-. 34

MS%%5 21yD nwa ;0 awa

IMNNRN 7V D'ROINRY D'WIRD IR 97007 ;17N

DX 110 X7 —ONKXN 7W NAIMDN DX VIYD X7X ;2'Vin [DIN 0701 N1'R Ty 70 nandn ;1 awa
..I"N'oa D'wnNNwn

f:'-' http://ozar.mof.gov.lftaxes/ - Windows Internet Explorer

e http:/fozar.mof.gov.il/taxes/

SIwn n'onn NI wn' a'onioaX INwn? Tmyn 7w NNDn DX DY Igm

(...NRTO NNWOX 'MKRXN X7 IX NINDY7 IX) NN WI9'N NNYOK |'X 12 2'Ya

('P1yTn ,nIyTIN ,0'090) WIS'N N7 9'0INY ig'n

http://ozar.mof.gov.il/taxes

.D1IY 0'YAY DT¥IN DA DN 72X NINNA AT DX D'RN K7 WK QXD D'YIY 07170 (3 aya
617 w1 AT NINSY TX VOV Y'OIN 0PN NINKNY XY DNIDT?7) DMKIN X7 D191AN

niaxa mmiI T = 3 010N 7
T R sa iz [l 00 "TTRT L

NINWN X721 T'NXR Y0 OV DNT QXY 07170 27 N9 ppn

NIdDN7 1MX TRI 09097 TWOK DAl D'YAN DAY TY AT [INN N7I7 — 0'71*7 DY marquee :4 d'ya
Mavyn wnn yaw

..0IN DIYY7 IN12' K7W D NTION NIXA 07170 7R 2IMD'71 IN7XK7 marquee-n NX 7017 pp'n

X7 D717 DA NN 270 YD 7Y N7ONN DR RNPY? TIRN YR .0 X7 0'Wavd 0477 (5 nwa
..JUNTIVO |9IX2 NID DO'K)

Jozar.mof.gov.i|ftaxes/ - Windows Intemet Explorer

KRRl 2 nitpy/ozatmot.gov.itares/ o | 42| x fay webpage without images £ =

File Edit View Favorites Tools Help L)

W o - ™ Course: 67830 Advan... I Web Pages That Suck.. | & http://ozarmot.go.. G v B - o - dPage~ ook~

G@} \ ey v
/ oo W
Jomteh o B

™A nwmn &
wiegn yro B
oy yTn W

A"ma oroyn’ yTn W
nodn on W

' 7020 on W

4] 7XW% 0’007 NN
W o 00 = N"YN = A0 DN

@nvsn men | W am> | plosv | privxen | omien |y <RI

NINDY NIYNYYT NIAIYN

n"yn ¥
on W

101 on man tom B
o W

2006 pova anny B
2007- o2 Ay W
2008

A mow” yan @
nawnmn nwg B
even ninss B
A0 1ven1 7T E
(FAQ) ninow nrvxe B
]

n%am>
o W
anxn non W
LISH SITER

N O R LN

iKa Tien

TWIN NI!

I N R

u oll

@ intemet | Protected Mode: On H100% -
e S LBEON £y govi . ics in N WRYSE®-, o4 o

JNI' NN Yaxa NIk |MY VoRLN JIF'n

Dina Zeliger

ADVANCED TOPICS IN DB THEORY — EXERCISE 3

Compressed Tries

WHAT IS A TRIE?

A trie, or prefix tree, is an ordered tree data structure that is used to store an associative array where
they keys are usually strings. Unlike a binary search tree, no node in a trie stores the key associated
with that node. Instead, its position in the tree shows what key is associated with it. All the
descendents of a node have a common prefix of the string associated with that node, and the root is
associated with the empty string. Strings are usually considered null-terminated, and thus no string
can be the prefix of another. Note that without the null-termination, a string CAN be the suffix of
another string (i.e. “the girl” and “the girl ate”).

Though it is most common, tries need not be keyed by character strings. The same algorithms can be
easily adapted to serve similar functions of ordered lists of any construct.

