1 1'ca (a/6) 1.
(ב) רנדא A קבוצה במי"מ (ג, X) הנכיחו כי התנאים הנאים שקוליםי.
23/2P XIA (E)
(a) ते प्राध्य अति है कि तार द A [दर्भिय और प्रिंह टें A वर्शर)
(צ) (צ) הוכיחו כי שומו ל וpets א קבוצות פתוחות בהו קבוצה פתוחות.
ע (ב) דולמו כי חיתב סיפי של קבוצת פתוחנת זבן קבוצה פתוחה.
١٠٥١م مربه عراماه، عا طوافيد فهامالا جودا طواود فعاصد
מצי להמות ני חיתוך כלפנו של קהוצית סאכות (א) מצי להמות ני חיתוך כלפנו של קהוצית סאכות
למו קבוצה סיונה, וכ' א'חוג סופי א קבוצות פאורות לניו קבוצה סאוני.
ראם איתונ אינסופי א פרוצות סטונות כתו פהוצה סטונה?
$\widehat{A} = \{ x \in \widehat{X} : A \mid e \mid x \in \widehat{X} : A \mid x \in \widehat{X} : A \mid e \mid x \in \widehat{X} : A \mid x \in \widehat{X} : A \mid e \mid x \in \widehat{X} :$
15 1627, 23010 $g: X \to Y$! N"N (X,d) ! (Y,L) 1'2" (5)
יל תנאים הבאים שקולים:
$(9,1) \Rightarrow f(x_n) \rightarrow f(x) 3k (X,d) b x_n \rightarrow x pk (k)$ $\xrightarrow{n \rightarrow \infty} \qquad \qquad (6,5) c (6,5) p (6,5)$
$f(\overline{A}) \subseteq \overline{f(A)} A \subseteq \overline{X} Lf(\underline{a})$
\overline{X} \Rightarrow $niteo$ $f^{-1}(F)$, $niteo$ $F\subseteq Y$ (a) (b)
\$ 2 Johns f-1(G) 3) onus G⊆Y (3)
פונקצה שמק"מת תלאים שלה לקכאת הצפה.
אייא עביר אבצ אר אבע ארצע ארא (X,d) אייא אייא עביר אר אבער ארצע אייא אייא אייא אייא אייא אייא אייא אי
The print $B(x,r)$ result of the $x \in X$ ning abuse
: $A \rightarrow \mathbb{R}$ in . $A \rightarrow \mathbb{R}$ in . AlA use per A use uniforms
: n'appion $1 = \overline{X} \rightarrow \mathbb{R}$ isn. $X \mid A$ isk pt A isk n'sk the standard $A \mid A \mid A$ is $A \mid A $
$X \notin \partial A$ $A'' \neq A$ $A \notin X$.
(A 31-AD. 10 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2
יהי (ג) אכחה מעל קומפקף ותהי $\int_{n=1}^{\infty}$ סבת פעקציות כצפות בל (ל)
2> fn(x)≥fn+(x) p"psN xEX ble 2> fn: X → IR
NUBLICIO $f \rightarrow f \in \mathcal{F}$ $f: \overline{X} \rightarrow R$ in (UNIGUIN)
אינה העל באייה האנאה ל אינה בהככח כצבה.
1/

$e''ND$ $k'D$ $fn \rightarrow f$ fn f	
אם סצר אוטטולת של פועצות אוטטולת של פועצות אוטטולת של פועצות אוטטולת של אין	
روزور لاردلوس لوادر الهالودر وفود کے عق	
\mathcal{L}_{i-1} \mathcal{L}_{i} \mathcal{L}_{i} \mathcal{L}_{i} \mathcal{L}_{i} \mathcal{L}_{i}	
$\lim_{n\to\infty} \int_a^b f(x) dx = \int_a^b f(x) dx$	
	1 1
אכתב מטל (שנא) לפנא ספרבילי אם יש פבונצר. בת אל"ה	/
אסנפת ב X (באנאר בא $X \in X$ אואר בא אפר א אבע א סנבת ארבע איינים א סנבת איינים איי	
ובן באת א א) הוצימו שמכתה מסל תומפקט היע ספרביר.	
(פ) הוצחו ל פועצה כצבה (בין מתמשם מטנם) מעבירי קבוצה	
प्रकर्भेट है प्रवर्धित वी Medall.	YIII
	1 1 1
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ענת במים מכטין זב

: In'sin, 13010 F: X > Y KND (1)

& by mark-o {f-1(A): AEM} 3K, Y by mark-o m A (K)

y by mock-o {ACY: f-1(A)∈m} 3E, X by mock-o M DE (2)

 $f: \widehat{\mathbb{X}} \to \mathbb{R}$ in solar supplies $f: \widehat{\mathbb{X}} \to \mathbb{R}$! $f: \widehat$

m le sizele-6 DA K'S $\{f^{-1}(B): B \in A\}$ forks (E)

B 16 ATTHEO NO L'S &BEB: f'(B) EM) POIRS (A)

INN''PNO À RE MELLE DE L'ADREN SC 9(8) EOD (3)

S lake le 25 lato 3 mik kia AC, AES (J. (1)

ANBES: ABES W (2)

(4) مدیم M یامحدد X اورام و المانو ادیمانو مورال من

17,2/k-6 m (k)

(ב) אן טאנה לאותצע בני עניה סאינע (כנראה לרים)

של סשונה לשיחונ בן מע"ה עולה עולה

יוכצי אריאנק בן אניה יוכצי אריאנק בן אניה יוכצי

(R' N N'SEINI) N'ED MOND) ? QXQ /y Sold TO MAKET IN (5)

יהי (m, 8) אכתה מצב R \S בונקבה , הג'מו כי התלאים הבאים (6)

313N f (K)

(4) (B) 'F NEED TO PERSON GICK EICH VI JE (B)

f-"((-∞,r))∈ m p"p r∈Q Id (c)

 $\{\frac{\rho_n}{q_n}\}_{n=1}^{\infty} = \mathcal{Q} \cap \{0,1\} \text{ inn} \quad f_n(x,\alpha) = \begin{cases} \frac{1}{(x-\alpha)^2} & x \neq \alpha \\ \infty & x = \alpha \end{cases}$

 $f(x) = \sum_{n=1}^{q-1} 2^{-q-1} f_n(x, \frac{\rho_n}{q_n}) \quad \text{for } \quad f(x) = \sum_{n=1}^{q-1} 2^{-q-1} f_n(x, \frac{\rho_n}{q_n}) \quad \text{for } \quad f(x) = \sum_{n=1}^{q-1} 2^{-q-1} f_n(x, \frac{\rho_n}{q_n}) \quad \text{for } \quad f(x) = \sum_{n=1}^{q-1} 2^{-q-1} f_n(x, \frac{\rho_n}{q_n}) \quad \text{for } \quad f(x) = \sum_{n=1}^{q-1} 2^{-q-1} f_n(x, \frac{\rho_n}{q_n}) \quad \text{for } \quad f(x) = \sum_{n=1}^{q-1} 2^{-q-1} f_n(x, \frac{\rho_n}{q_n}) \quad \text{for } \quad f(x) = \sum_{n=1}^{q-1} 2^{-q-1} f_n(x, \frac{\rho_n}{q_n}) \quad \text{for } \quad f(x) = \sum_{n=1}^{q-1} 2^{-q-1} f_n(x, \frac{\rho_n}{q_n}) \quad \text{for } \quad f(x) = \sum_{n=1}^{q-1} 2^{-q-1} f_n(x, \frac{\rho_n}{q_n}) \quad \text{for } \quad f(x) = \sum_{n=1}^{q-1} 2^{-q-1} f_n(x, \frac{\rho_n}{q_n}) \quad \text{for } \quad f(x) = \sum_{n=1}^{q-1} 2^{-q-1} f_n(x, \frac{\rho_n}{q_n}) \quad \text{for } \quad f(x) = \sum_{n=1}^{q-1} 2^{-q-1} f_n(x, \frac{\rho_n}{q_n}) \quad \text{for } \quad f(x) = \sum_{n=1}^{q-1} 2^{-q-1} f_n(x, \frac{\rho_n}{q_n}) \quad \text{for } \quad f(x) = \sum_{n=1}^{q-1} 2^{-q-1} f_n(x, \frac{\rho_n}{q_n}) \quad \text{for } \quad f(x) = \sum_{n=1}^{q-1} 2^{-q-1} f_n(x, \frac{\rho_n}{q_n}) \quad \text{for } \quad f(x) = \sum_{n=1}^{q-1} 2^{-q-1} f_n(x, \frac{\rho_n}{q_n}) \quad \text{for } \quad f(x) = \sum_{n=1}^{q-1} 2^{-q-1} f_n(x, \frac{\rho_n}{q_n}) \quad \text{for } \quad f(x) = \sum_{n=1}^{q-1} 2^{-q-1} f_n(x, \frac{\rho_n}{q_n}) \quad \text{for } \quad f(x) = \sum_{n=1}^{q-1} 2^{-q-1} f_n(x, \frac{\rho_n}{q_n}) \quad \text{for } \quad f(x) = \sum_{n=1}^{q-1} 2^{-q-1} f_n(x, \frac{\rho_n}{q_n}) \quad \text{for } \quad f(x) = \sum_{n=1}^{q-1} 2^{-q-1} f_n(x, \frac{\rho_n}{q_n}) \quad \text{for } \quad f(x) = \sum_{n=1}^{q-1} 2^{-q-1} f_n(x, \frac{\rho_n}{q_n}) \quad \text{for } \quad f(x) = \sum_{n=1}^{q-1} 2^{-q-1} f_n(x, \frac{\rho_n}{q_n}) \quad \text{for } \quad f(x) = \sum_{n=1}^{q-1} 2^{-q-1} f_n(x, \frac{\rho_n}{q_n}) \quad \text{for } \quad f(x) = \sum_{n=1}^{q-1} 2^{-q-1} f_n(x, \frac{\rho_n}{q_n}) \quad \text{for } \quad f(x) = \sum_{n=1}^{q-1} 2^{-q-1} f_n(x, \frac{\rho_n}{q_n}) \quad \text{for } \quad f(x) = \sum_{n=1}^{q-1} 2^{-q-1} f_n(x, \frac{\rho_n}{q_n}) \quad \text{for } \quad f(x) = \sum_{n=1}^{q-1} 2^{-q-1} f_n(x, \frac{\rho_n}{q_n}) \quad \text{for } \quad f(x) = \sum_{n=1}^{q-1} 2^{-q-1} f_n(x, \frac{\rho_n}{q_n}) \quad \text{for } \quad f(x) = \sum_{n=1}^{q-1} 2^{-q-1} f_n(x, \frac{\rho_n}{q_n}) \quad \text{for } \quad f(x) = \sum_{n=1}^{q-1} 2^{-q-1} f_n(x, \frac{\rho_n}{q_n}) \quad \text{for } \quad f(x) = \sum_{n=1}^{q-1} 2^{-q-1} f_n(x, \frac{\rho_n}{q_n}) \quad \text{for } \quad f(x) = \sum_{n=1}^{q-1} 2^{-q-1} f_n(x, \frac{\rho_n}{q_n}) \quad \text{for }$

