(i) $5^{10^{6}}(\bmod 144) g(i i)(21432,6666) \rightarrow 2 x$ [1]
(iii) $(6188,4709)$ (iv) $2^{90}(\bmod 91)$
(i) $7 x=23(\bmod 101) \quad$:alkials d vad 2
(ii) $12 x+21 y=27$
(iii) $22 x=11(\operatorname{mad} 121)$
$.6 n^{2}-1 p+3 x n$ iup n ofd $301 n^{5}-n, n$ for an (3)
 $x^{n}-y^{n}=(x-y)\left(x^{n-1}+x^{n-2} y+\ldots+y^{n-1}\right)$ isk). (Mersemne if rredrep

$$
\begin{equation*}
\left.x^{n}+y^{n}=(x+y)\left(x^{n-1}-x^{n-2} y+x^{n-3} y^{2}+\ldots+y^{n-1}\right) \text {, 2ve } n-f: \text { s, }\right) \tag{6}
\end{equation*}
$$

 piosest and fo kio v है

 (oons $f(x)$ vetce is) $\left(a_{0}, \ldots, d_{a}\right)=$?

$$
\begin{aligned}
& \frac{\varphi(a b)}{d}=\frac{\varphi(a) \varphi(b)}{\varphi(d)} \text { sk }(a, b)=d \quad \text { deu asis } B \\
& \text {. .fflc yild }=\varphi
\end{aligned}
$$

$$
\frac{n \varphi(n)}{2}: \delta \quad-10 \quad n-\delta \text { piss }
$$

$\varphi(d) \mid \varphi(n)$ iK $d(n$ pke ज्ञात (U)

$$
\left\{\begin{array}{l}
x \equiv 1(2) \\
x \equiv 1(5) \\
x=3(4) \\
x \equiv 4(5)
\end{array}\right.
$$

 9.7 finge, loson , loo pok g-t final 3-7

 $\lim \frac{1\left(n_{i}\right)}{r_{i}}=1$ o $N \rightarrow n_{i} \quad G \quad \rightarrow \rightarrow 0$ Bid (ii) $\varphi(n) \leq k$

$$
\lim \frac{\varphi\left(n_{i}\right)}{n_{i}}=0 \text { pr } \quad 3301
$$

 nomb 的

1 (cx)-n'xan my
(i) $5^{10^{6}}(\bmod 144)=$?

$$
a^{\varphi(n)} \equiv 1(\bmod n) \quad \text { D"pN1 } a \in \mathbb{A}_{n}^{*} \quad b d e \text { ria' }
$$

$$
\left((5,144:=1 \text { pd } 5 \times 144 \quad-1) e_{0}\right) 5
$$

$$
\begin{align*}
& 144=2 \cdot 72 \cdot 2 \cdot 2 \cdot 36=2 \cdot 26 \cdot 6=2^{4} \cdot 3^{2} \\
& \varphi(144)=144\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)=\frac{144}{2} \cdot \frac{2}{3}: 48 \quad<5 \\
& \left.a^{\varphi(n}: a^{q}\right)^{9(n)} \cdot a^{r} \equiv q \varphi(n)+r \quad a k \quad a\left(0 b_{1}, a \gamma\right) \\
& a^{r}(\bmod n)
\end{align*}
$$

$$
\frac{\frac{20833}{1000000148}}{\frac{960}{400}} \frac{\frac{34}{160}}{\frac{144}{160}} \frac{144}{16}-1000000=20833.48+16
$$

$$
\begin{aligned}
& \Rightarrow 5^{10^{6}}(\bmod 144) \equiv 5^{16}(\bmod 144) \\
& \equiv\left(5^{4}(\bmod 144)^{4} \equiv(625(\bmod \mu u))^{4}\right. \\
& \equiv\left(4 9 ^ { 2 } (\operatorname { m o d } 1 4 4 1) ^ { 2 } \equiv \left(2401(\bmod 14 u)^{2}\right.\right. \\
& \equiv 97^{2}(\bmod \operatorname{lun}) \equiv 9409(\bmod 44) \\
& 625=4.144+49 \\
& \equiv 49(\bmod l u n) \\
& 2401=16 \cdot 144+97 \\
& 9409=65 \cdot 144+49
\end{aligned}
$$

(ii) $(21432,6566)=$?

