

$$
\begin{aligned}
& 3-\frac{3 y}{10000}=0 \\
& \Rightarrow 30000=3 y \Rightarrow y=10000
\end{aligned} \quad \text { els er hertire (0) }
$$

$$
\begin{aligned}
& v^{\prime}(t)=-\alpha \cdot 4 \pi\left(4 \frac{3}{4 \pi}\right)^{2 / 3}
\end{aligned}
$$

 .

. Al(0) (0)

$$
\frac{d y}{d t}=-a y+b=-a\left(y-\frac{b}{a}\right) \Rightarrow \frac{d y / d t}{y-b / a}=-a
$$

$$
\Rightarrow \frac{d}{d t} \ln \left|y-\frac{b}{a}\right|=-a \Rightarrow \ln \left|y-\frac{b}{a}\right|=-a t+C
$$

$$
\Rightarrow y-\frac{b}{a}= \pm e^{c} e^{-a t} \Rightarrow y=c e^{-a t}+\frac{b}{a}
$$

 : 以) (x) 中ron

 .

$$
\begin{aligned}
& a, b>0 \quad \text { olo } \quad \frac{d y}{d z}=-a y+b
\end{aligned}
$$

$$
\begin{align*}
& y(0)=y_{0} \quad \frac{d y}{d t}=-y+5 \tag{C}\\
& \frac{d y}{d t}=-y+5 \Rightarrow \frac{d y / d t}{-y+5}=1 \Rightarrow \frac{d}{d t} \ln |-y+5|=1 \\
& \Rightarrow \ln |-y+5|=t+C \Rightarrow-y+5= \pm e^{a} e^{t} \\
& \Rightarrow-y+5=c e^{t} \Rightarrow y=5-c e^{t} \\
& y(0)=5-c=y_{0} \Rightarrow c=5-y_{0} \Rightarrow y=5-\left(5-y_{0}\right) e^{t} \\
& y(0)=y_{0} \quad \frac{d u}{d t}=-2 y+5 \tag{D}\\
& \frac{d y}{d t}=-2 y+5 \Rightarrow \frac{d y}{d t}=-2\left(y-\frac{5}{2}\right) \Rightarrow \frac{d y / d t}{y-5 / 2}=-2 \\
& \Rightarrow \frac{d}{d t} \ln \left|y-\frac{5}{2}\right|=-2 \Rightarrow \ln \left|y-\frac{5}{2}\right|=-2 t+C \\
& \Rightarrow y-\frac{5}{2}= \pm e^{c} e^{-2 t} \Rightarrow y=c e^{-2 t}+\frac{5}{2} \\
& y(0)=c+\frac{5}{2}=y_{0} \Rightarrow c=y_{0}-\frac{5}{2} \Rightarrow y=\left(y_{0}-\frac{5}{2}\right) e^{-2 t}+\frac{5}{2} \\
& y(0)=y_{0} \quad \frac{d y}{d t}=2 y-10 \tag{દ}\\
& \frac{d y}{d t}=2 y-10=2(y-5) \Rightarrow \frac{d y \mid d t}{y-5}=2 \Rightarrow \frac{d}{d t} \ln |y-5|=2 \\
& \Rightarrow \ln |y-5|=2 t+c \Rightarrow y-5= \pm e^{2 t} e^{c} \Rightarrow y=c e^{2 t}+5 \\
& y(0)=c+5=y_{0} \Rightarrow c=y_{0}-5 \Rightarrow y=\left(y_{0}-5\right) e^{2 t}+5
\end{align*}
$$

$$
\begin{aligned}
& \frac{d y}{d t}=a y \Rightarrow \frac{d y d t}{y}=a \Rightarrow \frac{d}{d t} \ln |y|=a \Rightarrow \ln |y|=a t \mathrm{C} \\
& \Rightarrow y= \pm e^{a t} e^{c} \Rightarrow y_{1}=c e^{a t}
\end{aligned}
$$

$c=0$ NN k ki.
\rightarrow (\rightarrow (*) L (

$$
\begin{aligned}
& \quad: a y-b \quad-\left(\text {)थe, } y=y_{1}+k\right. \\
& \left(y_{1}+k\right)^{\prime}=\left(c e^{a t}+k\right)^{\prime}=c a e^{a t}=a y-b \\
& \Rightarrow y=\frac{c a e^{a t}+b}{a}=c e^{a t}+\frac{b}{a}=y_{1}+\frac{b}{a} \\
& k=\frac{b}{a}
\end{aligned}
$$

 aklens ハ

SK $.0<p_{0}<900$ gen $p(0)=p_{0}$

$$
p(0)=c+900=p_{0} \Rightarrow c=p_{0}-900
$$

$$
\Rightarrow \quad p=\left(p_{0}-900\right) e^{\frac{1}{2} t}+900
$$

$$
\Rightarrow e^{\frac{1}{2} t}=\frac{900}{900-p_{0}} \Rightarrow \frac{1}{2} t=\ln \left(\frac{g 00}{900-p_{0}}\right) \Rightarrow t=2 \ln \left(\frac{900}{900 \cdot p_{0}}\right)
$$

$$
\begin{gathered}
e^{6} p_{0}-900\left(e^{6}-1\right)=0<0=p(12)=\left(p_{0}-900\right) e^{6}+900 \\
p_{0}=\frac{900\left(e^{6}-1\right)}{e^{6}} \ll
\end{gathered}
$$

$$
\begin{align*}
& \frac{d f}{d t}=0.5 p-450=0.5(p-900) \Rightarrow \frac{d p / d t}{p-900}=\frac{1}{2} \\
& \Rightarrow \frac{d}{d t} \ln |p-900|=\frac{1}{2} \Rightarrow \ln |p-900|=\frac{1}{2} t+C \\
& \Rightarrow p-900=c e^{\frac{1}{2} t} \Rightarrow p=c e^{\frac{1}{2} t}+900 \\
& p(0)=c+900=850 \Rightarrow c=-50 \Rightarrow p=-50 e^{\frac{1}{2} t}+900
\end{align*}
$$

$$
\begin{aligned}
& \Rightarrow \quad e^{\frac{1}{2} t}=18 \Rightarrow \frac{1}{2} t=\ln 18 \Rightarrow t=2 \ln 18 \approx 5.8
\end{aligned}
$$

$$
\frac{d p}{d t}=r p
$$

$$
\begin{aligned}
& \frac{d p}{d t}=r p \Rightarrow \frac{d p / d t}{p}=r \Rightarrow d \ln |p|=r \Rightarrow \ln |p|=r t+C \\
& \Rightarrow p= \pm e^{c} e^{r t} \Rightarrow p=c e^{r t}
\end{aligned}
$$

sk $\left.p(30)=2 p_{0}-1 \quad p(0)=p 0 \quad-0 \pi 1\right)$ so

$$
\begin{aligned}
& p(0)=c=p_{0} \quad p(30)=p_{0} e^{r \cdot 30}=2 \cdot p_{0} \\
& \Rightarrow e^{30 r}=2 \Rightarrow 30 r=\ln 2 \Rightarrow r=\frac{\ln 2}{30}
\end{aligned}
$$

 $x \quad p(N)=2 p c \quad-\quad p(0)=p c \quad n_{0} l l .021 p$ iN

$$
\begin{aligned}
& p(0)=c=p_{0} \quad p(N)=p_{0} e^{r \cdot N}=2 p_{0} \Rightarrow e^{N r}=2 \\
& \Rightarrow N r=\ln 2 \Rightarrow r=\frac{\ln 2}{N}
\end{aligned}
$$

$$
\frac{2401}{50}=48.02 \text { on } 15
$$

$$
\begin{aligned}
& \frac{d v}{d t}=98-\frac{v}{5}=-\frac{1}{5}(v-49) \Rightarrow \frac{d v / d t}{V-49}=-\frac{1}{5} \\
& \Rightarrow \frac{d}{d t} \ln |v-49|=-\frac{1}{5} \Rightarrow \ln |v-49|=-\frac{1}{5} t+C \\
& \Rightarrow v-4 a= \pm e^{G} e^{-\frac{1}{5} t} \Rightarrow V=c e^{-\frac{1}{5} t}+49 \\
& V(0)=c+49=0 \Rightarrow c=-49 \Rightarrow V=-49\left(e^{-\frac{1}{5} t}-1\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.V(t)=-49\left(e^{-\frac{1}{5} t}-1\right)=48.02 \Rightarrow(1021) \rightarrow(1) 10\right)\right) \\
& \Rightarrow e^{-\frac{1}{5} t}=-\frac{201}{50} \cdot \frac{1}{119}+1=0.02 \Rightarrow-\frac{1}{5} t=\ln 0.02 \\
& \Rightarrow t=-5 \ln 0.02 \approx 19.6
\end{aligned}
$$