Liawille 1200 ISNO

- Al corp. a cleria e div ne à endic es nesta unia meja unéic ichdic al ziule en x, ule en birno
 - $\text{proble-} < \text{rose with } \mathcal{N} = \{f^{-1}(B) : B \in B\}$
- BEB NAY $A = f^{-1}(B) (= A \in \mathcal{N} \cap \mathcal{N})$ (2) ZEN $(= \overline{X} = \mathcal{N})$ (4) &IBENC= IRIBEB C= BEB ! NIN &/f'(B) = f'(R/B) (x)
 - U Bie B , N' Bie B , M Bie B , M
 - $\overset{\circ}{\mathcal{V}}$ Ai $\in \mathcal{N}$:= $\overset{\circ}{\mathcal{V}}$ Ai = $\overset{\circ}{\mathcal{V}}$ $f^{-1}(Bi) = f^{-1}(\overset{\circ}{\mathcal{V}}Bi)$ $|\mathcal{N}|$
 - 138 338 f e n'll er lar, f re ma'3N,1 pr venires x1 32 73'3N f PLE PIKON PE 12 (A) J'YO OF NEM
 - B 1315 161 f-1(B) Em
 - ANXING THE SICH C= { & EJD; f'(E) E m} (2)
 - (= f-1(E) ER (= EEC pl (2) REC (= f-1(R)=\(\bar{\cute{2}}\) (1)
 - BIEC (= X/t-1(B)=t-1(B) 1x X/t-1(B) & m

 - 12. $\psi_{i}^{0}f^{-1}(e_{i}) \in m_{i}^{0} (= f^{-1}(e_{i}) \in m_{i}^{0} = e_{i} \in C_{i}^{0} (e_{i}) \in m_{i}^{0} = e_{i} \in C_{i}^{0} (e_{i}) \in f^{-1}(e_{i}) \in f^$

As sin't ($\bigcup_{i=1}^{n} A_i$)= Bn $\bigcup_{i=1}^{n} A_i$ $\bigcup_{i=1}^{n} A_i$

Un'n A 3r A= n Ac Ar p No (An (U Ac)= Cn le

116 3) Ac 16 311 Ac (c) Hav.

- (5) Q × Q ER NUE. 12 4180 03100 => at 1 1/4 (QxQ le sission of (QxQ) L') foir of sission of (QxQ)
 - (3) le (a) P3 (4) (5) (6)
 - (6) => (3) M"E' (1 (7,00-) (1) Palein air
 - St , a & sliv soso (¿ ∈ Q insi a∈ |R in' (k) (= (¿) $f^{-1}((-\infty, \infty)) = f^{-1}(\overset{\infty}{\circ}(-\infty, r_i)) = \overset{\infty}{\circ} f^{-1}((\infty, r_i)) \in \mathcal{M}$ 3) 26/16-0 (= aeR 1124 2374 $f^{-1}((-\infty, 2))$ (= . (c) 1

acb bl p ws. $(qcl') = deb : f^{-1}(B) \in M$ $(a, b) = (-\infty, b) \setminus (a, -\infty, a + b)$ $(a, b) = (-\infty, b) \setminus (a, -\infty, a + b)$ $(a, b) = (-\infty, a) \setminus (a, -\infty, a + b)$ $(a, b) = (-\infty, a) \setminus (a, -\infty, a + b)$ $(a, b) = (-\infty, a + b)$ $(a, c) = (-\infty, a + b)$ (a,

3 phod m<n (s) : , 30, 33 G8 k'n $f^{-1}(\infty)$ '3 NG) $(x) = \sum_{i=m}^{n} \frac{2^{-9i}}{(x - \frac{9i}{9i})^2}$

ep n e' m (s) (=) f(x)=00 p's)no p's)Os unun

 $f^{-1}(\infty) = d \times e[0,1]: f(x) = \infty$ $f = \bigcap_{m=1}^{\infty} \bigcup_{n=m+1}^{\infty} S_{m,n}^{-1}((1,\infty))$

 $S_{m,n}^{-1}(l_{1}p_{0}))_{c=} (l_{1}p_{0}) = [0,1] \rightarrow \mathbb{R} \cup \{\infty\}$ $S_{m,n}^{-1}(l_{1}p_{0}))_{c=} (l_{1}p_{0})_{c} = [0,1] \rightarrow \mathbb{R} \cup \{\infty\}$ $S_{m,n}^{-1}(l_{1}p_{0})) = [0,1] \rightarrow \mathbb{R} \cup \{$

 $B_{k,n} = \left\{ x \in [0,1] : \left| x - \frac{p_n}{q_k} \right|^2 < \frac{1}{\kappa} \cdot \left(\frac{3}{2} \right)^{-q_n} \right\}$

 $(4) \quad \text{(1)} \quad \text{(2)} \quad \text{(2)} \quad \text{(3)} \quad \text{(3)} \quad \text{(4)} \quad \text{(4)} \quad \text{(5)} \quad \text{(4)} \quad \text{(5)} \quad \text{(4)} \quad \text{(5)} \quad \text{(6)} \quad \text{(6$ $\int_{0}^{\infty} \int_{0}^{\infty} \int_{0$ (2) 'c' (X, M) None NEE 1'c' [∞, ∞ -] $\in X$: π \in full (X, M) 'c' (2) יא קבוצה אצ'ה אר לא קבוצה אצ'ה של אלים ומר ארציה אצ'ה ארים ומרים ו (צ) יהי (m, x) מיחב מצ'צ. יהי M אוסף כל המיצות העבובבות עלין, עבונ 130 M DEN (M+D)(A) = M(A)+D(A) = M+D: M-D 130 M, DEM השצירו באנפן צומני כפל בספלי נה כשו בי M מדווה מנחה וקטורי מצל ל בר שבות האלי I do Alen Je 1361 .0< die \mathbb{R} in i light site of \mathbb{I} (4) (4) . I.e. I gold if \mathbb{I} (J be noted as $I = Sup \{Z' \& J \in J \subseteq I, |J| < \infty\}^{-1}$)

Sign of $I = Sup \{Z' \& J \in J \subseteq I, |J| < \infty\}^{-1}$ $I \mathcal{S}$ \mathcal{S} \mathcal{S} 130) X > A (30) $Y : X \to [0,\infty]$ $Y : X \to [0,\infty]$ $Y : X \to [0,\infty]$ ארע אוצר של (B) איצר של (B) איצר של לאות (און לאות לא לא לאות און לא לא און איצר און לא לא און איצר און לא לא אור הוער קבוצות שהן בעת מעיר שוו אולר מוער קבוצות שהן בעת מעיר אוו E PK M(E)=0 130 EEM 112 (Doth-6 M & N'K) 1801-19 $M = \frac{1}{2} \sum_{k=1}^{N} \frac{1}{2} \sum_{k=1}^{N}$ 2 9(Z) b $F: X \to Y$ אכחב אני (Y, m) אכחב אני (צ, א אינה א F: $X \to Y$ אכחב אני (פ) 2" D: m → [0,00] 13cl .3'3N LID .3'3N P. 18 15NE $\mathcal{D}(A) = \mu(F'(A))$? m / 12 3'N D NET ILS 13'N ME NK) . N'HE I'E N'ENN 33'N M. (X, m, μ) '5' (5) DY 13'3N A0 SA IGER 19 PC N'NIGE PC N'NIGE DOON by AEM by BK, N'NICK LP B'N IL ARE IN'SI. O< M(A) < M(A) $\mu(\mathbf{A}_{t})=t$ or $\mathbf{A}_{t}\subseteq \mathbf{A}$ as $\mathbf{A}_{t}\subseteq \mathbf{A}$ of $\mathbf{A}_{t}\subseteq \mathbf{A}$ הצוכה: השנה באינבו באינבותניה סציה יוופת ל בתוצות אלצות Bn+1 ב Bn ב .. ב B1=A אולנות של אווע Bn+1 ב עב ולחול א pre1 µ(B)≥t 5 min. B= 7B0 in µ(Bn+1) <inf of y(c): c ∈ Bn, c ∈ m, µ(c)≥tf+ n