$$
\begin{aligned}
& 21432=3 \cdot 6666+1434 \\
& 6666=4 \cdot 1434+930
\end{aligned}
$$

$$
\begin{aligned}
& 1434=1 \cdot 930+504 \\
& 930=1 \cdot 504+426 \\
& 504=1 \cdot 426+78 \\
& 426=5 \cdot 78+36 \\
& 78=2 \cdot 36+6 \\
& 36=6.6 \Rightarrow(21432,6666)=6
\end{aligned}
$$

(iii)

$$
\begin{aligned}
(6188,4709) & =2 \\
6188 & =1.4709+1479 \\
4709 & =3 \cdot 1479+272 \\
1479 & =5 \cdot 272+119 \\
272 & =2 \cdot 119+34 \\
119 & =3.34+17 \\
34 & =2 \cdot 17 \Rightarrow(6188,4709)=17
\end{aligned}
$$

(iv)

$$
\begin{gathered}
\varphi(91)=6 \cdot 12=72 \quad<\quad 91=7 \cdot 13 \\
2^{90}(\bmod 91) \equiv 2^{72+18}(\bmod 91) \equiv 2^{18}(\bmod 91) \\
\equiv(1024 \bmod 91)(256 \bmod 91) \\
\equiv(23 \bmod 91)(74 \bmod 91) \\
\swarrow \\
\vdots 1824=11 \cdot 91+23 \\
256=2 \cdot 91+74
\end{gathered}
$$

(i) $7 x \equiv 23(\bmod 101)$

$$
x_{0}, x_{0}+\frac{n}{d}, \ldots, x_{0}+(d-1) \frac{n}{d}
$$

m er -130 $7 x \equiv 23(\bmod 101)$

$$
7 x+101 m=23
$$

$101=14 \cdot 7+3$
$7=2 \cdot 3+1$
$3=3 \cdot 1$

$$
\begin{aligned}
1 & =7-2 \cdot 3=7-2(101-14.7): \\
& =7+2(14 \cdot 7-101)=29.7-2.101
\end{aligned}
$$

0 3Cl $x=23.29=667 \quad F \quad x_{0}=29 \quad F$

$$
667+101 k \quad \text { on r!yn00 }
$$

(ii) $12 x+21 y=2 y$

$$
4 x+7 y=9 \quad \text { aklund morion }
$$

ind onfes rimand o.3n ynk (ox aclewn

$$
\begin{gathered}
x, y \in \mathbb{Z} \Rightarrow \quad 9-4 x \equiv 0(\bmod 7) \\
\Rightarrow-4 x \equiv-9(\bmod 7) \Rightarrow 3 x \equiv 5(\bmod 7) \\
x=4 \quad k \ln (7 \operatorname{lnN}) \text { an: mad e pdyex } 7
\end{gathered}
$$

$-Q$ KONI $x=4+7 k \quad$ DOBN x ad
(iii) $22 x \equiv 11(\bmod 121)$

pIND $\quad d=(a, n)=11 \quad$ st $\quad n=121 ; \quad b=11$

$$
22 x+121 n=11 \quad-Q \text { p) } n-!x
$$

\rightarrow Qox $14 \quad 2 x+11 n=1$
にiзn(pooor
$2 \cdot 6-11=1$ e, axe) In $\quad(2,11)=1$ to

$\{6+n \cdot 11+121 k: 0 \leqslant n \leqslant 10, k \in \mathbb{Z}\}$ bK on ज1ノาภอง

- ¿S an anonpd ricy
: onp 3 1no) $3 / n^{5} n \quad-\ln \ln (9)$
$n^{s} \equiv 0(\bmod 3)<t \quad n \equiv 0(\bmod 3)-$
$n^{5}-n \equiv 0(\bmod 3)<F$

$$
\begin{gathered}
n^{5} \equiv 1(\bmod 3)<5 \quad n \equiv 1(\bmod 3) \\
n^{5}-n \equiv 0(\bmod 3)<5
\end{gathered}
$$

