CHAPTER 15

PERTURBATION THEORY OF TWO-DIMENSIONAL
REAL AUTON OMOUS SYSTEMS

1. Two-dimensiona| Linear Systems
Consider the res] linear system

ar; + b.’l?z r_ d
( = E) (L.1)

Zy, = cx; - dxy

where g, b, ¢, d are real constants such that the determinant gg — be does
not vanish, Clearly (%1,x5) = (0,0) is then the only eritical point, of this
system, that is, the only point where the right member of (1.1) vanishes.
Let the coefficient matrix of (1.1) be denoted by

a b
4= 2)
Then (1.1) esn be written ag ' = Az, where z = (z1,23). Let 4 have
the characteristic roots A, u. These roots can be real or complex, but if
one is complex, say A = + 8 (a, 8 real, 8 = 0), then b= a — 18 i3 the
other root, for the coefficients of the characteristic equation for 4 are rea].

It is known that there exists a req] nonsingular constant matrix T such
that, if y < Tz, then the transformed system y’ = (T4 T-Yy has a real

coeflicient matrix J = (TAT-Y) which has one of the following real
canonical forms:

A0 A O (t <A< 0,
@ (O A) = 0) (1D (O u) ord <y < A)
arr (A 0) A=0,y>0 v (" 0) A <0<

Y oA ’ 0 u

a B 0 g

(V) (-6 a) (a #= 0,8 % 0) (VI) (-ﬁ O-) (B = 0)

Thus, in order to discuss the nature of the orbits of (1.1) near (0,0), one
may assume 4 has one of the formgs (I) through (VI).
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Before taking up each of these cases individually, a matter of notation
will be settled. In general, a solution of a two-dimensional system

2y = qi(@y,2e) 2 = ga(ws,@e) (1.2)

will be denoted by ¢ = (¢1,¢2), and it will often be convenient to consider
the polar functions p, w, associated with the solution ¢, defined by

—1e2(t)
p() = (o}(t) + 0}(®)  w(t) = tan l;f(_t)
1t is stressed that p, w are defined with respect to a particular solution ¢

xg3 X3

x

F1a. 3. (I) Proper node, ) < 0. Fic. 4. (I) Proper node, \ > 0.

of (1.2), and are consequently functions of t. Thus p, w are to be dis-
tinguished from the polar coordinates 7,8 in the (21,2s) plane defined by

r=(z2+z) 0= tan1 22
. T
just as the solution coordinate functions ¢1,02 are to be distinguished
from the Cartesian coordinates Z1,%2 in the plane.

(I) Here the system is given by
Ty = A2y 2 = \z»

and therefore, if (¢,,¢,) is any initial point except (0,0), a solution through
this point is given by ¢,(f) = c1e™, a(t) = cae™. If A < 0, then p(t) >0
as t— 4o, and if A >0, p(t) >0 as t— — . The orbit through
(¢y,¢2) is an open half line passing through this point and with an end
point at (0,0). See Figs. 3 and 4, where the arrows indicate the direction
of increasing ¢. This type of critical point is called a proper node. Its
distinguishing feature is that every orbit tends to the origin in a definite
direction as t — +« (for X < 0), or 88 { — — o (for A > 0), and, given
any direction, there exists an orbit which tends to the origin in this direction.
Thus the origin is (asymptotically) stable in case A < 0, and unstable
when A > 0,
(IT) The system for Case (II) is

’ ’
T, = A\z; Ty = ube
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and the solution passing through (c1,c2) = (0,0) at ¢ = 0 is given by
P1(t) = c1eM, oo(t) = coem. Assume u < X < 0, for example. Then as {—»
+ 0, (e1d),a(t)) — (0,0), and if ¢; 3 0, s(t) /s (t) = (e2/c1)e Nt — 0,
ast— +ow. If ¢ =0, ¢; =0, (@1(t),@2(t)) = (0,cee*), which is just the
open positive or negative x, axis, according as¢; > O orcs < 0. In this

X2

Y

xy

F1e. 5. (1I) Improper node, 4 < A < 0. Fia. 6. (IT) Improper node, 0 < x < A.

case, the origin is called an tmproper node. A qualitative picture of the
orbits is shown in Figs. 5 and 6. Here, every orbit, except one, has the same
limiting direction at the origin. The origin is (asymptotically) stable in
case p < A <0, and unstable when 0 < < .