ADVANTAGES AND DISADVANTAGES

e Generally, when the total set of stored keys is very sparse within their representation space,
the trie data structure is quite wasteful in storage.
e Comparing to a regular BST, tries have several advantages:

0 Looking up a key of length m takes O(m) time at worst case. A balanced BST
performs 0(logn) comparisons where n is the number of elements in the tree. Thus,
in the worst case, a BST takes O(mlogn) time.

0 Tries can require less space when they contain a large number of short strings,
because the keys are not stored explicitly and nodes are shared between keys with
common initial subsequences.

0 Tries help with longest-prefix matching', where we wish to find the key sharing the
longest possible prefix of characters all unique.

e Comparing to hash tables:
0 Advantages:
= Looking up data in a trie is faster in the worst case, 0(m) time, compared to
an imperfect hash table. An imperfect hash table can have key collisions. The
worst-case lookup speed in an imperfect hash table is O(n) time, but far
more typically is O(1), with O(m) time spent evaluating the hash.
= There are no collisions of different keys in a trie.

' Longest prefix match is an algorithm used by routers in Internet Protocol networking to select an entry from a routing table.
Because each entry in a routing table may specify a network, one destination address may match more than one routing table
entry. The most specific table entry — the one with the highest subnet mask - is called the longest prefix match. It is called this
because it is also the entry where the largest number of leading address bits in the table entry match those of the destination
address.

= Buckets in a trie which are analogous to hash table buckets that store key
collisions are only necessary if a single key is associated with more than one
value.

= There is no need to provide a hash function or to change hash functions as
more keys are added to a trie.

= Atrie can provide an alphabetical ordering of the entries by key.

0 Disadvantages:

= Tries can be slower in some cases than hash tables for looking up data,
especially if the data is directly accessed on a hard disk drive or some other
secondary storage device where the random access time is high compared
to main memory.

= [tis not easy to represent all keys as strings, such as floating point numbers,
which can have multiple string representations for the same floating point
number, e.g. 1, 1.0, 1.00, +1.0, etc.

OVERCOMING THE DISADVANTAGES — COMPRESSED TRIES

When the trie is mostly static, i.e. all insertions or deletions of keys from a prefilled trie are disabled
and only lookups are needed, and when the trie nodes are not keyed by node specific data (or if the
node's data is common) it is possible to compress the trie representation. This application is typically
used for compressing lookup tables when the total set of stored keys is very sparse within their
representation space. Another option is to do updating in batches, whenever the batch size exceeds a
threshold.

Whereas each field in a trie has to be large enough to hold a pointer, each field in a C-trie is
represented by a single bit. If the k-th bit of a node N on level lis set, it indicates that one or more
keys pass through this node N and have as (I + 1)-th substring x;, 1 = k.

The structure of a node N in level | of a C-trie is as follows:

e U -1-bit field. If U = 0, then the node is internal and B, K, C are as follows. Otherwise, the
node is a leaf and B, K, C contain the suffix x;,1 ... x; of the key x = x; ... x;,. Note that the
prefix does not have to be stored since it is implicitly defined by the path from the root of the
C-trie to the leaf.

e B -1-bit field. B is set to 1if one of the keys passing through the node terminates at level [
and thus corresponds to a blank field in a trie which contains a key.

e K- (m—1)-bit field, each corresponding to a field in a node of a trie. mis the number of
characters plus the terminating sign.

e (- at most [log, n] bits where n is the number of keys. C is equal to the number of nonzero
bits of the K fields in the nodes on level [to the left of the node N. This number equals the
number of nodes on level | + 1 preceding the successor of the first nonzero bit in the field K
of node N.

All the nodes are stored as a continuous bit string. First is the root node, which is followed by all the
nodes in level 1 from left to right, and so on.