אנו בצירו צועה בצ' אונה בציר השתמשו בבציה צועה בצ' אונה בב

JN"PN! 23'3N DEC PILE 21 M(C) = + PY CEB 23'SN 73'En 3> 1/NIOK 1/K μ θ 132/LED . μ(D)= μ(C) 3k μ(D) = t $\mu(s) = \mu(c) = t \quad e \quad p'o = s$

manganang magang panggang pan Mangganang magang panggang pa

פוניון ונישיא צ,

(x) e (x) = (x) | (x) = (x) | (x) = (x) | (x) = (x) | dereb 66 Les bib (=) deb 25 d'be[-00'00] DK dx: f(x)<g(x) } = U dx: f(x) < r < g(x) } = U (f-1([-0,1])) of-1(([-0])) <= אין הוא אימוני בן ענייה ש) קבוצנת מצבות (כי ל, פ מצצות) =) סייעלי. fx: f(x)>g(x)} Udx: f(x)<g(x) & p'/en , L' > 133N dx: f(x)=g(x)} ושתי התבונות מצה הן מצינות. (2) (M, X) $MCOG ME'E ! [<math>\infty, \infty^{-1} - \overline{X} \rightarrow L - \infty, \infty$] (2) (x) of fu 10101 P"P inf fu(x) ELCUS! CLAIN C. Hurinffu limsupfu! liminffu is purso ! - CICUS {x: '010 ! 0"p inf fulx)} = {x: liminf fulx) = limoup fulx)}" $d x : limsup fn(x) < \infty$ $d x : liminf fu(x) > \infty$ 2)3N (= (limsup fn) ([- a, ∞)) =(2); JLE NO 14 23'3N (4) (E) ME, E. VAIUT (7) (E) ich (X, M) was d chara kbil (m+v)(A) = m(A)+v(A) Los m+v on -> C >36) m, v EM הכאו ני אדו היאנון באוטן בומה נפל הסקלרי והיאו לי א אהווה ארחה נקטני מצו ל תחת השפות השליה. a_1b f p' a_1 a_2 a_3 a_4 a_5 a_5 (a+b) P THE NOCLO LOCKY (ai+bi) 3k $\mu+\partial\in M$ $C=\mu,\partial\in M$ ∂k ∂k

```
JIL, NOO'N In JULY PR. NEN & IN= die I: dieth mod (6) (4)
                                                               12 I I I E KN e e J E In KAN BU KEN W
                                                                                                                                           'SOU'K KID DOOD <= 5' di > Kn = K
                                      בסבוע ב עו סובית אל לבל א בל ח"בת להינת סובית וק"ם
                                                                            . , vilu sis 03/27 125 (= U In = diel: vi>0}
(x) (x) (x) (x) (x) (x) (x) (x) (x) (x)
        به من المالة وراد و الفرور و الفرور عاد المالة والمالة والمال
                                                               מהר של בל היים בא בא היים בא אות בל בל היים באלע את בלע את ב
                     ראי בשניון ב . עני להיבאנת ב מספים להכאנת עבור סיא
       1≤n≤N 151 Non 3AP NO Jnº ⊆Jn '0' . Zai≥ Z (Zai) '5
        J_{i}^{o} by solve oper. Z_{i}^{o} \neq Z_{o} = Z_{i}^{o} = Z_{i}^{o} = Z_{o}^{o} = Z_{o}
      \frac{1}{2} \frac{1}
                                                                                                                                                                                  हिता है हिता है। जिल्ला अर हिल्ला
          AC <= AC Aj 3L NUN DO AC E & J' P'P PE
               Ad NACH AE M CALLEL O' M OSICH LAND BE
                                                                NCC 35 CC, -> M 6- X/35CC, IL NISCIN 6105 C' ON C- , 7736CC
                                                                                                                                                                                                                                     ecte c 0= (b)μ ις μ 0-1ε'0'ε'ιι.
       שונה על של בל מת קבוצה בת אולה כאיחוף בן אולה
                                                                                                                                                                                                                                                                         \sum_{i=1}^{n} 0 \neq \infty | \sum_{i=1}^{n} 0 \neq \infty |
        (c) (\mathcal{A}, \mathcal{M}, \mathcal{A}) Notes Wite, (\mathcal{Y}, \mathcal{M}) Notes (\mathcal{X}, \mathcal{M}, \mathcal{A}) Notes wite, (\mathcal{X}, \mathcal{M}, \mathcal{A})
         0/ NE, E. LAS dele ME, E. M. & M. + (000) 239 M. + (4) - 4) M. = (4)
                                                                                                                                                                                                                                                                                                                                                    ? m
                                                                                                                                                                                                                                                                                                                                                                                                              1. Ja J WE. W
                                                   רון אימנג אן אבר אימנג או אימנג או אימנג 
                                                                                                                                                                                                                \mathcal{V}(\phi) = \mu(F^{-1}(\phi)) = \mu(\phi) = 0
```

ме жыл. л'lide ik л'enn зи ри, яз'х гож (Х,М, р) isi (5) AOEA TO NOW IL ACM DE ASIN'IL AC DE MER ASIN'N א אאואית א אינה עם אינה א אאואית אינה א אאואית אינה אא אאואית py At SA .33N .35P e' 0 < t < μ(A) 20N bli AEM bl 3E B1=A)36), 0<+</br> 1's'1 µ(Bn)≥t py Bn onk obsider hill $t_{n}=\inf \{\mu(c): C \subseteq B_{n}, C \in \mathcal{M}, \mu(C) \geq t\}$ ה קבוצה ה fni אינה כיקה ב' ה'א מכילה את (Bn) ע והיא מכילה כק μος tn≥t μης καση κατη κισει ινα"α t ≤ νοον 53cl µ(C)≤tn+n e D 33'3N C⊆Bn e' (înf 3 3050N) .15) C $rac{12}{10}$ B_{n+1} D_{n+1} D_{n+1} D(= tn≥t | s'in (s'en uu's (18,)<00) ('in | tn≥t | t ≤ µ(C) ≤ µ(B) py C ≤ B 333H 337 2012 ny). µ(B) ≥ t $\mu(Bn) \leq \mu(C) + \frac{1}{n}$, $\mu(C) \geq tn$ n $ls \leftarrow n$ $ls \subset Bn$ s_{k} الادرد عدد الإدار (C) الإدار الإدار (C) الإدار - \(C)=\(B) \(\int \) \(\ 53 € , M(Cn) ≤ t e porta Cn M Nosen n'U. C1 = Ø : 1363 Sn=Sup of u(D): Cn CD=B, D∈M, u(D) ≤ t3 1361. /L(8)≥5n-1 1 Cn ⊆ & ⊆B e v DEM e': BJP NOI Might and and $\mu(C)=\lim_{n \to \infty} \int_{C} C = UCn$ and $\lim_{n \to \infty} \int_{C} Cn+1 = D$ JR M(C)=M(D)=+ DK' C=D=B JIN"JN, 3'3N & DLE SKON (c)= (b)=t = 121 (b)=t = 121 (c)= 12 (c)= 12 (d)=t = 121 (d)=t e nikan (EB ') u(c) = t < \mu(B) '> p'sol 'Dk

LEBIC 2317P et (= MNIGE 21'E 13'N), MORE. LE(BIC)=0

 $\mu(c) < \mu(c) + \mu(u) = \mu(c \cup u) < \mu(c) + \mu(B \setminus c) = \mu(B)$ (השניועת לובצים מאציט'בינות של את ומה צוהבה ש או ומה צוהבה ל 60 pl sk 's) μ(CUU)≥t 120 kl B,C le NUIDAN , 12€ sh's, μ(cvu)≤t por lot (nono, μ(cvu)=μlβ) M(BIC) =0) >1 . DINO =101 M(C) = M(CUU) $t \le \mu(B) = \mu(c) + \mu(B(C)) = \mu(c) \le t$ $\mu(B)=\mu(C)=t$

