האוניברסיטה העברית בירושלים

החוג למתמטיקה

בחינה בחשבון אינפיניטקימלי מתקדם (1) (80315)

מועד א' תשטס"ו - 6.2.07

משך הבחינה: 3 שעות
שם המורה : פרופ' דז קופרמן

נא לכתוב בעט על צידה השמאלי של המחברת, ולא בשוליים.
חלקא׳:
וש לענות על שתי שאלות מתוך שלוש. כל שאלה שווה 20 נקודות.
. 1
(A) A A א. הגדירו מהו הפנים של
ב.
(วA) A A A. הגדירו מהי השפה של

$$
\text { . } y_{n} \rightarrow x \quad \text { - } \quad x_{n} \rightarrow x \text { - }
$$

$f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$. 2

$$
f\binom{x}{y}=\binom{x \sin y}{x^{2}+y^{2}}
$$

(אין להשתמש במשפט הקובע כי קיום נגזרות חלקיות רציפות גורר $(x, y)=(1,0)$ דיפרנציאביליות).

V 3 . יהא (3 ($)$ מרחב מטרי.
א. א. הגדירו מהי קבוצה עפופר
ב. תהא D קבוצה צפופה ב X . הוכיחו ש- X מרחב שלם אם כל סדרת קושי ב
מתכנסת ב X.

. יש לענות על שתי שאלות מתוך שלוש. כל שאלה שווה 16 נקודות.
$f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$.א. .4 V $f\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}y^{2}-x \\ x^{2}-z^{2} \\ x^{2} z+y x\end{array}\right):$.בתונה הפונקציה
הוכיחו שהיא דיפרנציאבילית על כל \mathbb{R}^{3} וחשבו את נגזרתח.
ג. מצאו את היעקוביאן של הפונקציה $\underbrace{f \circ f \circ \ldots \ldots . . \circ f}_{51}$

5 א. הגדירו מהי מסילה ב ${ }^{2}$, ומהי מסילה בעלת אורך. ב. חשבו את אורכו של גרף הפונקציה $y=x^{3 / 2}$ בין הנקודה $x=0$ ו $x=0$ ו $x=1$ נתונות 2 משוואות : .6

$$
\begin{aligned}
& u^{2}+y v-x u=0 \\
& v^{2}+x v-y u=-1
\end{aligned}
$$

הוכיחו שמערכת משוואות זו מגדירה את (x, y) כפונקציה של (u,v) בסביבת הנקודה

$$
(x, y, u, v)=(2,0,2,-1)
$$

ב. תחי g הפונקציה g g g מהסעיף הקודם. חשבו את $(u, v) \mapsto(x, y)$. $(2,-1)$.

$$
\text { חשלק לענּת על בל השאלות. כל שאלה שווה } 7 \text { נקודות. }
$$

לחלן 4 טענות. לגבי כל אחת מהן יש לקבוע האם היא נכונה או לא, ולנמק את תשובתכם בעזרת הוכחה קצרה או מתן דוגמא נגדית. f $f_{n}(x)=\cos n x, \quad n=1,2, \ldots \quad$ סיא אוסף פונקציות ממשיות, הרציפות במידה אחידה. \mathbb{A} שִ
(8 ل ברדיוס $1 / n$ אז X מרחב קומפקטי.

9 9 ϕ. השדה הוקטורי $\left(\phi f_{1}, \phi f_{2}, \phi f_{3}\right)$ הוא שדה משמר.
 בהצלחה!
$(\operatorname{ran} \operatorname{amu}(\mathbb{X}, d)) A \subseteq \Sigma \operatorname{lin}(1$
cabbr los hast whoine mino sutp,

(a) A b BiJDD DN 12.32 (1C)

(at) A \sqrt{e} nalon ion nizg (C)

$$
V \cdot \partial A=\bar{A} \mid A^{0} \geq y^{\prime}+U
$$

 11020 Gounn is ie An LO F! , $A S F \subseteq \bar{X} U$ n $(\omega): x \in \bar{A}$ a afins $\quad \pi / c)$

 IP mzon
$x \in \bar{A}$ pr fon Golos , No- $G_{1} x \in F$ N. $\sqrt{8}, x_{n} \rightarrow x \in E$! , त्रा $120 F, p$ dic