BIBLIOGRAPHY

1. http://en.wikipedia.org/wiki/Trie
2. http://en.wikipedia.org/wiki/Longest_prefix_match
3. Compressed Tries, Kurt Maly, Communications of the ACM 1976

http://en.wikipedia.org/wiki/Trie�
http://en.wikipedia.org/wiki/Longest_prefix_match�
http://portal.acm.org/citation.cfm?id=360258�

s~ Y3

E 2

biwed 6 FE UL 3pp) 2l §°3)

61?"’ a 'l]'fa);} T'\CE“P{ &}g G T\;'J\“(53113\1 = : E:,JQ)'a 2,]rllr_"""

- A0 A0
Q ?52 oD 3 I('E_"j A — APl BV i m'ﬁ‘bg a Wa)

= f‘f‘ﬁj\ = f:"J’ﬂJ o st G@[}

& apa apie sk edd s N o ek
r-_-}‘hg o) D?"e!.. (2 ,:.'\'L @(Y INN = HG)‘I@-\?(;?&
::’Q,ﬁa‘:‘nfw Oy e p~g:§-~-tQ_; a0 o, ; 259
S FAD IS (B wvertd -index Y L,

=3 s INONTE N)]

?’t) ‘}“mi 2 ~) D B'ﬂﬂ
) 5= PG NCOE RPN SE 1Y
”,)_) , (? \n;ﬁléﬁ '(‘?
CH PR ﬂ*)\Q_,w JWign B Ak
el AS aONON o' Qven AW
Y anB3an Kd2 A
(- f|peha > >
2333 34) 2
ARE 13 2 1
RS & E
A 4

\',"\?::N;T-h A

‘o pa)D »)AN

a3 3 37 hﬂk‘ﬁ/
i.;: ey

= i

40 oYM 0 xS "‘h}“ﬁ 3~ ‘noR

ﬁ’:':.*lrilq_; 3R
on fy oy 2\
bHa

o dMD g B oD Al el ke K

D SRR D

RMleal ' S pSA g

VTS 2008 e RIND I DN Wra nd)
261D ~RRHA

D PR LIgh 2'UN o [in
e Q)j"; =AlNCS 1f]\ BT D) ‘;‘hL‘

?'\2 'ﬂ(_.JD" Lnl ch.r)Q 1)

A s o) poNown ~F0d Rwllm =)

it M (220D
= ~oN0n Kk , 2 Il el L& e» B
| = R _1_ _P-'\HLQ W) X VTN a IN
=i @M o oD 01D
S SC onngod v -2 § N {'@) 23 A5
- Lo Ly
&9 A oy
I -k lg k. 20nan AdG
_ WL iy
T 1 _Wzif_: ?-\\k
i 0T TN T
. Q_:*:“'? ¢ aE)dL
- S

scalade ((resl, wenaian (X fusn (‘B'\n i T

Ao oA PR 0 o L 2250 3 . dapal

. ,a'cf‘r{ (o, Lf-'}}(.

N, A"hﬁ(\QJ@& YIx2) _,A'-?HJ?
mfxu‘ﬁ lo a\?&w AdE A\ aniod » (. mronon

n.ﬁ-,hmiuhft-&”uml SPUD S AsD ANl Hy avorR

o o AW nad W Bl

].Q wWo fﬂ'\

=S 2)'3

6 ey - £yn) 1304 p«w}}w: PR

OUST 'O AN o e e SINE i (16
A o e b dn 1380 GGy NS T
?Pr&h‘-ﬂ‘ P LQ; A N ~N'@n be S'Ee maakeiks
S ISy y ,d—?@ 3 A RN ~K3AQ
e TP \C L G PN TN
apg\{_ (D s2n(e, Iy coart ardRKD
AV 2am ! Gl vk A a(—’!(? Y =
PR P kD S Lk gpk S8 Sk -
e oo™ N o @Al s ,A\.ﬁ‘g(‘
~ 1IN
B AL AR N T R | e Do
iyl &) a3 @ﬁgﬁhlt (Web logs
_(n'ﬂ;‘s Claw! Lo A3