- (1) 'ה'ו [∞,0] + \$ \$,9° كل الإقاار NE, EIL: " (1)
 - (x) g+7 eligèr NEEr
- (م) ردر 0 ≥ ه دردرد در على والأولاد الاردد المورد المورد المورد المردد المردد
- why and dan, if n=1 i.E.N. by pice support is subjusting shows one coency length (2). $\lim_{z \to 1} \left(\sum_{i=1}^{\infty} a_{i} a_{i} \right) = \sum_{i=1}^{\infty} \lim_{z \to 1} a_{i} a_{i}$ $\lim_{z \to 1} \left(\sum_{i=1}^{\infty} a_{i} a_{i} \right) = \sum_{i=1}^{\infty} \lim_{z \to 1} a_{i} a_{i}$
- الرا انه المورد المور
 - S find $\mu \to \int \int d\mu = 33N = 10^{10}$. Also in $\int \int \int d\mu < \infty$ E by the interval of the state of
- $\int f \, d\mu < \infty \quad \text{in Sin (6)}$ $\int f \, d\mu < \infty \quad \text{in Sin (6)}$ $\int f \, d\mu < \infty \quad \text{in Sin (6)}$ $\int f \, d\mu < \infty \quad \text{in Sin (6)}$ $\int f \, d\mu < \infty \quad \text{in Sin (6)}$ $\int f \, d\mu < \infty \quad \text{in Sin (6)}$ $\int f \, d\mu < \infty \quad \text{in Sin (7)}$ $\int f \, d\mu < \infty \quad \text{in Sin (7)}$ $\int f \, d\mu < \infty \quad \text{in Sin (7)}$ $\int f \, d\mu < \omega \quad \text{in Sin (7)}$ $\int f \, d\mu < \omega \quad \text{in Sin (7)}$ $\int f \, d\mu < \omega \quad \text{in Sin (7)}$ $\int f \, d\mu < \omega \quad \text{in Sin (7)}$ $\int f \, d\mu < \omega \quad \text{in Sin (7)}$ $\int f \, d\mu < \omega \quad \text{in Sin (7)}$ $\int f \, d\mu < \omega \quad \text{in Sin (7)}$ $\int f \, d\mu < \omega \quad \text{in Sin (7)}$ $\int f \, d\mu < \omega \quad \text{in Sin (7)}$ $\int f \, d\mu < \omega \quad \text{in Sin (7)}$ $\int f \, d\mu < \omega \quad \text{in Sin (7)}$ $\int f \, d\mu < \omega \quad \text{in Sin (7)}$ $\int f \, d\mu < \omega \quad \text{in Sin (7)}$ $\int f \, d\mu < \omega \quad \text{in Sin (7)}$ $\int f \, d\mu < \omega \quad \text{in Sin (7)}$ $\int f \, d\mu < \omega \quad \text{in Sin (7)}$ $\int f \, d\mu < \omega \quad \text{in Sin (7)}$ $\int f \, d\mu < \omega \quad \text{in Sin (7)}$ $\int f \, d\mu < \omega \quad \text{in Sin (7)}$ $\int f \, d\mu < \omega \quad \text{in Sin (7)}$ $\int f \, d\mu < \omega \quad \text{in Sin (7)}$ $\int f \, d\mu < \omega \quad \text{in Sin (7)}$ $\int f \, d\mu < \omega \quad \text{in Sin (7)}$ $\int f \, d\mu < \omega \quad \text{in Sin (7)}$ $\int f \, d\mu < \omega \quad \text{in Sin (7)}$ $\int f \, d\mu < \omega \quad \text{in Sin (7)}$ $\int f \, d\mu < \omega \quad \text{in Sin (7)}$ $\int f \, d\mu < \omega \quad \text{in Sin (7)}$ $\int f \, d\mu < \omega \quad \text{in Sin (7)}$ $\int f \, d\mu < \omega \quad \text{in Sin (7)}$ $\int f \, d\mu < \omega \quad \text{in Sin (7)}$ $\int f \, d\mu < \omega \quad \text{in Sin (7)}$ $\int f \, d\mu < \omega \quad \text{in Sin (7)}$ $\int f \, d\mu < \omega \quad \text{in Sin (7)}$ $\int f \, d\mu < \omega \quad \text{in Sin (7)}$ $\int f \, d\mu < \omega \quad \text{in Sin (7)}$ $\int f \, d\mu < \omega \quad \text{in Sin (7)}$ $\int f \, d\mu < \omega \quad \text{in Sin (7)}$ $\int f \, d\mu < \omega \quad \text{in Sin (7)}$ $\int f \, d\mu < \omega \quad \text{in Sin (7)}$ $\int f \, d\mu < \omega \quad \text{in Sin (7)}$ $\int f \, d\mu < \omega \quad \text{in Sin (7)}$ $\int f \, d\mu < \omega \quad \text{in Sin (7)}$ $\int f \, d\mu < \omega \quad \text{in Sin (7)}$ $\int f \, d\mu < \omega \quad \text{in Sin (7)}$ $\int f \, d\mu < \omega \quad \text{in Sin (7)}$ $\int f \, d\mu < \omega \quad \text{in Sin (7)}$ $\int f \, d\mu < \omega \quad \text{in Sin (7)}$ $\int f \, d\mu < \omega \quad \text{in Sin (7)}$ $\int f \, d\mu < \omega \quad \text{in Sin (7)}$ $\int f \, d\mu < \omega \quad \text{in Sin (7)}$ $\int f \, d\mu < \omega \quad \text{in Sin (7)}$ $\int f \, d\mu < \omega \quad \text{in Sin (7)}$ $\int f \, d\mu < \omega \quad \text{in Sin (7)}$ $\int f \, d\mu < \omega \quad \text{in Sin (7)}$ $\int f \, d\mu < \omega \quad \text{in Sin (7)}$ $\int f \, d\mu < \omega \quad \text{in Sin (7)}$

```
10 CM, (N, (N, (N, (N, N)))) CM (I) (N, (N, (N, N))) CM) (N, (N, (N, N))) CM) (N, (N, (N, N))) CM)
                                            fu(i)=an,i ~" fus N=[0,00) 1361 ... NN x'2 /L
                     \int on' > 1/8' = 1 \int on' > 1/8' = 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                     . store chila.

\sum_{i=1}^{\infty} \lim_{n\to\infty} a_{n,i} = \sum_{i=1}^{\infty} \lim_{n\to\infty} \int_{N} u(i) = \int_{N} \lim_{n\to\infty} \int_{N} u(i) = 
                   = \lim_{n \to \infty} \left( \sum_{i=1}^{\infty} f_{u}(i) \right) = \lim_{n \to \infty} \sum_{i=1}^{\infty} a_{n,i}
    (3) NCA = BUCKE CIJ ((n) = \frac{1}{n^2}) CCI NCAS N/E
      11/1/201E 1/3/21/2 /fns, fn=n2/fns 13cl. I h2 <00
\int f_{n} d\mu = \int_{n}^{2} \int f_{n} d\mu = n \cdot \frac{1}{n^{2}} = \frac{1}{2} \int_{a}^{b} f_{n} d\mu = \int_{a}^{2} \frac{1}{n^{2}} \int_{a
  1/1/8 'k gra 113'2N fn, f, 's 33'N gn, gn=f1-fn 3'36) (4)
                                 4f_{n}\int_{n=1}^{\infty} dg_{n}\int_{n=1}^{\infty} \chi dg \int_{n=1}^{\infty} \chi 
xifile ik, ni3N gn, fn . gn(k) noo fi(x) - f(x) x
           \int_{\mathbb{R}^n} f_1 d\mu = \int_{\mathbb{R}^n} g_n d\mu + \int_{\mathbb{R}^n} f_n d\mu \qquad (= f_1 = g_n + f_n )
                          jud ex jores land = Ifidu - Ifidu (=
                                                                            : lop MCT NI Sgdu = Sfidu - Sfdu (= g=fi-f
                   lim (Sfrdu - Sfndu) = Sfrdu - Sfdu (= lim Sgndu = Sgdu
n-200
. NN"0 Sfrdu <= Sfdu <= Sfdu
. No"0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  :I >1e (5)
                     S fdu = J fdu + Jc fdu = Sliminf fndu + J liminf fndu
      ∠ liminf ∫ fudu + liminf ∫ fudu ≤ liminf (∫ fudu+ fo fudu)

Fatou
                       = liminf ] fudy = } fdy
                           (1) I fdy + Ic fdy = liminf I fudy + liminf I fudy
                         (2) I fam = liminf I for de co
                        (3) Ic fdu = liminf Ic fndu < 00
```

```
lim I for du = If du < ao :0"p1 of P risign solar N 11/1/e 1/2
                                                                                                                          I fdu = liminf I fn du I sleN (=
                     fangs 200 nu ble q a p"pe sw'pn IR 2 dandn=1 pk : 121
                  (sin a_n = a) (= liming a_{n_k} = a p
-lim \int fn d\mu = \int fd\mu (=

\int F = E

Note of E = E

Note of E = E

\int R = E

\int R
        f_{u}(x)=0 n>N \int \int x=N (0)\to\infty
                        \int_{\mathbb{R}} f d\mu = \infty \qquad \int_{\mathbb{R}} \int_{\mathbb{R}}
             11,7Nf le eson 28'0 dn,77Nf mpl. OKKN Spp :(p) 11'3 (7).
   (24)^{-1} (25)^{-1} (25)^{-1} (25)^{-1} (25)^{-1} (25)^{-1} (25)^{-1} (25)^{-1} (25)^{-1}
                                                                b-a \leq \sum_{i=1}^{N} b_i - a_i \qquad \leftarrow [a,b] \subset \bigcup_{i=1}^{N} (a_i,b_i) solf
                              n2 '3' Jink, λν"ο (an, 6n, ) >6 pk (an, 6n, ) >a ιφη 13' 1310
                     (a_{n_n},b_{n_n}) \Rightarrow b (a_{n_2},b_{n_2}) \Rightarrow b_{n_4} \in \mathcal{D}
                                  anit, < bri 1=i < m ble p1 d1,7 NS (e 23/2) NN ny7 nm N/2/P
                                                                                      p(1) q_{n_m} < b < b_{n_m} ! q_{n_d} < q ! (a_{n_{i+1}}, b_{n_{i+1}}) \ni b_{n_i}  (3)
                       \frac{\sum_{i=1}^{N} b_{i} - a_{i} \geq \sum_{i=1}^{m} b_{n_{i}} - a_{n_{i}}}{\sum_{i=1}^{m} b_{n_{i}} - a_{n_{i}}} \geq \frac{\sum_{i=1}^{m-1} (a_{n_{i+1}} - a_{n_{i}}) + (b_{n_{m}} - a_{n_{m}}) = b_{n_{m}} - a_{n_{i}} \geq b - q}{N}
                    Nuro pli b-a-e ≤ Ž' bi-ai + Ž'z-è ≤ Ž'bi-q+€ = b-E-a ≤ Ž'(bi-(ai-2-è)) <=
```

```
TICK (MEC. 120) 5.
                                              و عدد: عمر المراج المر
                              de An∈X ned po lol ollo, dilo (3k n) μ* (2) μ*(Φ)=0 (3)
                                                                                                                                                                                                         \mu^*(UAn) \leq \sum_{n=1}^{\infty} \mu(An) :p"p sids ness \mu^*(QAn)
          פעבין שאו לב להגצלים בין ההגצבה של מיצה חיצונת להגצה של מיצה: צובשים ממיצה
     מיצולת שתהיה רץ נענ אצ'ט'בית באתפנם ט-אצ'ט'בית, בתעונה היא מוגצרת על ל הית
          Z γε 
                                                                                                                                                                                                                           f(\phi)=0 f(\psi)=0 f:\mathcal{U}\to [0,\infty]
                                                                                                                           \mu^*(A) = \inf_{n=1}^\infty \left\{ \sum_{n=1}^\infty f(u_n) : u_n \in \mathcal{U}, A \subseteq \bigcup_{n=1}^\infty \mathcal{U}_n \right\}
                                                                                                                                                                                                                                                                                                                                                                                                                         ה נכ'חו ש * ע איצה חיצולת,
                                                                        \overline{\mathbb{Z}} We are a section \overline{X} by such as \overline{X} or \overline{X}
                                                                       M_{\mu} = dACX: \mu(E) = \mu(E \cap A) + \mu(E \cap A^c) ECX (S) $ >36)
שיאו לב, אהה גברה של איצר חיצונית צל אלע להראות e אבר אסטים להראות e
                                                                                                                                                                                                                                                                             µ(E) ≥ µ(E ∩A) + µ(E ∩ A°) E Isle
                     (AUBEMU (= A, BEMU ) '310 311160 m_{\mu} '5 (K)
                                                           (4) (1) (2) (2) School 
                                                                                                                                                         \mu (E \cap (UAi)) = \sum_{i=1}^{n} \mu(E \cap Ai)
                                                        B = \bigcup_{i=1}^{\infty} A_i, B_i = \bigcup_{i=1}^{\infty} A_i \bigcup_{i=1}^{\infty} A_i
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           ECX n'JJ'
   M(E) = M(E(Bn) + M(E)Bn) > 2 M(E(Ai) + M(E)B) & n (1 1) 1km (1.2)
        μ(E) ≥ Σ μ(E) AL) + μ(E) B) > μ(E) B) + μ(E) B) '> 16 > π (2.6)
  m_{\mu} (εν κ') (m_{\mu} (ενεία ( m_{\mu}) κ') (m_{\mu}) κ') (m_{\mu}) (ενεία ( m_{\mu}) (m_{\mu}) (m_{
        PEI JIELS 2 SINS \tilde{m} 2 (Ai) i=1 PE (2) \tilde{\mathcal{D}}(\tilde{\phi})=0 (1) IPE \tilde{m} 14 23'N
                                                                                                                                                                                                                                                                                                                                                         \mathcal{D}(\overset{\infty}{U}Ai) = \overset{\infty}{\sum} \mathcal{D}(Ai) 32 \overset{\infty}{m} \ni \overset{\sim}{U} Ai
                    \mu(A) = \inf \{ \sum_{i=1}^{\infty} \mathcal{V}(B_i) : A \subseteq \bigcup_{i=1}^{\infty} B_i \in \mathcal{M} \} \text{ ist.} \hat{\mathcal{M}} \text{ by } \mathcal{F}(A) = \text{inf} \{ \sum_{i=1}^{\infty} \mathcal{V}(B_i) : A \subseteq \bigcup_{i=1}^{\infty} B_i \in \mathcal{M} \} \text{ ist.} \hat{\mathcal{M}} \text{ by } \mathcal{F}(A) = \text{inf} \{ \sum_{i=1}^{\infty} \mathcal{V}(B_i) : A \subseteq \bigcup_{i=1}^{\infty} B_i \in \mathcal{M} \} \text{ ist.} \hat{\mathcal{M}} \text{ by } \mathcal{F}(A) = \text{inf} \{ \sum_{i=1}^{\infty} \mathcal{V}(B_i) : A \subseteq \bigcup_{i=1}^{\infty} B_i \text{ by } B_i \in \mathcal{M} \} \text{ ist.} \hat{\mathcal{M}} \text{ by } \mathcal{F}(A) = \text{inf} \{ \sum_{i=1}^{\infty} \mathcal{V}(B_i) : A \subseteq \bigcup_{i=1}^{\infty} B_i \text{ by } B_i \in \mathcal{M} \} \text{ ist.} \hat{\mathcal{M}} \text{ by } \mathcal{F}(A) = \text{inf} \{ \sum_{i=1}^{\infty} \mathcal{V}(B_i) : A \subseteq \bigcup_{i=1}^{\infty} B_i \text{ by } B_i \in \mathcal{M} \} \text{ ist.} \hat{\mathcal{M}} \text{ by } \mathcal{F}(A) = \text{inf} \{ \sum_{i=1}^{\infty} \mathcal{V}(B_i) : A \subseteq \bigcup_{i=1}^{\infty} B_i \text{ by } B_i \in \mathcal{M} \} \text{ ist.} \hat{\mathcal{M}} \text{ by } \mathcal{F}(A) = \text{inf} \{ \sum_{i=1}^{\infty} \mathcal{V}(B_i) : A \subseteq \bigcup_{i=1}^{\infty} B_i \text{ by } B_i \in \mathcal{M} \} \text{ ist.} \hat{\mathcal{M}} \text{ by } 
                                                                                                                                                                                                                                                                                                                                                                                                                                                  M(H)= D(A) (K)
                                                                                                                                                                                     (ב) הוכיחו כי א היצה חיבונית על X ו איצה היבונית על א
```