$$
\frac{d x}{d t}=v \Rightarrow x=\int v d t=\int\left(49-49 e^{-\frac{1}{5} t}\right) d t=49 t+49.5 e^{-\frac{1}{5} t}
$$

$$
\Rightarrow x(-5 \ln 0.02)=10(-5 \ln 0.02)+49 \cdot e^{\ln 0.02} \approx 963.4
$$

$$
y^{\prime}-y=2 t e^{2 t} \quad y(0)=1 \quad \text { annon } k n \rightarrow n \delta N \rightarrow(\ln (0)
$$

$$
\mu(t) \frac{d y}{d t}-\mu(t) y=2 t e^{2 t} \mu(t)
$$

$$
\mu(t) \frac{d y}{d t}-\mu(t) y=\mu(t) \frac{d y}{d t}+\frac{d \mu}{d t} \cdot y
$$

$$
\begin{aligned}
& \frac{d}{d t}(\mu y)=\mu \frac{d y}{d t}+\frac{d \mu}{d t} y=\mu \frac{d t}{d t}-\mu y=2 t e^{2 t} \cdot \mu \\
& \Rightarrow \mu y=\int 2 t e^{2 t} \mu d t \Rightarrow y=\frac{1}{\mu} \int 2 t e^{2 t} \mu d t \\
& \Rightarrow y=2 e^{t} \int t e^{t} d t=2 e^{t}\left[t e^{t}-\int e^{t} d t\right]^{\prime}= \\
& u v^{\prime} \quad \downarrow \\
& u=t u^{\prime}=1 \\
& v=e^{\prime}=v^{\prime}=e^{t} \\
&(u v)^{\prime}=u^{\prime}+v^{\prime} u \\
& \Rightarrow u v=\int_{u^{\prime} v+\int v^{\prime} u} \\
& \Rightarrow \int u v^{\prime}=u v-\int^{\prime} v
\end{aligned}
$$

$$
\frac{d y}{d t}+\frac{2}{t} y=t^{2}-t+1
$$

$(\mu y)^{\prime}=\mu \frac{d y}{d t}+\frac{d \mu}{d t} y=\mu \frac{\partial y}{d t}+\mu \cdot \frac{2}{t} y$
$\frac{d}{d t} \ln \mu^{\prime} \mu^{\prime}=\frac{2}{t} \quad<F \quad \frac{d \mu d t}{\mu}=\frac{2}{t} \quad<=\frac{d \mu}{d t}=\frac{2 \mu}{t}$ n'paie p'oow
(N))

$$
\begin{aligned}
& \mu=t^{2} \quad\left(\ln (n)^{\prime}\right) \quad \mu= \pm t^{2} \quad<\ln |\mu|=2 \ln |t|=2 \ln t \\
& \frac{d}{d t}(\mu y)=\frac{d \mu}{d t} y+\mu \frac{d y}{d t}=\mu \frac{d y}{d t}+\frac{2 \mu}{t} \cdot y=\mu\left(t-1+\frac{1}{t}\right) \\
& \Rightarrow \mu y=\int \mu\left(t-1+\frac{1}{t}\right) d t \Rightarrow y=\frac{1}{\mu} \int \mu\left(t-1+\frac{1}{t}\right) d t
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow y & =\frac{1}{t^{2}} \int\left(t^{3}-t^{2}+t^{1}\right) d t=\frac{1}{t^{2}}\left[\frac{1}{4} t^{4}-\frac{1}{3} t^{3}+\frac{1}{2} t^{2}+G\right]= \\
& =\frac{1}{4} t^{2}-\frac{1}{3} t+\frac{1}{2}+\frac{c}{t^{2}} \\
y(1) & =\frac{1}{4}-\frac{1}{3}+\frac{1}{2}+\frac{c}{1}=\frac{7}{6}+c=\frac{1}{2} \Rightarrow c=\frac{1}{2}-\frac{7}{6}=\frac{5}{3} \\
\Rightarrow y(t) & =\frac{1}{4} t^{2}-\frac{1}{3} t+\frac{1}{2}+\frac{5}{3 t^{2}}
\end{aligned}
$$

$$
\begin{array}{r}
y^{\prime}+\frac{2}{t} y=\frac{\cos t}{t^{2}} \quad t>0 \quad y(\pi)=0 \\
(\mu y)^{\prime}=\mu \frac{d y}{d t}+\frac{d \mu}{d t} y_{d \mu}=\mu_{2 \mu} \frac{d y}{d t}+\frac{2 \mu}{t} y
\end{array}
$$

з $\mu=t^{2}$ INID, $\frac{d \mu}{d t}=\frac{2 \mu}{t}$ NN.PNE μ LOBN pioON

$$
\begin{aligned}
& \frac{d}{d t}(\mu y)=\mu \frac{d y}{d t}+\frac{d \mu}{d t} y=\mu \frac{d y}{d t}+\frac{2 \mu}{t} y=\mu \frac{\cos t}{t^{2}} \\
& \Rightarrow 11 y=\int \mu \frac{\cos t}{t^{2}} d t \Rightarrow y=\frac{1}{\mu} \int \mu \frac{\cos t}{t^{2}} d t \\
& \Rightarrow y=\frac{1}{t^{2}}\left(\cos t d t=\frac{1}{t^{2}}(\sin t+C)\right. \\
& y(\pi)=\frac{1}{\pi^{2}} \cdot C=0 \Rightarrow C=0 \Rightarrow y(t)=\frac{\sin t}{t^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\mu= \pm|t|^{4}= \pm t^{4}<F \quad \ln |\mu|=4 \ln |t|<F \frac{d}{d t} \ln \right\rvert\, \mu^{\prime}-\frac{4}{t} \text { pin) on } \rho C \\
& \text { ज } \left.\mu=t^{4} \quad \operatorname{Don}(\cap)^{\prime}\right) \leq k \\
& \frac{d}{d t}(\mu y)=\mu \frac{d y}{d t}+\frac{d \mu}{d t} y=\mu \frac{d y}{d t}+\frac{4 \mu}{t} y=\mu \frac{e^{-t}}{t^{3}} \\
& \Rightarrow \mu y=\int \mu \frac{e^{-t}}{t^{3}} d t \Rightarrow y=\frac{1}{\mu} \int \mu \frac{e^{-t}}{t^{3}} d t \\
& \Rightarrow y=\frac{1}{t^{4}} \int_{\breve{u}^{\prime \prime} \ddot{v}^{\prime}}^{t} e^{-t} d t=\frac{1}{t^{4}}\left[-t e^{-t}+\int e^{-t} d t\right]= \\
& u=t u^{\prime}=1 \\
& v=-e^{-t} \quad v^{\prime}=e^{-t} \\
& \text { (uv) }=\left(u^{\prime} v+v^{\prime} u,\right. \\
& \Rightarrow u v: \int u^{\prime} v+\int v^{\prime} u \\
& \Rightarrow \int u v^{\prime}=u v-\int u^{\prime} v
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{t^{4}}\left[-t e^{-t}-e^{-t}+C\right] \\
& y(-1)=1[1 \cdot e-e-C]=C=0 \\
& \Rightarrow y(t)=-\frac{e^{-t}}{t^{3}}-\frac{e^{-t}}{t^{4}} \quad t \neq 0
\end{aligned}
$$

$y(0)=y_{0} \quad y^{\prime}-y=1+3 \operatorname{sirt} \quad$ (nロด) and (10) $t \rightarrow \infty$ lix yo ane je nao

$$
\mu \frac{d y}{d t}+\frac{d \mu}{d t} y=\mu \frac{d y}{d t}-\mu y
$$

3t $\mu=e^{-t} \operatorname{\omega N}\left(\frac{d \mu}{d t}=\mu \mu\right.$ onpNe μ anpr joON anib

$$
\begin{aligned}
& \frac{d}{d t}(\mu y)=\mu \frac{d y}{d t}+\frac{d \mu}{d t} y=\mu \frac{d y}{d t}-\mu y=\mu+3 \mu \sin t \\
& \Rightarrow \mu y=\int(\mu+3 \mu \sin t) d t \Rightarrow y=\frac{1}{\mu} \int(\mu+3 \mu \operatorname{bin} \div d t \\
& \Rightarrow y=e^{t} \int\left(e^{-t}+3 e^{-t} \sin t\right) d t= \\
& \\
& =e^{t}\left[\frac{(3 \cos t+3 \sin t+2) e^{-t}}{2}+C\right] \\
& y(0)=-\frac{3+2}{2}+C=-\frac{5}{2}+C=y_{0} \Rightarrow C=y_{0}+\frac{5}{2}
\end{aligned}
$$