Dr, pri $\left(z_{n} \in h_{0}(x, z)\right.$ D) $z_{n} \in A^{\circ}, \operatorname{Gos}, d\left(z_{n}, x\right)<\varepsilon \quad<n>N$ eq
$A^{\circ} Z\left(Z_{n}\right)$ pion HipNo $(n, x \in A$, revanis) $\rightarrow>30$
 $x \in A^{\circ}$ pf $\left.\left(y_{n}\right) \leq \delta\right)^{\prime}$ ' nijns जneod, $y_{n} \leq A$ wifs, $\left(y_{n}\right) \leq A \leq A$

- avar anés.
所 $D(x, \varepsilon) \leqslant u_{\alpha} \leqslant U u_{\alpha} ; p \delta \quad B(x, \varepsilon) \leqslant u_{\alpha} e p \varepsilon \quad \jmath e^{\prime}, \rightarrow N \sim u_{\alpha} e y^{\prime \prime}$. $l \rightarrow 3 \rho$, mino $\cup 4 \alpha$
- $x \in f$ then, $F 2\left(x_{n}\right), x_{n} \rightarrow x$ $b r$ Nink arro $x \geq F(x, d) \rightarrow 0, \operatorname{aran} p(2)$

 $p \delta . Z \left\lvert\, F \nRightarrow B_{0}\left(x_{0}, \frac{1}{n}\right)\right., n \in \mathbb{N}$ 疮 p Q $Q_{0}\left(x, r\right.$ \& i^{2} ast

$$
\therefore G N \sin (\underline{E}, d) \quad(a) \cdot(3
$$

. $\bar{A}=\mathbb{\text { ple , nold } 3 \text { } A \subseteq 区 \text { , onk }}$

ple \bar{x} isic, $\bar{x} \rightarrow$ vounn

$$
\begin{gathered}
d\left(d_{n}, d_{m}\right) \leq d\left(d_{n}, x_{n}\right)+d\left(x_{n}, x_{n}\right)+d\left(x_{m}, d_{m}\right) \\
e(0, n) \text { cic }
\end{gathered}
$$

$$
\begin{aligned}
& \text {. } Q 1 p \rightarrow 30 \text { aj’ }\left(x_{n}\right)^{3} \cup p \text { in> } f \text { Nis. } d\left(x_{n}, x_{m}\right)<\frac{\varepsilon}{3}, n, m>N \text { bF } \\
& d\left(x_{n}, x_{m}\right)<\frac{\varepsilon}{3} \quad \dot{y} \quad d\left(x_{m}, d_{m}\right)<\frac{1}{\mu}<\frac{1}{N}<\frac{\varepsilon}{3} \quad \vdots, d\left(x_{n}, d_{n}\right)<\frac{1}{n}<\frac{1}{N}+\frac{\varepsilon}{3} ; \rho f
\end{aligned}
$$

C_{1}, 30 Nllin $\left(d_{n}\right)$ $\rho f, d\left(d_{n}, d_{m}\right)<\varepsilon$, डño, pf
 $d\left(x_{n}, x\right) \leq d\left(x_{n}, d_{n}\right)+d\left(d_{n}, x\right) \longrightarrow 0$ ix in' $^{11}, x_{n} \longrightarrow x: 2$ yon

 , $a \in A$ bf io, $A \subseteq B$ e pfele), B a jNN Bip, Nemolinalin

$$
\begin{aligned}
& d\left(y_{n}, x\right) \leq d\left(y_{n}, x_{n}\right)+d\left(x_{n}, x\right) \underset{n \rightarrow d}{\rightarrow} \Rightarrow x=\lim y_{n} \\
& \cdot \bar{A} \leq B \text { rosi }, A, j c
\end{aligned}
$$

$$
\begin{aligned}
L(\gamma, T) & =\left\|\gamma\left(t_{1}\right)-\gamma\left(t_{0}\right)\right\|+\left\|\gamma\left(t_{2}\right)-\gamma\left(t_{1}\right)\right\|+\ldots+\left\|\gamma\left(t_{n}\right)-\gamma\left(t_{1}\right)\right\| \\
& =\sum_{i=1}^{n}\left\|\gamma\left(t_{i}\right)-\gamma\left(t_{i-1}\right)\right\|
\end{aligned}
$$