A, B \in S \ (\text{N} \), $\phi \in S$ \ \text{pt \ \text{N} \cdot \text{N} \cdot

NIIO'S POIR UA = of (Un) = 1 = U, ACU Ung 17' ASX ISS I by the # (= X & U! O'IN IN N DESIDE - A 10 DUN YAD ∑' f(Un) ≥0 st (Un) ∈ UA pk , s/se il f! sin A⊆ 8 10 c/2 Un) : (Un) Elas sign inolure W/c V VI C/2 (Un) Ellas vigos (1) \(\mu^*(A)\ge 0! \(\sigma^{\chi\ge}\) \(\mu^*\) \(\ $0=Z f(\emptyset) \in M_{\emptyset}$! U_{\emptyset} ! $U_{0}=U_{0}=\emptyset$ 7,307! AS X. μ*(Ø)=0 <= μ*(Ø)≥0 N'N μ31PN1 μ*(Ø)≤0 psi A R 110'0 KID L'14 B le (Mn) 1000 IS 36 A SB C 8 PK C= MB = MA <= UB = UA u*(A)=inf MA = inf MB = u*(B) . MUNDUM 14 C= A= UAn 's' 1 1 (An)= Tre [0,0] ps NOUS NISS An = X 1'2' 250 1/22 st 130/5 n / (n=∞ pt µ*(A) ≤ 5 rn : 5/13 تعدا المو لامل أولام و مع مم الله م المحري الديمار ك الم ع>ه q"q λοικ ε ε β γνος βιελια εδια +ε ρ"ρ 5' f(ui) ≤ Z'rn+ε e zu A ne moone u N norp le d'uitieI An = U uni e q u N NBISP le d'Unité, Torp n 61 0< E 's' $\mu^*(A_n) \leq \sum_{i=1}^{\infty} f(u_{n,i}) + 2^{-n} \mathcal{E}$ MAJET FOR A ING "NI AND TO A WASTER FOR , pol - Z' f(Un,i) & Z rn + Z 2 nE = Z rn + E $A \in \mathcal{M}_{\mu}$! S_{μ} : S_{μ} S_{μ} SM(E) = M(E (A) + M(E (AC) M(ENA) = M(ENANB) + M(ENANBE) : p"p BE MM : 1-pl, pli L(E MA") = M(E MA" NB) + M(E MA" NB") M(E) = M(ENANB) + M(ENANB') + M (ENACAB') 8 > M(En(AUB)) & AUB= (ANB)U(ANBC)U(ACNB) ANBE MIN DAND 19 19 19 EUVEL MAR JEUN JANA)

```
\mu\left(E\cap\left(\bigcup_{i=1}^{U}A_{i}\right)\right)=\mu\left(E\cap\left(\bigcup_{i=1}^{U}A_{i}\right)\cap A_{n+1}\right)
A_{n+1}\in\mathcal{M}_{\mu}
A_{n+1}
                                         +\mu(E \cap (UAi) \cap An+1) = \mu(E \cap An+1) + \sum_{i=1}^{n} \mu(E \cap Ai) = \sum_{i=1}^{n+1} \mu(E \cap Ai)
                  LEVE NO OLA " (EUVE) = ST (EUVE) & MAR BY THE PARTY OF THE BUT OF 
                1/18'n 3'N / (EIBn) 2 (EIB) '> / (EIBn) ≥ / (EIBn)
    עפון וויף יצו מעלי לכון כי סציף (ב-ל) לכון וכן ח וא׳ שויון נשער
                          בשבון ביעל עבע ע תת שציט גית א העיצה החיבולת כי
                               E \cap B = \bigcup_{i=1}^{\infty} (E \cap A_i)
     אשר זב. נאו כן או סשובה לאיתוצ מפי , נשים לה כי או סשורה
                                                         אלים - עויצ' ערי של וני א ב אליכר . אינצ' ערי של וני א ב אליבר . אינצ' ארי של ארים אליבר און אינג אויצ' אויצ' ארים אליבר און אינג אויצ' א
         בש כך לומע שה סעיל (2-6) יש שו'ועת שעיל אנ הסעיל (2-6) לעם
         שויועת לבור הפנופה באר בשל ב הלעות בתחילת סעים בין אלה הלעות בתחילת סעים בין
                             (µ($)=0 | E(B=$ 5) µ(DAi)= Zµ(Ai) /2/11
                                                                                                                                                                                                                                                                     My 14 73'N ME
                              lapli 2 si bl Ei= b! Ei= A np) AEM n'y (1)
                             A ⊆ Ü Ei e & M → Ei 1'3', 'Je 33N, µ(A) € V(A)
                                         B,=Ane, ! 2 = ( B= An (E=1 (E,U.U==-1)) +361
\mathcal{D}(A) = \underbrace{\mathcal{Z}}_{i=1}^{\infty} \mathcal{D}(B_i) \leq \underbrace{\mathcal{Z}}_{i=1}^{\infty} \mathcal{D}(E_i)
p^{n}p
p^{i}l
A = \underbrace{\mathcal{D}}_{i=1}^{\infty} B_i
b_i \in E_i
\mathcal{D}(A) \leq \mathcal{D}(A) \leq \mathcal{D}(A)
                                                                                                                                                                             D(A) ≤ M(A) M(A) NOSERN 1)cf(
       AEM 131 AEM MP . 1. Jee NO 14 & 14 NIS'N M
                                           μ(E) 1310N, μ(E)>μ(E(A)+μ(E(A) :f'3 . X ≥E n')
    Si P(E; (IA)) > L(E(A)+L(E(A)) SE E CUE; ! E; EM ME NUNDS p'DON
                    Z^{\prime} \cap (E_i \cap A) \geq \mu(E \cap A) + Z^{\prime} \cap (E_i 
         (ENAS DEINA ! M > EINA : LS b) MIENA) ABERN
                                                                                                                                                       Σ' D(Ei(A) ≥ μ(E(A) /O/LD MILD
```

כאו שרטע בתראילת קוצעים אי זכרו אוסף קבוצות שליתעות לתצאה (LV) JINS S 3 A1,7 An e' Aem 1124 S bak le 25 '00 3111'LS 2)3(2)7(WIN e')] (A) = 5 8(A)) 36). A= 6 Ai e & 6/ 15 i bl neus sab, A= & B; n'll 2(2) 6 k'? '> lapl bix > UNLO (Ai)= \$ & (AiOB;) <= Ai = (AiOB.) 8 's! ZUN'N DOS E PO DENNER : S(B;) = E & (Ai (B;)) ; IS $\frac{5}{5}\cos \frac{1}{1} = \frac{5}{1} \delta(Ai) = \frac{2}{1} \delta(AiABj) = \frac{6}{1} \delta(Bj) \quad \text{yan i'eay} \quad 563k$ (1) DIGE J. MER C. 8 = S. (1) NUSD MY DILAGGER 1'D' MY by D'W'S'E'S K'D DE KING SKED ry Ai= UAis; 2630 NS et i bs m 3B= CAi e e) ep nicisa sia Ba,, Bm pe e volcus sias faij sj=1 CS 3 5k, B= UBx $\mathcal{D}(B) = \underbrace{5}_{N} \ \delta(B_{K}) = \underbrace{2}_{K=1} \left(\underbrace{2}_{i=1}^{\infty} \underbrace{5}_{j=1}^{N_{i}} \delta(B_{K} \cap A_{ij})\right) = \underbrace{5}_{i=1}^{\infty} \underbrace{5}_{j=1}^{N_{i}} \left(\underbrace{5}_{i=1}^{\infty} \delta(B_{K} \cap A_{ij})\right) = \underbrace{5}_{i=1}^{\infty} \underbrace{5}_{j=1}^{N_{i}} \left(\underbrace{5}_{i=1}^{N_{i}} \delta(B_{K} \cap A_{ij})\right) = \underbrace{5}_{i=1}^{N_{i}} \underbrace{5}_{j=1}^{N_{i}} \left(\underbrace{5}_{i=1}^{N_{i}} \delta(B_{K} \cap A_{ij})\right) = \underbrace{5}_{i=1}^{N_{i}} \underbrace{5}_{i=1}^{N_{i}} \left(\underbrace{5}_{i=1}^{N_{i}} \delta(B_{K} \cap A_{ij})\right) = \underbrace{5}_{i=1}^{N_{i}} \underbrace{5}_{i=1}^{N_{i}} \underbrace{5}_{i=1}^{N_{i}} \left(\underbrace{5}_{i=1}^{N_{i}} \delta(B_{K} \cap A_{ij})\right) = \underbrace{5}_{i=1}^{N_{i}} \underbrace{5}_{i=1}$, S אינה צו א אינה צו א (תרבון ל א אינה צו א אינה צו א , (ב) ציים שולה א לינן להכמיה את ל למיצה ל שמושנת נין א בשולה בה בעצית עייב B, עכשין נשצ'ר את אן כאו בשאלי 3. אם אן אנ אנחידה אן (ב3) סיטו אים (ב3) אים אנחידה או אנחידה את אים (ב3) אין אים אנחידה את אים ועים (בא) אין אים אנחידה את סיבוען: מצאע ט-גלזברר, און המכילר את צ ומיצה אן על אין SID ASER O BE CM 'S 3"N S NOSEN & NK ASER CIE על הישר. א לאחלת לקטב את אונט ל היא התחבה של B. त्यतः भा र भारति त्दिएत पदर भेरी प्रक्रि दाती A : $\mu(A) = \inf \left\{ \sum_{i=1}^{\infty} \left(b_i - a_i \right) : A \subseteq \bigcup_{i=1}^{\infty} \left[a_i, b_i \right] \right\}$