- $y=-\frac{2}{2}$ ph $c=0$ pinmon $t \rightarrow \infty$ du an जnn y-e a

$$
y(0)=y_{0} \quad y^{\prime}-\frac{3}{2} y=3 t+2 e^{t}
$$

$$
\frac{d}{d t}(\mu y)=\mu \frac{d y}{d t}+\frac{d \mu}{d t} y=\mu \frac{d y}{d t}-\frac{3}{2} \mu y \quad \text { sd } \quad \frac{d \mu}{d t}=-\frac{3}{2} \mu
$$

$$
x \cdot \mu=e^{-\frac{3}{2} t} \quad \text { Qun } n p^{\prime}
$$

$$
\begin{aligned}
\frac{d}{d t}(\mu y) & =\mu \frac{d y}{d t}-\frac{3}{2} \mu y=3 \mu t+2 \mu e^{t} \\
\Rightarrow \mu y & =\int\left(3 \mu t+2 \mu e^{t}\right) d t \Rightarrow y=\frac{1}{\mu} \int\left(3 \mu t+2 \mu e^{t}\right) d t \\
\Rightarrow y & =e^{\frac{3}{2} t} \int\left(3 e^{-\frac{3}{2} t} \cdot t+2 e^{-\frac{1}{2} t}\right) d t= \\
& =e^{\frac{3}{2}} \cdot \frac{-2}{3} e^{-\frac{3}{2} \cdot}\left(2+6 e^{t}+3 t\right)+C=-\frac{4}{3}-4 e^{t}-2 t+c e^{\frac{3}{2} t} \\
y(0) & =-\frac{4}{3}-4+C=y_{0} \Rightarrow c=y_{0}+\frac{16}{3}
\end{aligned}
$$

$y(t) \rightarrow \infty$ be $c>0$ ar , ind $y(t) \rightarrow-\infty$
yoroin in 3'DN $y_{0}=\frac{-16}{3}$ pl $\quad y(t) \rightarrow \infty$ se $c<0$ ded

$$
\underset{t \rightarrow \infty}{ } \mathrm{O}
$$

$$
(\mu y)^{\prime}=\mu y^{\prime}+\mu^{\prime} y=\mu y^{\prime}+a \mu y
$$

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{x^{2}}{y} \Rightarrow y d y=x^{2} d x \Rightarrow \int y d y=\int x^{2} d x \\
& \Rightarrow \frac{1}{2} y^{2}=\frac{1}{3} x^{3}+C \Rightarrow 3 y^{2}=2 x^{3}+C \quad y \neq 0
\end{aligned}
$$

$$
y^{\prime}+y^{2} \sin x=0 \quad \rightarrow \cos \quad \text { anvenत } \quad \rightarrow x \cos
$$

$$
\frac{d y}{d x}+y^{2} \sin x=0 \Rightarrow \frac{d y}{d x}=-y^{2} \sin x \Rightarrow \frac{d y}{y^{2}}=-\sin x d x
$$

$$
\Rightarrow \int \frac{d y}{y^{2}}=\int_{1}-\sin x d x+-\frac{1}{y}=\cos x+C
$$

$$
\Rightarrow y=\frac{1}{C-\cos x} \quad y+0 \quad \mathrm{oc}
$$

. InNo $y=0$ ar

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{3 x^{2}-1}{3+2 y} \Rightarrow(3+2 y) d y=\left(3 x^{2}+1\right) d x \Rightarrow \int(3+2 y) d y=\int\left(3 x^{2}-1\right) d x \\
& \Rightarrow 3 y+y^{2}=x^{3}-x+C
\end{aligned}
$$

$$
\begin{aligned}
& (\mu y)^{\prime}=\mu y^{\prime}+\mu y=\mu y^{\prime}+a \mu y=\mu b e^{-\lambda t} \\
& \Rightarrow \mu y=\int \mu b e^{-\lambda t} d t \Rightarrow y^{\prime} \cdot \frac{b}{\mu} \int \mu e^{-\lambda t} d t \\
& \left.y(t)=b e^{-a t} \int e^{(a-\lambda) t} d t \quad-e \quad d o p l l \mu \wedge x \cdot 13\right)
\end{aligned}
$$

$$
\begin{aligned}
& y(t)=b e^{-a t} \int 1 \cdot d t=b e^{-a t}(t+C) \quad b x \quad a=\lambda(c) \\
& y(t) \xrightarrow[t \rightarrow \infty]{ } c \quad-0 \quad \gamma \quad 1) \quad 0<a-c \text { neतNl } \\
& y(t)=b e^{-a t}\left(\frac{1}{a-\lambda} e^{(a-\lambda) t}+C\right)=\quad \text { bk } \quad a \neq \lambda \\
& =\frac{b}{a-\lambda} e^{-\lambda t}+C b \cdot e^{-a t} \\
& y(t) \xrightarrow[t \rightarrow \infty]{ } 0 \text {-c रil) } a_{1} \lambda>0 \text {-e गnidl }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ounen } \frac{d y}{d x}=\frac{x-e^{-x}}{y+e^{y}} \\
& \left(y+e^{y}\right) d y=\left(x-e^{-x} d x \Rightarrow \frac{1}{2} y^{2}+e^{y}=\frac{1}{2} x^{2}+e^{-x}+C \quad y+e^{y} \neq 0\right.
\end{aligned}
$$

$$
\left(1+y^{2}\right) d y=x^{2} d x \Rightarrow y+\frac{1}{3} y^{3}=\frac{1}{3} x^{3}+C \Rightarrow 3 y+y^{3}=x^{3}+C
$$

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{(1.2 x)}{y} \Rightarrow y d y \quad(1-2 x) d x \Rightarrow \frac{1}{2} y^{2}=x-x^{2}+C \\
& \frac{1}{2} \cdot 4=1-1+C \Rightarrow C=2 ;(1,-2) \quad-23, \quad y \quad C \text { ak }(2) \\
& \text { T) (x } y= \pm \sqrt{2 x-2 x^{2}+4} \quad \& \quad y^{2}=2 x-2 x^{2}+4 \quad<5=
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{2 x}{y+x^{2} y}=\frac{2 x}{\left(1+x^{2}\right)} \cdot \frac{1}{y} \Rightarrow \quad y d y=\frac{2 x}{1+x^{2}} d x \Rightarrow \int y d y=\int \frac{2 x}{1+x^{2}} d v \\
& \Rightarrow \frac{\dot{2}}{2} y^{2}=\ln \left(1+x^{2}+2\right) \Rightarrow y^{2}=2 \ln \left(1+x^{2}\right)+C \\
& G=(-\lambda)^{2}-2 \ln 1=4 \quad \operatorname{loj} \quad(0,-2) \text { ismo刀 } k \text {, n } k \text {, } 3 \text {) } \\
& y=-\sqrt{2 \ln \left(1+x^{2}\right)+4} \quad x+1 \quad \ln \cap 0 \quad x, N \quad y^{2}=2 \ln \left(1+x^{2}\right)+4 \quad ;
\end{aligned}
$$

\mathbb{R} UNNT D'D bo ozth monen

$$
\begin{aligned}
& y(2)=0 \quad y^{\prime}=\frac{2 x}{1+2 y} \\
& \frac{d y}{d x}=\frac{2 x}{1+2 y} \Rightarrow(1+2 y) d y=2 x d x \Rightarrow \int(1+2 y) d y=\int 2 x d x \\
& \Rightarrow y+y^{2}=x^{2}+C \quad \Rightarrow C=y^{2}+y-x^{2}=-2^{2}=-4 \\
& \Rightarrow y+1) \Omega 0) \\
& \Rightarrow y=\frac{-1 \pm \sqrt{1+4\left(x^{2}-4\right)}}{2}=\frac{-1 \pm \sqrt{4 x^{2}-15}}{2}
\end{aligned}
$$

$$
\left(\frac{\sqrt{15}}{2}, \infty\right)
$$

$$
\begin{aligned}
& y^{2} d y=\frac{\arcsin x}{\sqrt{1-x^{2}}} d x=D \frac{1}{3} y^{3}=\frac{\arcsin ^{2} x}{2}+C
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{e^{-x}-e^{x}}{3+2 y} \Rightarrow(3+4 y) d y=\left(e^{-x}-e^{x}\right) d x \Rightarrow \int(3+4 y) d y=\int\left(e^{-x}-e^{x}\right) d x \\
& \Rightarrow 3 y+2 y^{2}=-e^{-x}-e^{x}+C
\end{aligned}
$$

$$
\begin{aligned}
& y \times(221) \cdot 3 y+2 y^{2}=3-e^{-x}-e^{x} \quad<k \quad C_{1}=3 \quad \ll \\
& \begin{aligned}
2 y^{2}+3 y- & \left(3-e^{-x}-e^{x}\right)=0 \Rightarrow \\
y & =\frac{3+\sqrt{9+8\left(3-e^{-x}-e^{x}\right)}}{4}
\end{aligned} \quad y=\frac{-3 \pm \sqrt{9+8\left(3-e^{-x}-e^{x}\right)}}{4} \\
& y=\frac{3+\sqrt{9+8\left(3-e^{-x}-e^{x}\right)}}{4}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{3 x^{2}-e^{x}}{2 y-5} \Rightarrow(2 y-5) d y=\left(3 x^{2}-e^{x}\right) d x \\
& \Rightarrow y^{2}-5 y=\int(2 y-5) d y=\int\left(3 x^{2}-e^{x}\right) d x=x^{3}-e^{x}+C
\end{aligned}
$$