$$
n^{5} \equiv 32(\bmod 3) \equiv 2(\bmod 3)<5 \quad n \equiv 2(\bmod 2)
$$

$$
n^{5}-n \equiv O C \bmod
$$

$$
31 n^{5}-n
$$

OTON OD

$$
n^{5} \equiv 0(\bmod s) \quad \leftarrow \quad n \equiv 0(\bmod 5)
$$

$$
n^{5} n \equiv 0(\bmod 5)
$$

$$
n^{5} \equiv 1(\bmod 5) \quad<\quad n=1(\bmod 5)
$$

$$
n^{5}-n \equiv 0(\bmod 5)
$$

$$
n^{5} \equiv 32(\bmod 5) \equiv 2(\bmod 5)<t \quad n \equiv 2(\bmod 5)
$$

$$
n^{5}-n=0(\bmod 5)
$$

$$
n^{5} \equiv 243(\bmod 5)=3(\bmod 5)<5 \quad r=3(\bmod 5)
$$

$$
r^{\circ}-r \equiv 0(r-d)=1
$$

$\left.n^{5} \equiv 1 C 2(\bmod s) \equiv 11 \bmod 5\right) \quad-\quad r \equiv 1 \bmod$

$$
n^{5}-n \equiv 0(\bmod 5)
$$

- $1 \times 2005 r^{5}-n$

DTN (DN

$\therefore c^{5} k n^{2}$ pdo disk n ane $2 \ln n^{2}-1 \quad 0$ mn

$$
\begin{aligned}
& 301 n^{5}-n \quad n \text { beln } \quad 311 \\
& 51 n^{5}-n \text {, } 3 n^{5} n, 2 \ln -n, e \text { n.213(pOON } \\
& 30=2 \cdot 3 \cdot 5 \ln -n \text {, k } 310 \text { sk me }
\end{aligned}
$$

त) $1,0 x \cdot n^{2} \equiv 2(\bmod 3)<F \quad n^{2}-1 \equiv 1(\bmod 3)-$
炏

$$
\begin{aligned}
& \text { be } n \neq 1(\bmod 3) \quad n^{2} \equiv 1(\bmod 3) \\
& n \neq 0(\bmod 3)-Q, \| \rho) \quad n^{2} \equiv 1(\bmod 3)
\end{aligned}
$$

$k\left(\operatorname{\rightarrow r} \operatorname{nrt}^{2} \equiv n^{2}(\bmod 3)<n^{2}-1 \equiv 2(\bmod 3)-\right.$

$$
6 \ln ^{2}-1 \quad n \rightarrow \operatorname{Din} \text { pl }
$$

 [a-r migeak foker ski $n=1$ - 0 aph (Go]

$$
x^{n}-y^{n}=(x-y)\left(x^{n-1}+x^{n-2} y+\ldots+x y^{n-2}+y^{n-1}\right) \quad \text { orc }
$$

$$
\begin{aligned}
a^{n-1}+\cdots+a+1>1 \quad & =a \pm c \quad 1<n \quad 10 x \\
a & =2 \quad<\quad a-1=1
\end{aligned}
$$

$$
\begin{aligned}
& p=a^{k \cdot l}-1 \quad\left(a^{k}\right)^{l}-1= \\
& \\
& =\left(a^{k}-1\right)\left(\left(a^{k}\right)^{l-1}+\left(a^{k}\right)^{l-2}+\ldots+a^{k}+1\right) \\
& \text { SI } a^{k}=2<F \quad a^{k}-1=1 \quad \text { N0, }
\end{aligned}
$$

$$
\left[a-1 \text { acok fork Cus } r=1-C_{\text {and }}(\sim 0]\right.
$$

$$
\text { OPN } x: y \text { brgn } \because S C 1<n \text { ox }
$$

$$
x^{n}+y^{n}=(x+y)\left(x^{n-1}-x^{n-2} y+x^{n-3} y^{2}-\cdots+y^{n-1}\right)
$$

$$
p_{n-1}=a^{n}+1=a^{n}+1^{n} \quad(a+1)\left(a^{n-1}-a^{n-2}+0^{n-3} \cdots-a+1\right)
$$

 lok $\rightarrow \therefore 1$ bo of os $a=0$ bk $a+1=1$ oc

$$
\begin{aligned}
& =0 x \\
& \underbrace{a^{n-1}-a^{n-2}}_{>0}+\underbrace{0^{n-z}-a^{n-1}}_{>0}+\cdots+\underbrace{a^{2}-a}_{>0}+1>1>1 \infty+1
\end{aligned}
$$