M(X)×∞! sile silv fn of s dfngn=1 C L'(X) n'J (k) (1) Sfudje - Sfdje 5! fEL (X, je) 5 1270 $f = f + \frac{1}{2} \int_{-\infty}^{\infty} \int_{-$ יין אין אבו באנער תנו צואת ל ערתה, ער באנער העו צואת ל שלהרה ומיצה [offn 3n=1 E 21 [e ->30! N/KIN] J(J) $g_n \rightarrow g$, $f_n \rightarrow f$, $0 \leq g_n$, $f_n, g_n, f_n, g \in \mathcal{L}^*(X_{\mu})$ $n' \cup (2)$. Jfndµ→Jfdµ 10 1K20 Jgndµ → Jgdµ 1061 Ifnl ≤ gn Sifnidu → Sifidu; n'u3ipl fn→f, fn,f∈ L'(I, W) n'I) (3) [M3) p of kea 1254' π 85No] $\int |f_n - f| d\mu \rightarrow 0$ is 1600 O< E IS PK [N13'3N f, fn] SYND fn→f 'S NK) SATTER $\mu\left(\frac{1}{2}\times \frac{1}{2}\left(\frac{1}{2}\times \frac{1}{2}\left(\frac{1}{2}\right) - \frac{1}{2}\left(\frac{1}{2}\right)$ رد) (x) l_{ak} , n_{3} 'να $f_{n\rightarrow f}$ e p_{2} $f_{n,f}$; l_{3} l_{3} l_{3} l_{4} l_{4} l_{5} l_{6} l_{6

a grant contract of

 $(e"NN f_N \rightarrow f')$ $|f_{N_0}(x) - f(x)| \le 1$ x life φ (13¢ φ 00N n_0 p"P (E) (1) Sifidu ≤ S(1fno1+1)du = SIfnoldu +u(X) < ∞ <= If(x) | ≤ Ifno(x) |+1 <= f∈L'(X,u) (= , jus) N (X) < ∞ ; fro €L' '> Sifuoldu <∞ : € <= |fn(x)-f(x)| < E x b/1 N_E ≤ n ble & N_E p"p : 0< E '" μ(X)co ! 'nisse sis E : nist | Ifn du - Sfdμ1 ≤ SIfn-fldμ ≤ Eμ(X) Study > Study > Study is your of low is your of con nooise $[-\omega,\infty]$ a list ye Σ dk alle ge $dk \to 0$ e g pienn $e''ND fn \rightarrow f (= n | s| f(n) = dn s'36) fn = <math>\sum dx \cdot \sum dx$ $(d_n \rightarrow 0 \rightarrow 0)$ Sup $|f_n(\kappa) - f(\kappa)| = \sup_{k \rightarrow 0} d(d\kappa) : \kappa > n \rightarrow 0$ f lak Sifuldye=Zildil <00 5 n bl fu∈£1(X, µ) p 1H2 . "Jes pro ly list lik I fudu = & ac p|1| $|f(x)-f_n(x)| \le |f(x)| + |f_n(x)| \le g(x) + g_n(x) : p''p \times |f(x)|$ (2) 21(8, µ) > hn = g+gn-1f-ful Szgdu = Sline hadje = Sliminf hadje ≤ liminf Shadje = liminf (Sgdu + Sgndu - SIf-fuldu) = 2 Jgdu - limsup SIf-fuldu Sfutut → Sfdr <= SIf-fuldre → 0 (= Sgdr <0 ! x1)? 3 k . G=2/fl , Gn=1fn+1fl , F=0 , Fn=1fn-fl >'36) (3) IFn 1 ≤ Gn , Nissip Gn → G , Nissip Fn → F , O ≤ Gn , F, Fn, Gn, G ∈ L1(8, U) Ne vol , pl , Sondr = Stfuldu + Stfldu -> 2 Stfldu = Sodu pet (IN) ON) SIFIE SIFN-JIDH = SFRDM = O NBIP $A_n = \{x : |f(x) - f_n(x)| > \epsilon\}$ you $0 < \epsilon$ in (b) (4) JIf-fuldu ≥ JIf-fuldu ≥ Eju(An) => ju(An) ≤ € JIfu-fldu >0 , 23'Na fn→f (4) Let N(x) = 0 (4) Let N(x) = 0 (4) N(x) = 0 (6) N(x) = 0 (7) N(x) = 0 (8) In Y(0, 1) = 1 - 10 lok

isid. $\mu = \delta a + \delta b$; not by le $\pi \rightarrow r/k - \sigma$, X = da, b in (5)

51c, fan+1 = Ydby, fan = Ydas L'y 1030

 $\int_{0}^{\infty} \int_{0}^{\infty} \int_{0$

and the second of the second o

and the second of the second o

Is $\mathcal{D}(X)<\infty$, (X, \mathcal{M}) 3'3N PINN BY JIB'N μ \mathcal{D} n'll (μ) (1) 0>0 p"p 0<E Is 'S INC'NI C' Is 3>0 pre 13/30 D(E) < & pk M > E

 $\int |f_n - f_m| d\mu \to 0 \quad \text{AND} \quad \text{SIND} \quad \text{SIND} \quad \mathcal{L}^1(X, \mu) \ni f_n f_{n=1}^{\infty} \quad \text{ADD} \quad (\lambda)$

.n ld [Ifn | du < E

(2) (μ, M, μ) . Win (μ, M, μ) . While (μ, M, μ) . $\sum_{n=1}^{\infty} \mu(E_n) < \infty$ (=) $\int f d\mu < \infty$ 3 in is $E_n = dx : f(x) \ge n$ juos (צ) עליא אן מיצת בוכל סובית וכאולית צו מיחג מטל קומפקטי צ הוכיחו ב K \(\xi\) \(\xi\) = \(\xi\) = \(\xi\) \(\xi

> $\mu(\tilde{\kappa}) < \mu(\tilde{\chi})$ st, stownp line $\left(\int_{0}^{n} \left(1-\frac{x}{n}\right)^{n} e^{\frac{x}{2}} dx\right)$ (k) 2 nk 15en (4) $\lim_{n \to \infty} \left(\int_{0}^{n} \left(1 + \frac{x}{n} \right)^{n} e^{-2x} dx \right) (a)$

> > (ב) מוניחו אונ נישים נישים הבארה:

בעות מיצה חיוב'ת אמה או המוצמנע על שאואה ה מיוב'ת או בא אה אה היוב'ת או בעות היוב'ת או בעות היוב'ת או בעות ברועור הבאנת ב

. |R = x = (x, -, xk) ! Vol(W) = T (Bi - di)

 M^{μ} (=) $E \in \mathcal{M}$: $C \in \mathcal{M}$ $C \in \mathcal{M}$ (3) FORDA ACECB ED ROBIA MULTIP 1, 1/26/c) m fors m (B-A)=0 ! Go L') B

 $E \in M$ by m(E + X) = m(E) = n(S) = n(S)XEIR WI

P 12 18 1/2 N'ES CIC M'K'N SILIK' N'UK'N (3) e 22 C yipp p"p 3k, n'Gpanip K G µ(K)<∞ E S IRK IND SIPP W M(E) = em(E)

.7 levy poo μ(Ε)<8 γγ 333N Ε e' 0< δ /λε φ 0< ε μ'pe λ'/ε η (1) P(Ei)>E! M(Ei)<2-1 py 333N Ei e' i lsl, 6002. D(E)>E! N < n, m Isle & N e' O<E 's' . Vn(E)= I Ifully INOU (A). 12n(E)-2m(E) 1<E N≤n,m. ! 33'3N E 15 (= SIfn-fmldu < € (| S | ful- | fm | du \le S | fu-fm | du PILE 2 OK Fi E! (= x figo x oux) Di, m yize i siste M(E)<8 n /S st1 8= min \$81,78NG MPJ Di(E)<E (= M(E)<Si PulE) 5 PN(E) + PN(E) - PulE) / 2E pli $n \leq f(k) \leq n+1$ $E_n \setminus E_{n+1} \rightarrow x$ /s1. $\mu(E_n) = \ln p(x)$ What and the partition of the second of the n Is 5t If $<\infty$ n'... $(X = E_0 > E_1 > E_2 > ... ') <math>\Rightarrow (P'CJ)$ ikale j'aon, n'éganp K (ia I is g's he foir) K= Q Kx (צ) א ע אוע שים אלה (צ) אין אוארות (ה'צונית) א ע אהע שים אוע שים (p') ziz'n py zizico le snoen 10 2° ! p'- Ka) n Ka; ∈ 21 $\mu(\bigcap K_{\alpha_i}) = \mu(X) = \mu((\bigcap K_{\alpha_i})^c) = \mu(\bigcap K_{\alpha_i})^c = 0$ (>) $\mu(u) < \mu(Z) ! \int_{\mathbb{R}} K_{u_i} < u \in \mathbb{R}^p$ minos $g_{n} \rightarrow e^{-\frac{3}{2}x}$, $g_{n} = \int_{(0,u)}^{\infty} (1-\frac{x}{n})^{n} e^{-\frac{x}{2}}$, $y_{n} = \int_{(0,u)}^{\infty} (1-\frac{x}{n})^{n} e^{-\frac{x}{2}}$