$$
\begin{aligned}
& y \text { a } 22(\lambda) \quad y^{2}-5 y-x^{3}-e^{x}-3
\end{aligned}
$$

$$
\begin{aligned}
& \text { - } 25+4\left(x^{3}-e^{x}-3\right)>0 \text { p"pise oingn kin oyphonn }
\end{aligned}
$$

$$
\begin{aligned}
& \left.y(0)=1 \quad y^{\prime}=2 y^{2}+x y^{2} \quad \sin (\operatorname{dy}) \rightarrow n^{n} \gamma N \wedge x \operatorname{nd}\right) \\
& \frac{d x}{d x}=y^{2}(2+x) \Rightarrow \frac{d y}{y^{2}}=(2+x) d x \Rightarrow \int \frac{d y}{y^{2}}=\int(2+x) d x \\
& \Rightarrow-\frac{1}{y}=2 x+\frac{1}{2} x^{2}+C
\end{aligned}
$$

pd wean ynlk ulk if dok inaek $y=0$ ox ores
o ak (6y ar moll nub $y^{\prime}=0$ a ainnsigipn donn obplon Q owik (x) (r) (o) (Dx) $y=0 \quad-\quad x \quad x \cdot y^{2}(2+x)=2 y^{2}+x y^{2}=0$

$$
\sin \operatorname{soc} \quad x-0 \quad 0 \quad: \quad \frac{d y}{d x}=\frac{y-4 x}{x-y}
$$

OUM N

$$
\begin{aligned}
& d x-\frac{d}{d} \cdot\left(\frac{d N}{}-\frac{d y}{d x}=x \frac{d v}{d x}+\frac{y}{x}=x \frac{d y}{d x}+v\right. \\
& x \frac{d y}{d y}+y=\frac{d x}{d-y / x}=\frac{v-\mu}{1-v} \Rightarrow x \frac{d v}{d x}=\frac{v-\mu}{1-v}-v=\frac{v-\mu-v+v^{2}}{1-v}=\frac{v^{2}-u}{1-v}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{2 \cos 2 x}{3+2 y} \Rightarrow(3+2 y) d y=2 \cos 2 x d x \Rightarrow \int(3+2 y) d y=\int 2 \cos 2 x d x \\
& \Rightarrow 3 y+y^{2}=\sin 2 x+C \\
& \text { p } \left.C=3 y+4-\sin 2 x=-3+1-0=-2-0 \quad \gamma_{N}\right) \quad \text { (OOD) 只) an } \\
& y^{2}+3 y-(\sin 2 x-2)=0 \Rightarrow y=\frac{-3 \pm \sqrt{9+4(\sin 2 x-2)}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \sin 2 x>-\frac{1}{4}<1+4 \sin 2 x=g+4 \sin 2 x-8>0 \quad \text { } \quad(x)(a)
\end{aligned}
$$

$$
\begin{aligned}
& \left(\sin \pi=0>-\frac{1}{4}, x\right) \quad x=\frac{\pi}{2}
\end{aligned}
$$

$$
\begin{align*}
& \therefore \cdots, \operatorname{mon}(3 N) \cdot y=\frac{1}{1-2 x-\frac{1}{2} x^{2}} \\
& -\frac{1}{2} x^{2}-2 x+1=3 \Rightarrow x^{2}+4 x-2=0 \\
& \Rightarrow x=\frac{-4 \pm \sqrt{16+4} 2}{2}<\begin{array}{l}
-2+\sqrt{6} \\
-2-\sqrt{6}
\end{array} \quad \frac{r^{2-\sqrt{6}}}{-2+\sqrt{6}} \\
& (-2-\sqrt{6},-2+\sqrt{6}) \text { (2) (6) innon oup onse } \tag{N}
\end{align*}
$$

$$
\begin{aligned}
& \text { : } \left.\int \frac{1-v}{V^{2}-4} d v \text { fref } x \text { (}\right) \text { a }(x) \\
& \frac{1-V}{V^{2}-4}=-\frac{1}{4} \cdot \frac{1}{V-2}-\frac{3}{4} \cdot \frac{1}{V+2} \Rightarrow \int \frac{1-V}{V^{2}-4} d v=-\frac{1}{4} \ln |V-2|-\frac{3}{4} \ln |V+2| \\
& \Rightarrow-\frac{1}{4} \ln |v-2|-\frac{3}{4} \ln |v+2|=\ln |x|+C
\end{aligned}
$$

$$
\begin{aligned}
& \ln \left|\frac{1}{\left(2-\frac{y}{x}\right)^{1 / 4}(2+y / x)^{3 / 4}}\right|=\ln |x|+C \\
& \Rightarrow\left|\frac{1}{(2-y x)^{1 / 4}(2+y / x)^{3 / 4}}\right|=e^{\ln \mid x+C}=C \cdot|x| \\
& \Rightarrow\left|(2 x-y)^{1 / 4}(2 x+y)^{3 / 4}\right|=\left|\frac{x}{(2 x-y)^{1 / 4}(2 x+y)^{3 / 4}}\right|=c|x| \\
& \Rightarrow C=|2 x-y|^{1 / 4}|2 x+y|^{3 / 4} \\
& \Rightarrow|2 x-y||2 x+y|^{3}=C
\end{aligned}
$$

$$
\begin{aligned}
& \text { doin } x^{2}-0 \text { (n) } \frac{d y}{d x}=\frac{x^{2}+x y+y^{2}}{x^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{1+y / x+(y / x)^{2}}{1}=1+\frac{y}{x}+\left(\frac{y}{x}\right)^{2} \\
& \frac{d y}{d x}=x \frac{d v}{d x}+v \quad<F y=v x \quad \& v=\frac{y}{x} \\
& \Rightarrow \frac{d y}{d x}=x \frac{d v}{d x}+v=1+v+v^{2} \Rightarrow x \frac{d v}{d x}=1+v^{2} \\
& \Rightarrow \frac{d v}{d x}=\frac{1+v^{2}}{x} \Rightarrow \frac{d v}{1+v^{2}}=\frac{d y}{x} \Rightarrow \int \frac{d v}{1+v^{2}}=\int \frac{d x}{x} \\
& \Rightarrow \arctan y=o_{n} x+C \Rightarrow \arctan \frac{y}{x}=\ln x+C
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{4 y-3 x}{2 x-y}
\end{aligned}
$$

$$
\begin{align*}
& \frac{d y}{d x}=\frac{4 y / x-3}{2-y / x} \\
& (\sim,) \| \sim 3) \quad \frac{d y}{d x}=x \frac{d v}{d x}+v \quad \& \quad y=v x \quad \sigma \quad v=y / x \\
& \frac{d y}{d x}=x \frac{d v}{d x}+v=\frac{4 v-3}{2-v} \Rightarrow x \frac{d v}{d x}=\frac{4 v-3}{2-v}-v=\frac{4 v-3-v(2-v)}{2-v}=\frac{v^{2}+2 v-3}{2-v} \\
& \Rightarrow \frac{d v}{d x}=\frac{1}{x} \cdot \frac{v^{2}+2 v-3}{2-v} \Rightarrow \frac{2-v}{v^{2}+2 v-3} d v=\frac{d x}{x} \Rightarrow \int \frac{2 v}{v^{2}+2 v-3} d v=\int \frac{d x}{x} \\
& \text { purpe } \int \frac{2-v}{v^{2}+2 v-3} d v \text { firejk } \rightarrow x \text { alos) } \\
& \frac{2-v}{v^{2}+2 v-3}=\frac{2-v}{(v-1)(v+3)}=\frac{1}{4} \cdot \frac{1}{v-1}-\frac{5}{4} \cdot \frac{1}{v+3} \\
& \Rightarrow \int \frac{2-v}{v^{2}+2 v-3} d v=\frac{1}{4} \int \frac{1}{v-1} d v-\frac{5}{4} \int \frac{d y}{v+3}=\frac{1}{4} \ln |v-1|-\frac{5}{4} \ln |v+3| \\
& \frac{1}{4} \ln \left|\frac{y}{x}-1\right|-\frac{5}{4} \ln \left|\frac{y}{x}+3\right|= \tag{3}\\
& \left.d_{N},\right)^{\prime} \quad v=\frac{y}{x} \\
& =\ln \left|\frac{y}{x}-1\right|^{1 / 4}\left|\frac{y}{x}+3\right|^{-5 / 4}=\ln |x|+C
\end{align*}
$$

$$
\begin{aligned}
& \left.\Rightarrow\left|\frac{y}{x}-1\right|^{1 / 4} \cdot\left|\frac{y}{x}+3^{-5 / 4}=C\right| x \right\rvert\, \\
& \Rightarrow\left|\frac{y-x}{x}\right|^{1 / 4} \cdot\left|\frac{y+3 x}{x}\right|^{-5 / 4}=C|x| \\
& \Rightarrow\left|\frac{y-x}{x}\right|\left|\frac{y+3 x}{x}\right|^{-5}=\left|\frac{y-x}{x}\right|\left|\frac{x}{y+3 x}\right|^{5}=\left.C \cdot x\right|^{4} \\
& \Rightarrow|y-x|\left|x^{5}\right|=C|x|^{3}\left|y+3 x 1^{5} \Rightarrow\right| y-x|=C| y+\left.3 x\right|^{5}
\end{aligned}
$$