$$
6 / 6 \quad l(\gamma)=\sup L(\gamma, T): \mu 0 j 1
$$

 $P_{i L}$ kn is $\left.\gamma \quad \gamma(t)=\left(t, t^{\frac{3}{2}}\right) \quad i 7, \gamma:[0, j] \rightarrow \mathbb{R}^{2}: \pi y \gamma\right] i .3 e$

$$
\left.\left.\gamma^{\prime}(t)=\left(1, \frac{3}{2} t^{\frac{1}{2}}\right)![0,1] \gamma C, 0 \rightarrow 1 \theta^{\prime}\right\} \rightarrow 2 \text { arc } \gamma, p-\ln \right)
$$

$$
P\left(\left.\gamma\right|_{(a, b)}\right)=\int_{a}^{t}\left\|\gamma^{\prime}(s)\right\| z s \quad, a \leq t \leq b \text { bf } w^{t},[a, b\} \gamma G_{i}>b
$$

son

$$
\begin{aligned}
& \left\|\gamma^{\prime}(x)\right\|=\sqrt{(1)^{2}+\left(\frac{3}{2} x^{2}\right)^{2}}=\sqrt{1+\frac{9}{4} x^{(2)}} \quad \text {, } p-1,10 \text {. Nhi2 } 26 ; \cdot x f \\
& =\frac{1}{2} \sqrt{4+9 x}=\frac{1}{2}(4+4 x)^{\frac{1}{2}} . \\
& \int_{0}^{1}\left\|\gamma^{\prime}(x)\right\| d x=\int_{0}^{1} \frac{1}{2}(y+a x)^{\frac{1}{2}} d x=\frac{1}{2} \int_{0}^{1}(4+a x)^{\frac{1}{2}} d x=\frac{1}{2} A d x=\left.\frac{3}{2} \frac{3}{2}(y+g x)^{\frac{3}{2}} \int_{x=0}^{x-2}\right|_{4} \\
& =\left.\frac{1}{2} \cdot\left[\frac{2}{27}(4+a x)^{\frac{2}{2}}\right]\right|_{x=1} ^{x=1}=\left.\frac{(4+a x)^{\frac{3}{2}}}{27}\right|_{x=0} ^{x=1}=\frac{(4+a)^{\frac{3}{2}}-4^{\frac{3}{2}}}{27} \\
& =\frac{(13)^{\frac{3}{2}}-4^{\frac{3}{2}}}{27}=\int_{0}^{1}\left\|1 \gamma^{\prime}(x)\right\| d x=l(r) \text {. }
\end{aligned}
$$

- B=A p/l

$$
\lim _{y \rightarrow 0} \frac{f(x+y)-f(x)-T_{y}}{\|y\|}=0
$$

e $?^{\prime}$

$$
f(x, y, z)=\left(y^{2}-x^{2}, x^{2}-z^{2}, x^{2} z+y x\right), f i \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}=3, \text {, , on ann }-2
$$

$$
a>, r_{0}, k^{3},>0 \cdot 3 \quad g_{j}, 1 \leqslant j \leq m
$$

$$
\begin{aligned}
& \left.\frac{\partial f_{1}}{\partial x}=y^{-1} \frac{\partial f_{1}}{\partial y}=\partial y, \frac{\partial f_{1}}{\partial z}=0 \Rightarrow R^{3} h_{0}, f_{1}\left(\frac{1}{3}\right)^{3}\right) \cdot \partial f_{1} \\
& \text { f } \mathbb{R}^{3} s \text { swor } 3 \frac{\partial C_{1}}{\partial z}, \frac{\partial x_{1}}{\partial y}, \frac{\partial f_{1}}{\partial x} \text { ' } \\
& \frac{\partial f_{2}}{\partial x}=\partial x, \frac{\partial f_{2}}{\partial y}=0, \frac{\partial f_{2}}{\partial z}=-2 z \Rightarrow \mathbb{R}^{3} G f_{0} \text { wli>li+3, 次, } f_{2} \\
& \left.\frac{x_{3}}{\partial x}=2 x z+y, \frac{\partial f_{3}}{\partial y}=x, \frac{\partial f_{3}}{\partial z}=x^{2} \Rightarrow \quad R^{3} \quad G f_{8} \text { Ni, } \vec{x}\right\}, \vec{\partial}=f_{3} \\
& \text { - } \mathbb{R}_{3}>\text { ज }
\end{aligned}
$$