 $g_{n} \to e^{-\frac{3}{2}x} , g_{n} = \int_{(0,n)}^{\infty} (1-\frac{x}{n})^{n} e^{-\frac{x}{2}} |NOJ| (k) (4)$ $1-\frac{x}{n} \leq e^{-\frac{x}{n}} (= 1+t \leq e^{t} + t \in |x| |x| + |$

 $\int_{0}^{n} (1-\frac{x}{n})^{n} e^{-\frac{x}{2}} dx \rightarrow \int_{0}^{\infty} e^{-\frac{3}{2}x} dx = \frac{2}{3} \qquad DCT \text{ is , polyone}$ $\int_{0}^{\infty} (1-\frac{x}{n})^{n} e^{-\frac{x}{2}} dx \rightarrow \int_{0}^{\infty} e^{-\frac{3}{2}x} dx = \frac{2}{3}$ $\int_{0}^{\infty} (1-\frac{x}{n})^{n} e^{-\frac{x}{2}} dx \rightarrow \int_{0}^{\infty} e^{-\frac{3}{2}x} dx = \frac{2}{3}$ $\int_{0}^{\infty} (1-\frac{x}{n})^{n} e^{-\frac{x}{2}} dx \rightarrow \int_{0}^{\infty} e^{-\frac{3}{2}x} dx = \frac{2}{3}$ $\int_{0}^{\infty} (1-\frac{x}{n})^{n} e^{-\frac{x}{2}} dx \rightarrow \int_{0}^{\infty} e^{-\frac{3}{2}x} dx = \frac{2}{3}$ $\int_{0}^{\infty} (1-\frac{x}{n})^{n} e^{-\frac{x}{2}} dx \rightarrow \int_{0}^{\infty} e^{-\frac{3}{2}x} dx = \frac{2}{3}$ $\int_{0}^{\infty} (1-\frac{x}{n})^{n} e^{-\frac{x}{2}} dx \rightarrow \int_{0}^{\infty} e^{-\frac{3}{2}x} dx = \frac{2}{3}$ $\int_{0}^{\infty} (1-\frac{x}{n})^{n} e^{-\frac{x}{2}} dx \rightarrow \int_{0}^{\infty} e^{-\frac{3}{2}x} dx = \frac{2}{3}$ $\int_{0}^{\infty} (1-\frac{x}{n})^{n} e^{-\frac{x}{2}} dx \rightarrow \int_{0}^{\infty} e^{-\frac{3}{2}x} dx = \frac{2}{3}$ $\int_{0}^{\infty} (1-\frac{x}{n})^{n} e^{-\frac{x}{2}} dx \rightarrow \int_{0}^{\infty} e^{-\frac{3}{2}x} dx = \frac{2}{3}$ $\int_{0}^{\infty} (1-\frac{x}{n})^{n} e^{-\frac{x}{2}} dx \rightarrow \int_{0}^{\infty} e^{-\frac{3}{2}x} dx = \frac{2}{3}$ $\int_{0}^{\infty} (1-\frac{x}{n})^{n} e^{-\frac{x}{2}} dx \rightarrow \int_{0}^{\infty} e^{-\frac{3}{2}x} dx = \frac{2}{3}$ $\int_{0}^{\infty} (1-\frac{x}{n})^{n} e^{-\frac{x}{2}} dx \rightarrow \int_{0}^{\infty} e^{-\frac{3}{2}x} dx = \frac{2}{3}$ $\int_{0}^{\infty} (1-\frac{x}{n})^{n} e^{-\frac{x}{2}} dx \rightarrow \int_{0}^{\infty} e^{-\frac{3}{2}x} dx = \frac{2}{3}$

. y'31) [e noo (5)

- (1) הונאן כי קינות אפט פערה וצפופה עם מיצת לבא ל ל שבור 3 >0. לען.
 (3) (4) הונאן שנינות קבוצה (1,0] א סאורה, בעות מיצת לבא היננית והעות פנים כים
 (14 מנילה 4 בא באר)
- (द) ताटामा अने B,A प्रदास्त विद्यार ए। दावर विद्यार हिंच देत महे BUA वर्गत विद्यार विद्यार
- CA+x CA+x
- (E) cit'ni bq'un ofen udata 15 > 57 > 77 > 07 = 0 4 91d i > 0 N'En les.
- (ה) מבנו סצנה ובינו של של פרעות מצ'צות, צרות צו לצו וכך של ז ולל 900 באר אינה לבל של אול דיים אל אול אונש
 - (E) C(C', R) = S(C', R) = S(C',
 - (c) Lin I g g $(I \cap I)$, we as $(I \cap I)$ $(I \cap I)$ (I
 - EU(E+x) CIU(I+x)e 201 HeNDED JOS. EN(E+x) $\neq \emptyset$ (=) $x \in E E$ Dot 2'50 FOR E-E e 10'51, O< 2'51 FOR 3'3N E E IR (2)

 LUI IS JUST A PH-ESCEE 11115, IR/B & PC31 DOT ECR 127 (6)

 13'3N E e 11'51 (E*cc: (C'n) 9 3 4'6 N'S). (E*cc: (C'n) 9 3 4'6.
 - 0< p< q < r≤0 1'21 (7)

 L^p (7) L^p (2) L^q (2) L^q (2) (2) (4)

. 25 2 Jentren neur O< ME) e 17'071

CNE: longér user D & SIWIST VI (12 CNE)

 $QCG , nowa & G = \bigcup_{i=1}^{\infty} (r_i - 2i + 2i + 2i + 2i) \\ m(G) \leq \sum_{i=1}^{\infty} 2 \cdot 2^{-i} E = 2E$

409 PL Non Il A, (NIXEO TE 2010) 2010 A. A=[0,1] (G npl (NO2)

 $O<\mu(A)$ O> E O> C O> C

EA+a c E[0,1]ta=[a,4+E]e] (= [a,4+e]c] e e oce, aela e inalia cela: A_{1} An A_{1} An A_{2} Ai e A_{2} is also A_{1} An A_{2} Ai e A_{2} is also A_{1} An A_{2} An A_{2} is also A_{2} and A_{3} an A_{4} and A_{2} is also A_{1} an A_{2} in A_{3} and A_{4} and A_{2} in A_{3} and A_{4} and

(8) Listing O((x,0) (1) (x,0) (2) (x,0) (3) (x,0) (4) (x,0) (4) (x,0) (6) (x,0) (7) (x,0) (8) (x,0) (9) (x

IS [NO] ($\mathbb{R} \ni X_n$, $0 < C_n$) $A_n = C_n A + x_n$ (ε) $f' \ni O \in \mathcal{N}$ and $f \models O \in$

O< M(BinI) (= InCI eqn e p' bl I yop bl and. (2 skew [In]) I $f = \infty$ n life of this proon (3) I, In Ik Marin Bo : f = 5 dn /Bo 1301 0 dn <00 01001 1 = j = n ble & 13c p'004 Di'ca wo nz . L'ai'n az L' $\int_{In} \int_{In}^{\infty} \int_{Bm}^{\infty} \int_$ $\int f = \infty$ (= (E) (A) אמריו שימוב כלאיו שו קטצים פתוחים שאכיליע לקוצה לעולה הוא קטצ פתוח (הוכתה קלה) ול X= ל ע'ח x ביתוצ ל הקטצים הפתוחים המכילים את X المادكانم د ك (نه صمار د ك هداره) =) على وكلا هدام ادا د المدر IXUIY (= G > X,y vicin d' and Iy! Ix n'll Ix E6! GOE GNO, MIC) a D INC' DA X =) LITUXI C XI MISTER 15 PIN'L G=UIX (= . In = Ix = Ix = Ix | Ix = Iy polk? UNILA . Ix ريم معدام) لحر مد مدا وي علاه و حمل مود دورراً الور عدد عاماد في مالا في مالا في المالاد U=UI: (=. 2010) E CU N'U , QU(I)≥ M(ENI) I ble n'U (>) ('0'0 '1/12) हा की प्रथम हि प्राति (अ) o'6' $\alpha\mu(u) = \alpha\mu\left(\bigcup_{i=1}^{\infty} J_{i}\right) = \sum_{i=1}^{\infty} \alpha\mu\left(J_{i}\right) \geq \sum_{i=1}^{\infty} \mu\left(E \cap J_{i}\right) = \mu\left(\bigcup_{i=1}^{\infty} (E \cap J_{i})\right) = \mu(E)$ 0< E e' pli 1'010 0< p(E), 1< 2-1 . p(u) = 2-1/4(E) <= 2) 11/2 ESU el pu le 1/2 (E) > u (E) + E e e ۲4 (L) س < 3+(E) بر Orce. E+x | E (=) y2+X=y1 (=) X=y1-y2 ep y1, y2 EE e' (=) dx EE-E) (x5) , lak $\mu(EU(E+x)) = 2\mu(E) > \frac{3}{2}\mu(I)$ pli 11/25 E+x ! E . .,, νο, μ (IU(I+x) < 3/μ(I) ! EU(E+x) ⊆ IU(I+x) PY E'CE D E NK 1/ln) NOIC L' SOL MOIN 1 POR 1) (3) E' LIBN (M') . E-E) E'-E' ! MOJO OPAIN 13'N e & I AND YGP er (54) VIV , p/1 En (-n,n) JE 200 Kp NON E-F @ (x5) N YON BY \$ 4(I) < N(ENI)

· N'EKIA

ω=μ(R)=Z' μ(E+r)=X μ(E) p/ R=WE+r 'S N'E) (G)
rea [n3'3N E 15 n'Ul' 2000] O< M(E) pol (2000) 50'6/K'0111'k M) /26, 1/662) 400 46p NON E-E (25) 0"4, pl NOU T=Pa-P2 jt TEBN(E-E) pe] sound, BN(E-E)=dol [r=0 5 yall pli (E+0) n(E+r) > e1=e2+r (= e1,e2+E A={x: |f(x)| >1} |NOJI L@ >f NPJ (h) (7) SIXA + 1 = SIXI = SIXI = SIXI = < 00 SIXA + 1 = SIXI = SIXI = SIXI = < 00 MUSOI JAC fELT ! JAF ELT . MAC f 110 = 1 PAC f 110 = 1 PAC f 1100 = 1 (x) Ign 110°1 3£ 1604 A cl" 1 33 Sifiq = Sifip = Sifip < 0 : D'ANN PEI SIFIP = SIFIP = SIFIP = TOO PK r(A) = S IfIP = S IfIP < 0 SIF19= S+S <00 15pN 65 SIF19 = 1) f 1/00 µ(A) <00 5E

אטונול בלאה שהערה היון עמלבה סלפ' ה'נה הכחית. (1) הכאו כ' במשפט אטונול בלאה שהערה היון עמלבה סלפ' ה'נה הכחית. (1) \mathbb{Z} על \mathbb{Z} על \mathbb{Z} על \mathbb{Z} על \mathbb{Z} על \mathbb{Z} בוו שוצה שלבות אלבות אלבות אלבות אלבות אלבות \mathbb{Z} בוו שוני במים שלים במינו שונה אל \mathbb{Z} במינול שונה איני במשפ שטונו איני במשפט שטונול.