3k $V=-3$ pid $(<=0$ mod drant ind as is $y=x$

$$
\cdots x \rightarrow \infty \quad y=-3 x
$$

$$
\begin{align*}
& \frac{d y}{d x}=x \frac{d v}{d x}+v \quad-1 \quad y=v x \quad \text { ok } \quad v=\frac{4}{x} \\
& x \frac{d v}{d x}+v=\frac{d y}{d x}=\frac{1+\dot{3} d x}{1-y / x}=\frac{1+3 v}{1-v} \\
& \text {, for } x \frac{d v}{d x}=\frac{1+3 v}{1-v}-v=\frac{1+3 v-v(1-v)}{1-v}=\frac{v^{2}+2 v+1}{1-v}
\end{align*}
$$

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{1+3 y / x}{1-y / x}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d v}{d x}=\frac{(v+1)^{2}}{1-v} \cdot \frac{1}{x}
\end{aligned}
$$

$$
\int \frac{1-v}{(v+1)^{2}} d v=\int \frac{1-v-1+1}{(v+1)^{2}} d v=2 \int \frac{d v}{(v+1)^{2}}-\int \frac{v+1}{(v+1)^{2}} d v=-\frac{2}{v+1}-\ln |v+1|
$$

$\left.v=\frac{y}{x} \quad N^{\prime} 3\right) \cdot-\frac{2}{v+1}-\ln |v+1|=\ln |x|+c$

$$
-\frac{2 x}{y+x}-\ln \left|\frac{y+x}{x}\right|=\ln |x|+C \Rightarrow-\frac{2 x}{y+x}-\ln |y+x|=C
$$

C) CH (OND Mn M $\mathrm{F}=$

$$
\begin{aligned}
& \left.\frac{d y}{d x}=\frac{1-3(y / x)^{2}}{2 y / x} \quad f_{0}\right) x^{2}-0 p(n) \quad \frac{d y}{d x}=\frac{x^{2}-3 y^{2}}{2 x y} \\
& \text { (N, N } \left.N^{\prime 2}\right) \quad \frac{d y}{d x}=x \frac{d v}{d x}+v \quad \text { Sd } y=v x \text { in } \quad y, v=\frac{y}{x} \quad \text { NO) } \\
& x \frac{d v}{d x}+v=\frac{1-3 v^{2}}{2 v} \Rightarrow x \frac{d y}{d x}=\frac{1-3 v^{2}}{2 v}-v=\frac{1-3 v^{2}-2 v^{2}}{2 v}=\frac{1-9 v^{2}}{2 v} \\
& \Rightarrow \frac{d v}{d x}=\frac{1-5 v^{2}}{2 v} \cdot \frac{1}{x} \Rightarrow \frac{2 v}{1-5 v^{2}} d v=\frac{d x}{x} \Rightarrow \int \frac{2 v}{1-5 v^{2}} d v=\int \frac{d x}{x} \\
& \int \frac{2 v}{1-5 v^{2}}=\frac{1}{\sqrt{5}} \int \frac{d v}{1-\sqrt{5} v}-\frac{1}{\sqrt{5}} \int \frac{d v}{1+\sqrt{5} v}=-\frac{1}{5} \ln |\sqrt{5} v-1|-\frac{1}{5} \ln |\sqrt{5} v+1| \\
& \Rightarrow \ln \left|5 v^{2}-1\right|=-5 \ln |x|+C \Rightarrow\left|5 v^{2}-1\right|=C|x|^{-5} \\
& \Rightarrow\left|5 y^{2}-x^{2}\right|=c|x|^{3}
\end{aligned}
$$

$$
\leftrightarrow \quad 1=100 e^{-\frac{t}{100}} \quad \& \quad 2=Q(t)=200 e^{-\frac{t}{100}} \text { जdens ak }
$$

$$
t=-100 \ln \frac{1}{100} \approx 460 \mathrm{~min}<t \ln \frac{1}{100}=-\frac{t}{100} \quad<\sqrt{100}=e^{-\frac{t}{100}}
$$

$$
\begin{aligned}
& \frac{d Q}{d t}=2 \cdot \frac{1}{2}-2 \cdot \frac{Q}{100}=1-\frac{Q}{50} \quad Q(0)=0 \quad \text { (d) } \rho \cdot\left(\begin{array}{l}
\text { an }
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.\frac{d Q}{d t}=1-\frac{Q}{50}=\frac{50-Q}{50} \Rightarrow \frac{d Q}{Q-50}=-\frac{d t}{50} \Rightarrow \int \frac{d Q}{Q-50}=-\frac{1}{50}\right) d t \\
& \Rightarrow \ln |Q-50|=-\frac{t}{50}+C \Rightarrow Q-50=C e^{-t / 50} \Rightarrow Q=c e^{-t / 50}+50 \\
& Q(0)=c+50=0 \Rightarrow C=-50 \Rightarrow Q=50-50 e^{-t / 50} \\
& \Rightarrow Q(10)=50-50 e^{-10 / 50} \approx 9.06 \mathrm{~g}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{g}{m i n} \frac{d Q}{d t}=\underbrace{2 \cdot 0}_{p=2}-2 \cdot \frac{Q}{200}=-\frac{Q}{100} \quad Q(0)=1.200 \mathrm{~g}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (fnot poser } C=200 \text { por } Q(0)=C \\
& Q(t)=C e^{-\frac{6}{100}} \quad F \\
& \text {, } Q(t)=200 e^{-\frac{t}{100}}((1))
\end{aligned}
$$

 $e_{n|s|}=r t+C \& \frac{d s}{s}=\frac{d t}{r}<s(0)=s 0 \quad \frac{d s}{d t}=r s$
-e N()) $s=s o e^{r t} \& s(0)=c=s o \quad s=c e^{r t} \&$

$$
\& 2=e^{r t} \quad \sigma=2 s_{0}=s_{0} e^{r t} \quad s k \quad s(t)=2 s_{0}
$$

 We $t=\frac{\ln 2}{0.07} \approx 9.9$ be $r=7 \%$ ox (土)

 $8.66 \% \rightarrow 10 \%, 8=\frac{\ln 2}{8} \quad \& \quad 8=\frac{\ln 2}{r}$

$$
\begin{aligned}
& (d) \quad s(0)=0 \frac{d}{d t}=k+r s \\
& \frac{d s}{h+s}==\frac{1}{r} \cdot \frac{d s}{k / r+b}=d t \Rightarrow \frac{1}{r} \ln \left|s+\frac{k}{r}\right|=t \Rightarrow \ln \left|s+\frac{k}{r}\right|=r t \\
& \Rightarrow s+\frac{k}{r}=c e^{r t} \Rightarrow s=c=c e^{r t}-\frac{k}{r} \quad s(0)=c-\frac{k}{r}=0 \Rightarrow c=\frac{k}{r} \\
& \Rightarrow s=\frac{k}{r}\left(e^{r t}-1\right)
\end{aligned}
$$

 $10^{6}=\frac{2000}{r}\left(e^{r .40}-1\right) \Rightarrow r \approx 0.098=9.8 \%$

$$
S(0)=c+10 k=8000 \Rightarrow C=8000-10 k \Rightarrow S=(8000-10 k) e^{0.1 t}+10 k
$$

$$
0=\left(8000-10 k ; e^{0.1 .3}+10 k \Rightarrow \quad k 23086.64\right.
$$

$$
\begin{equation*}
\frac{d s}{d t}=r s-k \tag{t}
\end{equation*}
$$

—ON OUIIMN

人 K 3 N$)(\mathbb{C}$

$$
s(0)=c+\frac{k}{r}=\text { So } \quad s(t)=c e^{r t}+\frac{k}{r} \quad n^{2} p_{1} \quad n / Q N \text { pdr }
$$

$$
s(t)=\left(s_{0}-\frac{k}{r}\right) e^{r t}+\frac{k}{r} \quad \& c=s_{0}-\frac{k}{r} \quad \&
$$

$$
\left.s=\frac{k}{r} \quad r=r-k=0 \quad \operatorname{nin} \quad \frac{d s}{d t}=0 \quad-C, 37\right) \quad \text {, inj }
$$

$$
k_{0}=s_{0} r<s_{0}-\frac{k}{6}=0 \ll e^{r t} \neq 0 \text { fac }
$$

$$
\begin{equation*}
\left.s(t)=0 \quad \text { 'クN } R 2 j_{k}, 3\right) \prime s(t) \quad s k \quad k>k_{0}-C N^{\prime \prime \prime} \tag{c}
\end{equation*}
$$