(III) The equations in this case are

Ty = \zy Ty = yz; + Azs

and it is easy to see that e1(t) = c1e™, a(t) = (¢ + cryt)eM, is the solution
passing through (c,,c,) at ¢ = 0. Suppose A < 0, for example. Then as
{— 4 » ¢1 and v2 tend to 0. If cy # 0, ¢z(t)/¢1(t) = 62/01 + yt— + o,

£ X3

4 | ]|

\M = T " ”'

Fia. 7. (III) Improper node, A < 0. Fia. 8. (I1I) Improper node, A > 0.

as t— tow. If ¢,20, then e2(t) 20, for ¢ positive and large enough,
and if ¢; = 0, then (01(8),02(t)) = (0,c5¢™), which gives an orbit which is a
half z, axis. Also, if ¢, 0, 02(0)/24(t) = (v/A) + v2(t)/1(t) = + , as
t— f . Thus every orbit has the same limiting direction at (0,0). The
origin in this case is also called an improper node. The nature of the
orbits is sketched in Figs. 7 and 8.
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(IV) Here the equations are
x'1 = A1 :0’2 = uls

and a solution is given by ¢i(f) = c1€", p2(t) = c2€, where now A < 0,
p > 0. If A\| = |u|, the orbits would
*s be rectangular hyperbolas. In the
general case, the orbits resemble these
// A\\ hyperbolas; see Fig. 9. Here, if (c1,c9)
P # (0,0), e(t) — 0, p2(t) > £ =, ac-

=~ % oording as ¢s > 0 or ca < 0. In this

\\ ¥ // case, the origin is called a saddle point.

(V) In this case

Y

/
Iy = ali + Bz,

F1a. 9. (IV) Saddle point, A <0 < . Zy = —Pz1 + oz

and the solution which passes through (cs,c2) at ¢t = 0 is given by
e1(t) = e*(cy cos Bt + c2 sin St) ea(t) = e(—ey 8in B + ¢, cOS 8t)

If p? = ¢ + ¢, this solution may be written e1{t) = poe™ cos (Bt — ),
e2(l) = —poe sin (Bt — 8), where cos § = ¢1/po and sin § = cs/po. The
polar functions p, w for this solution are p(t) = poe*, w(t) = —Bt + §,
and hence p = Ce=@®» where C = pe'/®?, which is a spiral. Thus the
origin in this case is called a spiral point. (Alternate terms for such
a point are vortex and focus.) See Figs. 10 and 11.
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F16. 10. (V) Spiral point, « < 0, 8 < 0. Fra. 11, (V) Spiral point, « > 0, 8 < 0.

(VI) This is just a special case of (V) where a = 0. In this situa-
tion a solution through (ci,c2) at ¢ = 0 is ¢1(t) = c1 cos Bt + ¢z sin S,
ea(t) = —c, sin Bt + ca cos Bt or, asin (V), p(t) = po, which is a circle of
radius po with (0,0) as the center. The origin is called a center in this
case; see Figs. 12 and 13.

From the definition of stability, it is easy to see by considering the gix
cases (I) through (VI) above that the following theorem holds. The
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pictures in Figs. 3 through 13 give a nice qualitative idea of the notion of
stability in each of the cases.

Theorem 1.1. Necessary and sufficient for the origin to be stable for the
system (1.1) is that the characteristic roots of the real nonsingular coeﬁ'iczent
malriz A should have negative or zero real parts.

X2

Fia. 12. (VI) Center, 8 < 0. F16. 13. (VI) Center, 8 > 0.

2. Perturbations of Two-dimensional Linear Systems

Consider now the nonlinear two-dimensional real autonomous gystem

z1 = az1 + bxs + fi(z1,29)
zy = o1 + dzo + fa(21,20)

where a, b, ¢, d are real constants, ad — be < 0, and f1,f; are real con-
tinuous functions defined in some circle about the origin (z),z2) = (0,0)
with radius ro > 0. The functions f; and f. are called perturbations, and
the system (NL) will be referred to as the perturbed system corresponding
to the linear system

(NL)

(L) zy = az, + bxy  zh = ez + dze

Intuitively, if the perturbations f; and f; are “‘small’’ in some sense, one
would expect that the behavior of the orbits of (NL) near the origin in the ;
(z1,25) plane would be very similar to the behavior of the orbits of (L). i
It will be shown that this is in general true, provided that fi,f. satisfy
certain minimum assumptions.

In addition to the given assumptions on fi,fs, it will be assumed that

J1=o0(r) J2 = ofr) (asr— 04) (2.1)

This guarantees that the perturbations tend to zero faster than the linear
terms in (NL). Also, it is easily seen that this condition, and the fact
that ad — be = 0, imply that the origin is an isolated critical point for
(NL); that is, there exists a circle about the origin in which the origin is
the only point where the right member of (NL) vanishes. An isolated