—0 _AAYALR 3R SIL ¥ad iBa U <ol AxG{
AT R AN 3y5)

L SR Ay 3 maRfa Ak U 3
C LR o3y (B)Cs 3081 p sk K3

: AR MK

Do Not Crawl in the DUST:
Different URLs with Similar Text

O

» Different URLs with Similar Text

» Examples:
Standard Canonization:
http://domain.name/index.html — http://domain.name
Domain names and virtual hosts
http://news.google.com — http://google.com/news
Aliases and symbolic links:
http://domain.name/~shuri — http://domain.name/people/shuri
Parameters with little affect on content

URL transformations:
http://domain.name/story_ — http://domain.name/story?id=

Why Care?

» Expensive to crawl
Access the same document via multiple URLs

» Forces us to shingle
An expensive technique used to discover similar documents

» Ranking algorithms suffer
References to a document split among its aliases

» Multiple identical results

The same document is returned several times in the search
results

Input: URL list

Detect likely DUST rules

Eliminate redundant rules

Validate DUST rules using samples:

Eliminate DUST rules that are “wrong”
Further eliminate duplicate DUST rules

First three phases DO NOT require fetching!!

DUST Buster Heuristics

O
» Large support principle:
o Likely DUST rules have lots of “evidence” supporting them
o A pair of URLs (u,v) is an instance of rule r, if r(u) = v
o Support(r) = all instances (u,v) of r
o Envelope of string a in URL u is pair (p,s) s.t. u = pas
o E(a) = all envelopes of a in URLSs in URL list
o |support(a —b)|=|E(a) NE(b)|

» Small buckets principle:

o Ignore evidence that supports many different rules
© Bucket(p,s)= {a|(p,s)<E(a)}
o Often do not contain similar content

More Likeliness Evidence

O

Rule r refines rule q if support(r) < support(q)
“/IVIsi/” > “/labs/vlsi/”
“/vlsi” > “/labs/vlsi”

A substitution rule a’ - b’ refines rule a 2 b if and

only if there exists an envelope (c¢,d) such that a’=cad
and b’=cbd

Helps identify refinements easily

If r refines q, remove q if supports match
Refinement gives the full context of the substitution

Fetch random SMALL sample of pages
Check if fraction of similar pages exceeds threshold

Why not dismiss rule with even one bad example?
A 95% valid rule may still be worth it
Dynamic pages change often

Dmﬂ thi?f
-

Sdvanced Er\cs.,‘m DO Theory
» Hlll-'colg- ﬁ!jor'.{hw;.

Page Rank 1 hosed 00 Commeckivity . Tk
- assumes Hak au{hﬂfi&:gj-{:vg fxag €s dend 4o _
"Oa:‘n'r k. othgn Ctu-’t?wrfi-al-f@.w&s. Mﬂf&ﬂ\fez,
L6 i query- indgpendint T4 cannot by ihekf-_
d\.&’ﬁngmsh b;e,l‘-wé,e_r-} Pges -}—haA. m | :
a.ul:_hOfH-aJn‘h{,-lnh 3'&.!*1:11"4 ﬁﬂd. Paﬁe‘g +ha&lm
du&hﬁii—a.}lii% on ng.fu. chu;m‘\-‘ #o‘::ic, >
This is e - t:fcblm Yak dhe Hiﬂ#of: aﬁjd{"i‘:hn\
IS “}'_(\Tihﬂ to So lue, TFe—otne __Hil\l-o'o is :ue.fxf-
awilar Lg Paﬁe,ﬂank) bk the b%eﬁﬂ--ﬁg .
Aillbop owz aw PageRank is thak ik is
topic -sensibine , and this i is hardes 4o
manfg:\a‘f&__ Cik g *Efls.\(%0 miﬁl‘eﬂd seas
poﬁe nl)?j bq;ldﬁ:ﬂ (.lh{(t farm_g_)
Hill}op relies on Ahe same assumperion hal
Y wumbed and fbkmﬂui-t-’ 0} the. sourcces]
fegeﬂ‘.ig fo a-.Paﬂ'e are. - a 3mal.'m&isrura a{:
bhe page’s quality. Howevecr Hillkop only
c.ownd.“ars._m_l‘*exloerk“ sources - pages that have
bee, clfeated with M;afe_{aqr‘po:t o f
drfed-:‘r‘:j PF‘_GFH’_ bqu::{_s fﬂourrﬁds- Tn
T‘E,SFfoT*SF_ to « %ut’jﬁ-f} i.i- ff‘fs-!r'lcﬁ_ﬂ"-fqi-e.s A