$t A($ 3RN $) . e^{r t}=-\frac{k_{r}}{S_{0}-k / r}=-\frac{k}{h_{0}-k} \nsim\left(S_{0}-\frac{k}{r}\right) e^{r t}+\frac{k}{r}=0$

$$
\begin{equation*}
\left.t=\frac{1}{r} \ln \frac{k}{k-k_{0}} p f \quad r t=\ln \frac{k}{k-k_{0}}(>0) \quad \operatorname{doj}\right) l \tag{3}
\end{equation*}
$$

$t=\frac{1}{0.08} \ln \frac{2 k_{c}}{2 k_{0}-k_{0}}=\frac{\ln 2}{0.08} \approx 8.60$ sk $k=2 k_{0}: r=840 \quad \mathrm{oC}$

$r>0-0$ inkw $\quad \frac{k}{r}\left(1-e^{r t}\right)+e^{r t} s_{0}=\left(s_{0}-\frac{k}{r}\right) e^{r t}+\frac{k}{r}=s(t)>0 \quad$ ie

$$
\begin{equation*}
k<\frac{r s_{0} e^{r t}}{e^{r t}-1}<k\left(1-e^{r t}\right)>-r s_{0} e^{r t}<k\left(1-e^{r t}\right)+r e^{r t} s_{0}>0<F \tag{1}
\end{equation*}
$$

ak $k 3_{N}, r=8 \%-!\pi \rho 20$ pens $k=12,000-e n \prime 1$

$$
\begin{aligned}
& \frac{d s}{d t}=0.15-k \quad S(0)=8000 \quad \text { sk } t \quad t \text { INSNNer } \\
& \Rightarrow \frac{d s}{0.1 s-k}=d t \Rightarrow 10 \frac{d s}{s-10 k}=d t \Rightarrow 10 \ln _{n}|s-10 k|=t+C_{1} \\
& \Rightarrow s-10 k=c e^{0.1 t} \Rightarrow s=c e^{0.1 t}+10 k
\end{aligned}
$$

So >119715.52

$$
\left.\frac{d p}{d t}=\ln 2(p-140,000 / \ln 2) \quad \Rightarrow \quad \ln \right\rvert\, p-140000 / \ln 21=t \ln 2+C
$$

$$
\Rightarrow P-140,000 \ln 2=c e^{t \ln 2} \Rightarrow p=c e^{t \ln 2}+140,000 / \ln 2
$$

$$
P(0)=c+140,00 q^{10 n 2}=200,000 \Rightarrow c=200,000-160,000 / \ln 2
$$

$$
\Rightarrow p=(200,000-140,000 \ln 2) e^{t \ln 2}+149,000 \ln 2
$$

$$
\Rightarrow P \approx-1977.3 e^{t \ln 2}+201977.3
$$

$$
\begin{equation*}
y(1)=2 \quad(t-3) y^{\prime}+\ln t \cdot y=2 t \tag{10}
\end{equation*}
$$

子゙刀 mno 0 1 ヘK

$$
\begin{align*}
& y_{1}(2)=1 \quad t(t-4) y^{\prime \prime}+(t-2) y^{\prime}+y=0 \tag{6}\\
& y^{\prime \prime}+\frac{t-2}{t(t-4)} y^{\prime}+\frac{1}{t(t-4)} y=0 \quad \sim 63000 \text { ग) } 3(\text { N(NUNT AX ind) }
\end{align*}
$$

$$
\begin{aligned}
& \left.P(t)=P_{0} e^{r t} \text { sk } C=0 / 0\right)=\sigma_{0} \quad \text { sk } P\left(0=D_{0} \quad n 11 \quad P(t)=c e^{r t} \quad p d r\right. \\
& r=\ln 2<e^{r}=2<P_{0} e^{r}=P 11=200 \quad-C \| \Omega
\end{aligned}
$$

$$
\begin{equation*}
y(n)=0 \quad y^{\prime}+\tan t y=\sin t \tag{c}
\end{equation*}
$$

 נnjk $\frac{\sin t}{\cos t}=\operatorname{tant}$ LaNo3novin

 $y \neq-\frac{2}{5} t \quad$ 小ib $\left.\quad 2 t+5 y \neq 0 \quad-0,3\right), \lambda^{\prime} 0 k, \quad y^{\prime}=\frac{t-y}{2 t+5 y}$

$$
\begin{equation*}
\frac{\partial f}{\partial y}=\frac{-1(2 t+5 y)-5(t y)}{(2 t+5 y)^{2}} \tag{C}
\end{equation*}
$$

$\left.\therefore f, 1,1 S_{c}\right)$

$$
\Rightarrow y^{2}+4 t^{2}+C=0 \quad y(0)=y_{0} \Rightarrow y_{0}^{2}+C=0 \Rightarrow C=-y_{0}^{2}
$$

$$
\Rightarrow y^{2}+4 t^{2}-y_{0}^{2}=0 \Rightarrow y= \pm \sqrt{y_{0}^{2}-4 t^{2}}
$$

$\left|y_{0}\right|>2|t|$ an $D \quad y_{0}{ }^{2}-4 t^{2}>0$ ok, ank

$$
\begin{align*}
& y(-3)=1 \tag{3}\\
& \left(4-t^{2}\right) y^{\prime}+2 t y=3 i^{2}
\end{align*}
$$

$$
\begin{aligned}
& y(0)=y_{0} \\
& y^{\prime}=2 t y^{2} \\
& \frac{d y}{d t}=2 t y^{2} \Rightarrow \frac{d y}{y^{2}}=2 t d t \Rightarrow-\frac{1}{y}=t^{2}+C \Rightarrow y=-\frac{1}{t^{2}+C} \\
& C=-\frac{1}{y}-t^{2}=-\frac{1}{y_{0}}-0=-\frac{1}{y_{0}} \text { jid } \quad y \neq 0 \quad \text { ob, P>N } \\
& \text { 站 リッอ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { dy } \quad y(0)=y_{0}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d y}{d t}=-y^{3} \Rightarrow \frac{d y}{y^{3}}=-d t \Rightarrow-\frac{1}{2 y^{2}}=-t+C \Rightarrow \frac{1}{2 y^{2}}=t+C \\
& \Rightarrow y^{2} \cdot \frac{1}{2 t+C} \Rightarrow y= \pm \sqrt{\frac{1}{2 t+C}}
\end{aligned}
$$

$$
y \equiv 0 \quad 3 k \quad y_{0}=0 \quad \text { ok }\left(-\frac{1}{2 y_{0}^{2}}, \infty\right) \quad-2 \operatorname{anc}, \sin \quad 0
$$

． \mathbb{R} ba arlve inne

$$
\begin{aligned}
& y(0)=y_{0} \quad y^{\prime}=\frac{t^{2}}{y\left(1+t^{3}\right)} \\
& \frac{d y}{d t}=\frac{t^{2}}{y\left(1+t^{3}\right)} \Rightarrow y d y=\frac{t^{2}}{1+t^{3}} d t=\frac{1}{3} \cdot \frac{3 t^{2}}{1+t^{3}} d t \\
& \Rightarrow \int y d y=\frac{1}{3} \int \frac{3 t^{2}}{1+t^{3}} d t+C \Rightarrow \frac{1}{2} y^{2}=\frac{1}{3} \ln \left|1+t^{3}\right|+C A(\cap n) \\
& \Rightarrow y^{2}=\frac{2}{3} \ln \left|1+t^{3}\right|+C=\ln \left|1+t^{3}\right|^{2 / 3}+C \\
& \Rightarrow y= \pm \sqrt{\ln \mid 1+t^{3 / 2}+C} \quad y(0)= \pm \sqrt{C} \quad=y_{0} \Rightarrow y_{0}^{2}=C \\
& \Rightarrow y= \pm \sqrt{\ln \left|1+t^{3}\right|^{2 / 3}+y_{0}^{2}} \quad
\end{aligned}
$$