1p'07, 0 <math>1/24 $(a+b)^{p} \le 2(a^{p}+b^{p})$ $0 \le a,b$ 1/24 (k) (3)

'slogi pron L° .30 p (sle

 $||f_n-f||_{p\to 0}$'s $||f_n||_{p\to 1}$ $||f_n||_{p\to 1}$

R > x,y ld F(x+y)=F(x)+F(y) onygn F: R→R n'y (21)

F(x)=dx XER Leg Rad plp 3x 1031 F pile 1201 (k)

F(rx)=rx Rax, Bar Le New In's in conso

. 1032 PC K'S 3K 133N F PKE 1677 (2)

. 1037 F 3E |F(x)|< M

ריס אני טעלי הכאת את הלצים.

 $fg \ge 1$! $J_1g : X \to (0,\infty)$ n'y . 1 $J_2g : X \to (0,\infty)$ (5) $J_2g : X \to (0,\infty)$ (5) $J_2g : X \to (0,\infty)$ (5)

 $|\mu|(\overline{X})<\infty$ if X by Notes Note (6)

פערון תרסיל 9. In → 1 5L. fn= Jal, 2, 2 1361 (1) לקוצהיות , אבן לה באיצה שווה רך על תול קבוצות סופינת. $X = V\bar{x}$ Notice of Nich of Tailor NE (2) (2) e & En SUXi e' PISIER GOEN O'Y, pli s'olo n'SUN UXi Del En ly the 3'No $f_i \rightarrow f$ $\mu(X|_{\mathbf{K}_{=1}}^{\infty}E_{\mathbf{h}})=0$'s and or of $\mu(UX_{\mathbf{t}}|_{\mathbf{E}_{\mathbf{h}}})<\frac{1}{n}$ ZI UEA = U (X: V En) Xi VEn S Xi VEm C W Xi VEm icm LS i vapl $\mu(X_i \setminus U_{E_n}) = 0$ pli $\mu(U_{i=1} \setminus E_m) < m$ (a+b) = (2 maxfa,b) = 2 (maxfa,b) = 2 max fa, b) = 2 max fa, b) = 2 (a+b) (b) (3) 3160 $L^{p} = \int |f+g|^{p} \leq \int (|f|+|g|)^{p} \leq 2^{p} (\int |f|^{p} + \int |g|^{p}) < =$ 0< p<0 /1/ n/2/10 $0 \le F_n \le (|f| + |f_n|)^r \le 2^r (|f|^{p_+} + |f_n|^p) (= F_n = |f - f_n|^p)$ (2) p IND . n IS 0 ≤ Fn ≤ Gn (= Gu=2 f(|f|f+ |fu|f) NO

ح العادم العالم العادم الع 49.5 L'Y 3k, llfnllp - llfllp JUN & SGn - SG '31 Gn,GEL' Sifult - Sifil (ap) (siss to t) p spsna Pli JFn -0 YAN (6 Par) (12) DCT CYIL VILL 11 f-fulp = (SFn) 1/ →0

x /s , p , no . F(0)=0 (= F(0)=F(0+0)=F(0)+F(0) n'er> (4) (x + (-x)) = -F(x) = 0 = F(x + (-x)) = F(x) + F(-x)n to le le , cer, rele n f(x) ple 1 sn le le le n $p'w/e \quad a,b \quad l_{s} = F(x) = F(x) = F(x) = F(x) = n F(x)$ $f(x) = f(x) = a + f(x) = a + f(x) = \frac{a}{b} + f(x)$ F(r)= F(r.1) = r. F(1) = r.d : rEB (= &= F(1) |NO] (1)3) X
ightharpoonup F(x) - X
ightharpoonup X
ightharpoonup F(x) = X
ightharpoonup Q F(x) = X
ightharpoonup Q Q = Xכציפה את אפסת איל ברציננאים ואמן בהיותית שנוה ס

|F(x)| < M (-E,E) 3X /s/e & O< M! O< E P'D PE : JUG

| f(y) | < n | f(y) | < n

F(x) = F(x) =

 $|F(x)| \leq 2n$ $0 < f : |f(x)| \leq 2n$ 0 < f

119 31Ny Rudin le 1002 NAN :50 GOEN (6)

צנומנ המיצה תרגיא סג

 $\mu = |\mu| : |\mu(X) = |\mu(X) = 2 (X, m) | 19 (iii) : |\mu(X) = 1 | (X, m) | (X, m) = 1 |$

? |D|= / Ei Ei, Ei En, |si=nf

 $F \in L^{1}(\mu)$ nU (X, y) (X, y) (X, y) (X, y) (X, y) (X, y) (X, y)

 $(2, \frac{m}{m})$ /y $n \ge 10$ $n \ge 10$ $n \ge 10$ $n \ge 10$ $n \ge 10$

 $|D|=\lambda$ = in(si). $\lambda(E)=\int |F| d\mu$ 136) (A)

CN2: φ decain φ $\chi \geq 10$ for χ' (91) really ag φ really χ (91) χ' (91) χ

(א) נצירו של מיצה חיובית ! בל ים מיציר מיובית ו בל ים ל איצור מכונאות אן מכחב מציצ (איי א) (א) ניונראוג

IVI PC Q SE A & M (CIEC M) SE (K)

12,11 1/2/ pc St 2,12 At (2)

D++ D2 L/L 3x i=1,2 nor Di L/L px (d)

D1+D2 << 1 5k i=1,2 1/24 Di << 1 pk (3)

1) 1 × / 5k P << / pk (1)

D, I P2 3k Dz Lu! P1<< /u m (1)

PEO 3K DIM pt 1 Degu pt (3)

ל אבן לאר בין ניקוצים כבין ניקוצים כבי אקבו (ען אות בי אקבו (ען אות בי ארבי באר בי ארבי בי ארבי און בין בין אר בין אות העבוצות העבוצות העבוצות העבוצות העבוצות העבוצות בעבור בין ארבים בי

```
wer chies acid H. ( Aacil ! der (1805)
                               Pg > μω g∈L<sup>q</sup> ναν + q = 1 py + <q, <∞ 1'0' (1)
                                                                                                                               of (f) = Sfg pue Lo 14 Dispuss in
                                                                                                                                            110g11≤ 11g11q e1 p10n $ e 1607 (E)
                f=h |q|2" à reunent g=h.|q| 1200 (2)
                                                                                                                                                                                                                                                                   [ q-1= 4
    (ω) «ο'ρι ε' *(2°) « Φ: Lq ( (w) ) πο ( (ω) ) (ω).
                \ell q (L^p)^* ' n', p + q = 1 + p, q < \infty, 200 n' N = 1 N N (Z, M, W) n' U (Z).
                 D(E)= 4( /E) Eem 15 130 4= $ 4 p g & 4 p
                                                                                                                                                                                                              (t) 60 x1 B Q N'En NC/CC N
                                            D=gdu ( 2) gEL1(µ) »"pe 1001 D<<4 (2) (2)
                                                                                                  \int g \cdot s \, d\mu = \ell(s) \qquad s \qquad \text{if so the sign } (\xi)
                                                                           [ ( ( ) ) | g NAGEN 2) GIGE'IR NE'LIR
       The pish of f \in \mathcal{L}^{\infty} of f \in \mathcal{L}^{\infty} where f \in \mathcal{L}^{\infty} is the property of f \in \mathcal{L}^{\infty} o
            p'3>/1N 4 ! & e 1900 Loo 14 (DION) P30 Loo 1 4
                                                                                                                                                                      [ ... 5 (d) 0"4] Lo 14
                   (c) cun lich lack g = g = 1: Long g = g = g
                                                                                        fn= JEnh. 1919-1 NOJ, lhl=1 seks
                                                                  \int_{E_{n}} |g|^{q} \leq ||\varphi|| \left( \int_{E_{n}} |g|^{q} \right)^{1/p} \approx ||f|| \int_{E_{n}} ||\varphi||^{q} = ||\varphi||^{q} = ||f||^{2p} 
(?) - - - 0 = ||f|| \int_{E_{n}} ||f||^{2} = ||f||^{2p} = ||f||^{2p} 
(?) - - - 0 = ||f||^{2p} = ||f||^{2p} = ||f||^{2p} = |f||^{2p} 
                      \mathcal{L}^{\infty} Ly regard notally \mathcal{L}^{\infty} \mathcal{L}^{\infty} \mathcal{L}^{\infty} \mathcal{L}^{\infty} \mathcal{L}^{\infty} \mathcal{L}^{\infty} \mathcal{L}^{\infty}
                                                                              ال ١٥ ا ١٥ ا ١٥ ا ١٥ ا ١٥ ا
         د"رر.
                               An(E)= (1f-fn/>E) > WIDDO (?DNP) f=0 'D WD I IDDO ]
0= u(linsup Ei) <= $ u(Ei)<0 '> 10055 . dx: fn(x) +>0} ?1
```