kst of Lwe woch relevant ex?er’cS-Hér'-\a
[e
query sopic. Hillloo—mfso—requrres—a

i e i - 2 ‘ =

dermaerms T hen iF . condinues in a Similap
mannen bc¢ PoaseRank Hewewez, Wt alsc
[‘E%u_fe._c, +m' i+ G@n t?as:iv \G'C.M-E_QJ— _l‘e;::.y(-
2. expect dOC.um*e.ﬂgr U'd{'i"nj for the Qe
Web page. Thw if a pee | of Cxpects

(s nof availgble or 1f Hil“-ato Canne ¥ L£iud
& Miniwmus OF E.Kf?é?f* pages for o cfruﬁf*f
}-cqgfc,fft[ﬁ.e, vesulbsd4et i will f*e_i-grﬁ will ke
absolute zero Se H[UTcta s dunec for
_resulb ac.c.ufa,g;? and nok ‘EU-W‘T QQUW%E,
This s dhe wmacy dfgmmraﬂkaﬁe 38 GRS T

aljcri’;hm A .

5ince Yoo lank: ne ‘phase_ ic similar o fhadt

05 ?oje,ﬂanlc_ Quﬁ\zﬁ Z—OHH‘Q.C'ri”Ufh.[Qha_ﬁu{ns)
we (] focu_s av ke experlé [mku_‘p,

Tue aunthors J&IE'M experk page need
ke e Objechiue and diverse . Therefore,
inocdon. bo ftnd fae @zf,wh one needs to
dekect whey Lo sibes bdo)g +e Fe Same
arﬂawiM‘&n.

 Twe losrs are said Vo lae Lol abeck t.1

> wa.’ Share tue 3Same Licsk 3 oCreks oL
Yhair TP addresses or

& “1ha rijh{-msl— ndn-je.hercc. foken tin thedr

Wwocknames are 4lhe Same. Ta o
?rffroc.tssrvlg Sl-e.‘-,» Wt is Pc:%f]g\'-e_ Ao
consttuct aq hesH G-QH-;.\{&M‘G*\ lﬂﬂk—‘-’-ao =
. (tﬂ%f‘ \nests thak- are consichece ol

alfili ahed. Tiem to fond ihe expecks,
Hi\l%-of) crawls q Seacch engine's

daka hase . Consi daring ol pages
with out-dgree greshenr thald Seme
fareshold Kk | ik tests to see if these
URL s Pait’l’r o Kk dishinch mwaﬂi[t‘w(‘eo{
hosks. Such pages are censidered &perts,

Teo locate e}C‘oEH- pag es Yok madc v cﬁu%"i'%
thares an tuverted tndex Awot maps
"u.vejwofds e echaer%-s em—wiac . Bu Ehis o
dgne c}nf‘-(on indexed rexlt conlamed im
"'\Le.j rases ” - & ygieces of text Hha t
fbu gvl one o0r piore URLs in Alg

T fESannsg_ ‘o awsecr cgu.er\-h Ml -Hs‘f’
ftesk compures a (st of N experts that
are wosk relevant for ot guery . Tl
it Canks results L,u(gelec.h*v.z'e.lzf foh’au.-y
the relevand luks ,Cram fhese € erts,
ard assigning an authority score to
Cach Sudh Py e.