 $0-0$ o．jirs ingd $t \neq-1-c$ indor $\left|1+t^{3}\right|>e^{-3 y_{0}^{2} / 2}$

$$
\alpha>t>\sqrt[3]{e^{-3 y \delta^{2} / 2-1}}
$$

-11)1090

$$
\begin{aligned}
& y_{2}(t)=-t^{2} / 4 \quad y_{1} \quad y_{1}(t)=1-t
\end{aligned}
$$

$$
\begin{aligned}
& y^{\prime}=\frac{-t+\left(t^{2}+4 y\right)^{1 / 2}}{2} \quad y(2)=-1 \quad \text { onn)n andN }(\text { an } \\
& y_{1}(2)=1-2=-1 \\
& y_{2}(2)=-2 / 4=-1 \\
& y_{1}^{\prime}=-1 \quad \frac{-t+\left(t^{2}+4-4 t\right)^{\prime 2}}{2}=\frac{-t+t-2}{2}=\frac{-2}{2}=-1 \\
& y_{2}^{\prime}=-\frac{1}{2} t \\
& \frac{-t+\left(t^{2}-\frac{4 t^{2}}{2}\right)^{1 / 2}}{2} ;-\frac{1}{2} t
\end{aligned}
$$

Ning skjnл

$y \leq-\frac{t^{2}}{4} \quad$,NID $4 y<-t^{2} \quad$ NND,$t^{2}+4 y \leq 0 \quad$ PC

$$
\begin{aligned}
& t^{2}+4 y=t^{2}+4\left(t+4 c^{2} \geq 2 N 1\right) \quad t \geq-2 c, k, n+1, N\left(2 c^{2}-4 \cdot c \cdot 2 c+4 c^{2}=0\right.
\end{aligned}
$$

$$
\frac{-t+\left(t^{2}+21 c t+4 c^{2}\right)^{1 / 2}}{2}=\frac{-t+t+2 c}{2}=c=y^{\prime}
$$

$y(2)=-1 \cdot 2+(-1)^{2}=-1$ n(n)ni k, д ormip^N $c=-1$ ok

$$
-t^{2} / 4=c t+c^{2} \quad c \quad c \text { nine nj } y^{2} \text { mono }
$$

$$
d W p C
$$

$y=c \phi(t) \quad$ sk $y^{\prime}+p(t) y=0 \quad<\quad \ln \quad y=\phi(t)$ ske nev

$$
y^{\prime}+p(t) y=c \phi^{\prime}(t)+c p(t) \phi(t)=c\left(\phi^{\prime}(t)+p(t) \phi(t)\right)=c \cdot 0=0
$$

$$
\begin{aligned}
& y^{\prime}+p(t) y=g(t) \quad \text { n (viens } \quad \text { (e, } y=\frac{\int \mu(s) g(s) d s+C}{\mu(t)}
\end{aligned}
$$

$$
\begin{aligned}
& y_{2}=\frac{\int \mu(s) g(s) d s}{\mu(t)}
\end{aligned}
$$

(p) vonil $y_{2}=0 \quad g=0$ an a $y^{\prime}+p(t) y=0$ a jno y_{1} (S)
.y_{1} or

- Inno dopna

$$
\left.\mu(t)=e^{\int p(t) d t} \quad \operatorname{Ln}\right) \quad y=\frac{\int \mu(s) q(s) d s+C}{\mu(t)} \quad \text { गHNDQ } \quad \text { (ic) , on } \int
$$

$$
\begin{aligned}
& \frac{d v}{d t}=(1-n) y^{-n} \cdot \frac{d y}{d t} \quad \text { gr } \quad v=y^{1-n} \quad \text { ox } \quad y^{n} \quad \ln ^{\prime \prime} \delta \text { mo } \\
& \Rightarrow \frac{d y}{d t}=\frac{y^{n}}{1-n} \cdot \frac{d v}{d t} \Rightarrow y^{\prime}+p(t) y=\frac{y^{n}}{1-n} \cdot \frac{d v}{d t}+p(t) y=q(t) y^{n} \\
& \Rightarrow \frac{1}{1-n} \cdot \frac{d v}{d t} \neq p(t) \cdot y^{1-n}=q_{0}(t)=D \frac{1}{1-n} \frac{d v}{d t}+p(t) v=q(t)
\end{aligned}
$$

$$
t>0 \quad t^{2} y^{\prime}+2 t y-y^{3}=0 \quad \text { anden } n(\cdots n)
$$

$$
\begin{aligned}
& \Rightarrow \frac{d y}{d t}=\frac{1}{2 y} \frac{d v}{d t} \Rightarrow \frac{d y}{d t}+\frac{2}{t} y=-\frac{1}{2 y} \cdot \frac{d v}{d t}+\frac{2}{t} y=\frac{1}{t^{2}} \cdot y^{3} \\
& \Rightarrow-\frac{1}{2} \cdot \frac{d v}{d t}+\frac{2}{t} v=\frac{1}{t^{2}} \Rightarrow \frac{d v}{d t}-\frac{2}{t} v=-\frac{2}{t^{2}}
\end{aligned}
$$

$$
(\mu v)^{\prime}=\mu v+v^{\prime} \mu=\mu v^{\prime}-\frac{b}{t} \mu V
$$

$\ln |\mu|=-4 \ln |t|<F \quad \frac{d \mu}{\mu}=-\frac{1}{t} d t<F \quad \mu^{\prime}=-\frac{4}{t} \mu \quad-C$ p, $\mu \quad$ UROM por

$$
\begin{aligned}
(\mu v)^{\prime} & =-\mu \frac{2}{t^{2}} \Rightarrow \mu v=-2 \int \mu / t^{2} d t \quad \Delta t \quad \mu(t)=t^{-4} \\
\Rightarrow & \left.\Rightarrow-\frac{2}{\mu} \int \frac{\mu}{t^{2}} d t=-\frac{2}{1^{-4}} \int t^{-4} \cdot t^{-2} d t=+2 t^{4} \cdot \frac{1}{5} t^{-5} \pm C\right]= \\
& =\frac{2}{5} \frac{1}{t}+C t^{4} \Rightarrow \quad y= \pm \sqrt{\frac{5 t}{2+5 C t^{5}}}
\end{aligned}
$$

$0<k \quad 0<r \quad y^{\prime}=r y-k y^{2} \quad$, $\quad \| \operatorname{lon}$ in ind

$$
\begin{aligned}
& \Rightarrow y^{\prime}=\frac{d y}{d t}=r y-k y^{2}=-y^{2} \frac{d v}{d t} \Rightarrow \frac{r}{y}-k=-\frac{d v}{d t}=r v-k \\
& \text { nni } \frac{d y}{d t}+r v=k \text { axileno al uner poj se } \\
& \frac{d v}{d t}=k-r v=-r\left(v-\frac{k}{r}\right) \Rightarrow \frac{d v}{v-k / r}=-r d t \Rightarrow \ln \left|v-\frac{k}{r}\right|=-r t+C \\
& \Rightarrow \quad v-\frac{k}{r}=c e^{-r t} \quad D \quad v=c e^{-r t}+\frac{k}{r} \\
& \Rightarrow y=1 / v=\frac{r}{r c e^{-r t}+k}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{(2 x+3)}{M}+\frac{(2 y-2)}{N} y^{\prime}=0 \\
& \frac{\partial \mu}{\partial y}=0 \quad \frac{\partial N}{\partial x}=0
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M=2 x+3 \Rightarrow \phi(x, y)=\int(2 x+3) d x+h(y) \\
& \Rightarrow \phi(x, y)=x^{2}+3 x+h(y) \\
& \frac{\partial \emptyset}{\partial y}=N \quad \Rightarrow \quad h^{\prime}(y)=N=2 y-2 \Rightarrow h(y)=y^{2}-2 y \\
& \Rightarrow \quad \phi(x, y)=x^{2}+3 x+y^{2}-2 y
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial \mu}{\partial y}=2 x \quad \frac{\partial x}{\partial x}=2 x^{\frac{\left(3 x^{2}-2 x y+2\right)}{n}+} d x+\frac{\left(6 y^{2}-x^{2}+3\right) d y}{1}=0
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=m \quad \frac{\partial \phi}{\partial y}=1 \\
& \frac{\partial \theta}{\partial x}=M=3 x^{2}-2 x y+2 \Rightarrow \phi(x, y)=\int\left(3 x^{2}-2 x y+2\right) d x+h(y) \\
& \Rightarrow \phi(x, y)=x^{3}-y x^{2}+2 x+h(y) \\
& \frac{\partial \phi}{\partial y}=11 \Rightarrow-x^{2}+h^{\prime}(y)=6 y^{2}-x^{2}+3 \Rightarrow h^{\prime}(y)=6 y^{2}+3 \\
& \Rightarrow h(y)=2 y^{3}+3 y \Rightarrow \phi(x, y)=x^{3}-y x^{2}+2 x+2 y^{3}+3 y \\
& x^{3}-y x^{2}+2 x+2 y^{3}+3 y=C
\end{aligned}
$$

$$
\frac{\partial \phi}{\partial x}=\mu=a x+b y \Rightarrow \varnothing(x, y)=\int(a x+b y) d x+h(y)
$$