 , ap J'3f, $g: \mathbb{R}^{m} \rightarrow \mathbb{R}^{k}, \quad f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ inheles \sqrt{b} a wos'j
 $\operatorname{det}\left(D_{\rho_{\circ f}(a)}\right)=\operatorname{det}\left[P_{g}(f(\alpha)) \cdot \operatorname{det}\left(D_{f}(0) \rightarrow T_{2}, p\right) p \delta\right.$

$$
f(1,2,1)=(-1,0,1), \quad f(-1,0,1)=(1,0,1)
$$

$$
\operatorname{det}\binom{(1,0,1)}{\left(D_{f}^{2}(1, e, 1)\right)}=\operatorname{det}(\operatorname{Df}(f(1,0,1))) \cdot \operatorname{det}(f(1,0,1))
$$

$$
\left.\begin{array}{rl}
=\operatorname{det} & \left(D_{f}(-1,0,1)\right) \cdot \operatorname{det}\left(D_{f}(1,0,1)\right.
\end{array}\right)=\operatorname{det}\left(\begin{array}{ccc}
-1 & 0 & 0 \\
-2 & 0 & -2 \\
-2 & -1 & 1
\end{array}\right) \cdot \operatorname{det}\left(\begin{array}{ccc}
-1 & 0 & 0 \\
2 & 0 & -2 \\
2 & 1 & 1
\end{array}\right)
$$

$$
-\operatorname{dectc}(-1) \cdot(-2) \cdot 2=2 \cdot 2=4 \Rightarrow \operatorname{det}^{2}\left(D_{f}(1,0,1)\right)=4
$$

$\left.\rho f i, 4^{k}=\operatorname{det}\left(D_{f 2 k}(1,0,1)\right) \div(, 7) x^{3} y^{133}\right) \cdot s^{2} \quad \mu \delta$

$$
\operatorname{det}\left(D_{f^{51}}(1,0,1)\right)=\operatorname{dt}\left(D_{f^{50}}(1,91)\right) \cdot \operatorname{det}\left(D_{f}(1,0,1)\right)=4^{25} \cdot \operatorname{det}\left(\begin{array}{cc}
-1 & 0 \\
2 & 0,-2 \\
2 & 1
\end{array}\right)
$$

$$
=4^{25} \cdot 2=2^{51}=J_{f^{5 r}(1,2,1)} \quad 9 / 9
$$

$$
\begin{aligned}
& D_{g \cdot f}(a)=D_{g}(f(a)) \cdot D_{f}(a) \\
& \text { ! ap }[10(t, 3))^{3} 3
\end{aligned}
$$

anise sysp $f(x)=x^{3}-3 x^{2}+15 \quad$ aposos <10

 inlad v) kf pr, $f((-1,1))=(11,15)$ जwis $(11,15]$
 azinis nina no. 30

$$
\left(\text { loinos } h a \gamma \gamma^{\gamma} \operatorname{lis}_{6}\right)\left(\frac{1}{n}, \frac{2}{n}, \ldots \frac{n-1}{n}\right)
$$

$$
\text { arl3 polks }(x, y, v) \mapsto \phi(x) y)_{1}^{1} \quad X \mapsto x^{2} \text {; , elese ib of }
$$

$$
\frac{\partial z}{\partial z}=\phi f_{3}(x, y, z) \quad!\quad \frac{\partial y}{\partial y}=\phi \cdot f_{2}(x, y x) \quad p(b, j)
$$

$$
\operatorname{len} 30 \text {, anen } 50=38006
$$

$$
\begin{aligned}
& \text {, ven are }\left(\phi \cdot f_{1}, \phi \cdot f_{2}, \phi \cdot f_{3}\right) \quad \text { 's'r }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial g}{\partial x}=\frac{1}{2} \cdot 2 \cdot \phi(x, y, z) \cdot \frac{\partial \phi}{\partial x}(x, y z)=\phi(x, y, z) \cdot \frac{\partial \phi}{\partial x}(x, y, z) \quad \text { 价 } c \\
& =\phi(x, y, z) \cdot f_{1}(x, y, z)=\phi \cdot f_{1}(x, y, z)
\end{aligned}
$$