NK $m \geq 1$. 0 i $2 m$ ab in n nono pl \rightarrow IOt, ank 2 Le ont n bx $m=1$

 phe , cus a^{n}, sink ane $(p=2$ - in $a=1$ nijek)(Dunow cls $p=a^{n}+1$

$$
\ell^{n} \text { Le minn } \operatorname{spfn} \pi \log =U(n)
$$

$$
\begin{equation*}
\nu(n)=\prod_{i=1}^{l}\left(\alpha_{i}+1\right) \tag{2}
\end{equation*}
$$

$$
\nu(m n)=\nu(m) \nu(n) \quad \text { sk }(m, n)=1 \text { wce }
$$

$$
\nu(m n)=\nu(m) \nu(n) \quad \text {, } \quad \nu \quad(m, n)=1 \quad \text { olce }
$$

pos ak ine nitil lyonnmer dNitas (Dx

$$
n=p_{1}^{\alpha_{1}} \cdots p_{e}^{\alpha_{l}} \quad m=q_{1}^{\beta_{1}} \cdots q_{k}^{\beta_{k}}
$$

$\left.p^{\prime}\right)\left(p_{1}, \ldots, p_{l}, q_{1}, \ldots, q_{k} b\right.$ sk $(m, n): 1$ ok jk ski $m n=p_{1}^{\alpha_{1}} p^{\alpha_{k}} q_{1}^{\beta_{1}} \cdots q_{k}^{\beta_{k}} \quad$ ph

$$
\nu(m n)=\prod_{i=1}^{l}\left(\alpha_{i}+1\right) \prod_{i=1}^{n}\left(\beta_{i}+1\right) \cdot \nu(n) \nu(m)
$$

$$
\begin{aligned}
& \left.\left.\nu(n)=\prod_{i=1}^{l}\left(\alpha_{i}+1\right) \quad J K \quad n=p_{1}^{\alpha_{1}} \cdots p_{e}^{\alpha_{l}} \quad \Delta<Q \cap^{\prime}\right)\right)
\end{aligned}
$$

ynk $10 x, y=\frac{1909-19 x}{20}$ yovn rynon \mathbb{R} \&ゅ

$$
\Rightarrow \quad 19 x=1909(\bmod 20)
$$

$$
\Rightarrow \quad 19 x+20 n=1909
$$

$$
20 k>1909<f \quad-1909+20 k>0
$$

$$
k \geq 96 \quad<7 \quad k>95.45<7
$$

$$
1909>19 k \quad<5 \quad 1900-19 k>0
$$

$$
k \leq 100 \quad \notin \quad k<100.474<6
$$

os ninno pr

$$
\begin{array}{ll}
(11,85) & (71,28) \\
(31,66) & (91,2) \\
(51,47) &
\end{array}
$$

$$
\begin{aligned}
& \cdots p x \quad p=-1909 \quad 1 g \cdot(-1+20.1 \quad \text { pin }
\end{aligned}
$$

$$
\begin{aligned}
& (-1909+20 k, \quad 1909-19 k)
\end{aligned}
$$

$$
\begin{aligned}
& \text { - } \quad \text { - } \\
& 1909-19 x=0(\bmod 20)
\end{aligned}
$$

$$
\begin{aligned}
& \text { p) } d, k \in \mathbb{Z} \text { w.peny } \quad f(x)=\sum_{i=0}^{n} a_{i} x^{i} \in \mathbb{Z}[x] \\
& \text { jke nilj jo0, , d-1 br a } \mid f(k+j)-C \\
& m \in \mathbb{A} \text { br d } \mid f(m)
\end{aligned}
$$

$\operatorname{mb} c \leq j \leq d-1$ mod $\quad m=d q+k+j \quad$ ser a a a

$$
\begin{aligned}
& f(m)-f(k+j)=f(q d+\alpha)-f(\alpha) \text { bc } \alpha=k+j \quad \text { (k) } \\
& 36 \\
& f(m)-f(k+j)=\sum_{i=0}^{n} a_{i}(q d+\alpha)^{i}-\sum_{i=0}^{n} a_{i} \alpha^{i}= \\
& =\sum_{i=c}^{n} a_{i}\left[\sum_{j=0}^{i}\binom{i}{j}(q d)^{j} \alpha^{i-j}\right]-\sum_{i=0}^{n} a_{i} \alpha^{i} \\
& =\sum_{i=0}^{n} a_{i}\left[\alpha^{i}+\left[d \cdot \sin +\sum_{i=0}^{n} a_{i} \alpha^{i}\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i=0}^{n} a_{i}\binom{\operatorname{con} k}{d i \cos k}
\end{aligned}
$$