$$
\Rightarrow \phi(x, y)=\frac{a}{2} x^{2}+b x y+h(y)
$$

$$
\frac{\partial 0}{\partial y}=N \Rightarrow b x+h^{\prime}(y)=b x+c y \Rightarrow h^{\prime}(y)=c y \Rightarrow h(y)=\frac{c}{2} y^{2}
$$

$$
\Rightarrow \varnothing(x, y)=\frac{a}{2} x^{2}+b x y+\frac{c}{2} y^{2}
$$

$$
a x^{2}+2 b x y+c y^{2}=\alpha \quad \text { an } \quad \text { ade Ni } 110 \ll
$$

$$
\begin{equation*}
\frac{\left(e^{x} \sin y-2 y \sin x\right)}{\sin x} \frac{\partial N}{\partial x}=e^{x} \cos y-2 \sin x \tag{3}
\end{equation*}
$$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\mu=e^{x} \sin y-2 y \sin x \Rightarrow \phi(x, y)=\int\left(e^{x} \sin y-2 y \sin x\right) d x+h(y) \\
& \Rightarrow \phi(x, y)=e^{x} \sin y+2 y \cos x+h(y) \\
& \frac{\partial \phi}{\partial y}=N \Rightarrow e^{x} \cdot \cos y+2 \cos x+h^{\prime}(y)=e^{x} \cos y+2 \cos x \\
& \Rightarrow h^{\prime}(y)=0 \Rightarrow h=0 \Rightarrow \phi(x, y)=e^{x} \sin y+2 y \cos x \\
& e^{x} \sin y+2 y \cos x=0 \quad\left(\cos ^{\prime}\right) \ln \|Q N \lambda(e)\| N 0<k \\
& \frac{\left(e^{x} \sin y+3 y\right)}{M} \frac{\partial N}{\partial x}=-3+\left(3 x-e^{x} \sin y\right) d y=0 \tag{1}\\
& \frac{N}{\partial y}=e^{x} \cos y+3 \quad \sin y
\end{align*}
$$

! APIPN TACN lo (is F

$$
\begin{align*}
& \frac{\left(2 x y^{2}+2 y\right)}{M}+\frac{\left(2 x^{2} y+2 x\right)}{N} y^{\prime}=0 \tag{C}\\
& \frac{\partial M}{\partial y}=4 x y+2 \quad \frac{\partial N}{\partial x}=4 x y+2
\end{align*}
$$

$$
\begin{aligned}
& \begin{array}{l}
\frac{\partial x}{}=\mu \quad \frac{\partial y}{\partial y}=N \\
\frac{\partial \phi}{\partial x}=\mu=2 x y^{2}+2 y \Rightarrow \phi(x, y)=\int\left(2 x y^{2}+2 y\right) d x+h(y)
\end{array} \\
& \Rightarrow \phi(x, y)=x^{2} y^{2}+2 y x+h(y) \\
& \frac{\partial Q}{\partial y}=N \Rightarrow 2 y x^{2}+2 x+h^{\prime}(y)=2 x^{2} y+2 x \Rightarrow h^{\prime}(y)=0 \Rightarrow h=0 \\
& \Rightarrow \quad \varnothing(x, y)=x^{2} y^{2}+2 x y
\end{aligned}
$$

$$
\begin{aligned}
& \frac{(a x+b y)}{M} d x+\frac{(b x+c y)}{N} d y=0 \quad<\quad \frac{d y}{d x}=-\frac{a x+b y}{b x+c y} \\
& \frac{\partial M}{\partial y}=b \quad \frac{\partial N}{\partial x}=b
\end{aligned}
$$

$$
\begin{equation*}
\frac{\partial M}{\partial y}=\frac{\left(\frac{y}{x}+6 x\right)}{\frac{1}{x}} \frac{d x}{M} \frac{(\ln x-2) d y}{\partial x}=\frac{1}{x} N \quad x>0 \tag{3}
\end{equation*}
$$

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M=\frac{y}{x}+6 x \Rightarrow \phi(x y)=\int\left(\frac{y}{x}+6 x\right) d x+h(y) \\
& \Rightarrow \phi(x, y)=y \ln x+3 x^{2}+h(y) \\
& \frac{\partial \phi}{\partial y}=N \Rightarrow \ln x+h^{\prime}(y)=\ln x-2 \Rightarrow h^{\prime}(y)=-2 \Rightarrow h=-2 y \\
& \Rightarrow \phi(x, y)=y \ln x+3 x^{2}-2 y
\end{aligned}
$$

$y \ln x+3 x^{2}-2 y=c \quad$ an $\ln x \operatorname{los} \sin \quad 6$, ins $<F$

$$
\frac{\partial M}{\partial y=-1} \quad \frac{\partial N}{\partial x}=-1 \quad(2 x-y) d x+\frac{(2 y-x)}{N} d y=0 \quad y(1)=3
$$

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=\mu=2 x-y \Rightarrow \phi(x, y)=\int(2 x-y) d x+h(y)=x^{2}-y x+h(y) \\
& \frac{\partial \partial}{\partial y}=N \Rightarrow-x+h(y)=2 y-x \Rightarrow h(y)=2 y \Rightarrow h(y)=y^{2}
\end{aligned}
$$

$$
\frac{\partial D}{\partial x}=\mu=x y^{2}+3 x^{2} y \Rightarrow \phi(x, y)=\int\left(x y^{2}+3 x^{2} y\right) d x+h(y)
$$

$$
\Rightarrow \phi(x, y)=\frac{1}{2} x^{2} y^{2}+x^{3} y+h(y)
$$

$$
\frac{\partial x}{\partial y}=N \Rightarrow D x^{2} y+x^{3}+h^{\prime}(y)=x^{3}+x^{2} y \Rightarrow h^{\prime}(y)=0 \Rightarrow h(y)=0
$$

$$
\begin{aligned}
& y^{2}-x y+\left(x^{2}-7\right)=0 \Rightarrow y=\frac{x \pm \sqrt{x^{2}-4 x^{2}+28}}{2} \quad ; y \text { A(} 2 \text { 21N) } \\
& y=\frac{x+\sqrt{28-3 x^{2}}}{2} \quad-C \\
& 28>3 x^{2}<528-3 x^{2}>0 \quad \text { (x) } 73>1 \text { in jnde } \\
& \left(-\sqrt{\frac{28}{3}}, \sqrt{\frac{28}{3}}\right)-\lambda \quad \text { о"р linol }<F \quad \frac{28}{3}>x^{2}<7
\end{aligned}
$$

$$
\phi(x, y)=x^{2} y^{2}+2 x^{3} y=c
$$

$$
\mu(y)=e^{\int Q(y) d y} \quad \text { SQ(y)dy } \quad, B \rightarrow()^{\prime} K \text { mic é } \quad M+N y^{\prime}=0
$$

$$
\frac{\partial A}{\partial y}=e^{\int Q(y) d y} \cdot Q(y) M(x, y)+e^{\int Q(y) d y} M_{y}(x, y)
$$

: B ade A a 15 c

$$
\begin{gathered}
\frac{\partial B}{\partial X}=e^{\int Q(y) d y} N_{x}(x, y)=e^{\downarrow Q(y) d y} Q(y) M(x, y)+e^{\int Q(y) d y} M_{y}(x, y) \\
\frac{N_{x}-M_{y}}{M}=Q
\end{gathered}
$$

$$
\Rightarrow N_{X}=M Q+M_{Y}
$$

$$
\begin{aligned}
& (\frac{\left(e^{3 x} 3 x^{2} y+2 e^{3 x} x y+e^{3 x} y^{3}\right)}{\partial \varnothing} d x+\underbrace{\partial \theta}_{M}=M=\frac{\left(e^{3 x} x^{2}+e^{3 x} y^{2}\right)}{\partial x} d y=0
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial \emptyset}{\partial x}=\mu=3 e^{3 x} x^{2} y+2 e^{3 x} x y+e^{3 x} y^{3} \\
& \Rightarrow \phi(x, y)=\int\left(3 e^{3 x} x^{2} y+2 e^{3 x} x y+e^{3 x} y^{3}\right) d x+h(y) \\
& \Rightarrow \varnothing(x, y)=\frac{\left(3 x^{2}+y^{2}\right) e^{3 x} y}{3}+h(y) \\
& \frac{\partial \phi}{\partial y}=N \Rightarrow\left(y^{2}+x^{2}\right) e^{3 x}+h^{\prime}(y)=e^{3 x}\left(x^{2}+y^{2}\right) \Rightarrow h^{\prime}(y)=0 \Rightarrow h(y)=0 \\
& \left(3 x^{2}+y^{2}\right) e^{3 x} y=c
\end{aligned}
$$

$$
\begin{aligned}
& \left(3 x^{2} y+2 x y+y^{3}\right) d x+\left(x^{2}+y^{2}\right) d y=0 \\
& \frac{\partial M}{\partial y}=3 x^{2}+2 x+3 y^{2} \quad \frac{\partial N}{\partial x}=2 x
\end{aligned}
$$