m.\%.nj(0N SN pikd))
2P

<, DocvYeeE a [
< ELEMENT & (dxlk)? ?
LVELEMENT B (S 5) >
(o) >
(&) >
<lelemEnT d (£) >
<'grement £ (%.‘?‘11 >
<! ELEMENT % (#PcdeTa) >
< VELEMENT h (#ecdpT0)% 15

ol

< ELE pE iy

¢ L ELEHENT

(o

- Crae* o ‘3&? IO Coda
- . —N " - =
(@+] b))% — (d*x[L)s — @97, b3
' (C€D? — 82 ©,1
_ 2

| B | i rE

S GUIBR) D G 9D U I GO N
@, b,c,d, et a h

l.'t . ﬂ.,cc-,lot_

A=

3
, PG RIE (’?ﬁa SIARD S

—

=9)L 30D Ak 2Kk
thored Tnline __Tﬂhnl%u.ﬁ_, A

6 apfF ((26) on o

N 1-X 286 0P A3 s Omfc -
T] B 30ip 73 Y Gpife =
N i * - AN GOple -

A 20 R B2 iRl Dop 6K Ik gple -
e T 3 ?‘
afen Gn *GnGd) an(o o) I 2o oGk (Q: 2R3 H
= G.ka | ‘st],(HHMQ)
a\ .-
Sk for Nl 3OP XD et
b S {Eﬁ k}'ﬂ" 3
Beﬁ’-' S ag e | B L i bl , d¥
o, o

99@' :G.'ﬂ m‘j‘f};* | E i C'éL&_

‘#\\ Eﬁk‘;l ‘\E» d i— < a
B o § | ot

h N . 4 o= =
3 ,_vh o o gi a i TR 8
'?ﬂ\\ b b *

o C
2 0 GiPbacoa - - Porn 3nic Yo 2155 £n

30@ (0" - (k. Gy d -
‘;@& e D DR AL W oy BD
_ANIZD T = D

30> j‘mkﬁ XN~ Ry =80 B (o pmn -

~op) FB p7 opN3 W -

o (e

OO _NBCH_K O
d (dzp: imeger | '

3 0, T -

Codg -

N o 2L

d.parenkID : iniegen . d.Qarent Coda Witeger)

€ (eTD:integer)

§ ($Tnimieger , f.a: siGing,” Fh: siting
S.pofert ID « wieger, £ paeniCode inteqer)

O=2>bh > c—>g g‘ﬁ'ﬂﬁ 10l c_‘-"%) MDY 2D
n'(ﬁ‘_ﬂﬂf’.ﬁl‘ﬂ @3 X0 @@)n} ﬂaﬂ WE d -2 oy
I e 50
TR i o iR ST
["HE %sla | b mzai K or oo I J'ﬂﬂ) }Qf
L \a'iD ere_\eJQJ?_ g - cle reian
parem-'ra integer | mﬁxurem r;ada_mhgm) 3

Hjbnd In\mmg _rﬂt.hﬂlcbggg a’m'\qJJQ:,JNJC}‘) _ ik '}L'_:;)_ I

@ s @ G Kle Snared (w3 Wen @

U ol 4oy 3(’1’6* pop B el VO o3z as

| x (a1 DO K

d(drp:imeger , 4.6 %-ﬁfmg* d.fhi sHing
4. poentIp Linteger | 4510@%(:06:0_ nkeq ec)
CTATD, m%ﬂf)er e dL S B*riwj e.d §3 Eh'urﬁ“«
SIS mieger acg :ﬁ-[l_gTﬁh SIS h g
- Qaﬂ‘lﬁ-}m xmLeﬂe)z _}_Par@n% Code ! xﬂ’rﬁjqr)
b (bTD - mieger, 5.9 Sing, S Sting,
[L b.PufEﬂﬁ:iﬁ. aftegec . b, ParentCode iMteger)

	ex1
	ex2
	ex3
	What is a Trie?
	Advantages and Disadvantages
	Overcoming the Disadvantages – Compressed Tries
	Bibliography

	ex4
	ex5
	ex6
	ex6_presentation
	ex7
	ex9