．jn＂o pr d－oprane qoon at
，Gen an on＇ $f(x)=11 x^{4}+3 x^{2}+5 x^{2}+7 x+1 \quad$ 少（00 رNN） ，$a \in \notin$ bdenkiff ineb $k: d=2 \quad$ at

$\varphi(a b)=\varphi(a \cdots b$

$$
\begin{aligned}
\frac{Q(0,)}{d} & =\frac{a b \pi s-\frac{1}{1}}{1}= \\
& =\frac{a \cdot \pi\left(1-\frac{1}{p_{i}}\right) \pi\left(1-\frac{1}{r_{i}},\right) b \pi\left(1-\frac{1}{p_{i}}\right) \pi\left(1-\frac{1}{r_{i}}\right)}{d \cdot \pi\left(1-\frac{1}{p_{i}}\right)}: \\
& =\frac{\varphi(a) \varphi(b)}{\varphi(d)}
\end{aligned}
$$

$$
\frac{n \cdot \varphi(n)}{2}-(n) \| \cdot(
$$

$$
\frac{2 . \varphi(2)}{2}=\varphi(2)=1 \quad 0 . p \times N 1 \quad \ln 31
$$

$$
e^{\prime}(n)=p_{1}^{r_{1}-1}\left(p_{1-1}\right) \ldots p_{k}^{r_{k}-1}\left(p_{k}-1\right)
$$

$(n-a, a)=1$ or $\operatorname{yc}(a, n)=1$ oke o ob, , n pd $d \ln$ bk $d \ln -a$ dla ok ine $d=1 \quad$ pf $\quad d \mid(a, n)$

 $\frac{n \varphi(n)}{2}$
$\varphi(d) \mid \varphi(n)$ sk $d \ln \quad 0 k C$ nijl (11)
sk $\quad d=p_{1}^{\gamma_{1}} \ldots p_{l}^{\gamma_{l}} \quad \vdots \quad n=p_{1}^{\alpha_{1}} \ldots p_{l}^{\alpha l} q_{1}^{\beta_{1}} \cdot q_{k}^{\beta_{k}} \mu^{(N O)}$

$$
\begin{aligned}
\frac{\varphi(n)}{\varphi(d)} & =\frac{n \cdot \prod_{i=1}^{l}\left(1-\frac{1}{p_{i}}\right) \pi\left(1-\frac{1}{q_{i}}\right)}{d \cdot I\left(1-\frac{p_{i}}{1}\right)}= \\
& =p_{1}^{\alpha_{1}-\gamma_{1}} \cdots p_{l}^{\alpha_{l} \cdot r_{l}} \cdot q_{1}^{\beta_{1}-1}\left(q_{1}-1\right) \ldots q_{k}^{\beta_{k}-1}\left(q_{k}-1\right) \in \mathbb{Z}
\end{aligned}
$$

1) $x \equiv 1(\bmod 2)$

2) $x \equiv 1(\bmod 3)$
3) $x \equiv 3(\bmod 4)$
4) $x \equiv 4(\bmod 5)$

$$
\begin{align*}
& p(k \neq 2(\bmod 3), k \neq \circ(\bmod 3) \tag{2}\\
& k=3 k+1 \quad \notin \quad k \equiv 1(\bmod 3) \quad \text { ano } \\
& x=4(3 k+1)+3=12 k+7
\end{align*}
$$

$k \neq 3(\bmod 5), k \neq 2(\bmod 5), k \neq 0(\bmod 5),(4)$ or $k \equiv 1(\bmod 5) \quad$ กวา) $p(k \neq 4(\bmod 5)$

$$
x=12(5 k+1)+7=60 k+19<k=5 k+1 \quad<
$$

 - pla. 19 (er rince, $a x$ pi3a (p, 33

$$
\begin{array}{rlrl}
19 & \equiv 1(\bmod 2) & 19 & =2 \cdot 9+1 \\
19 & \equiv 1(\bmod 3) & 19 & =3 \cdot 6+1 \\
19 & \equiv 3(\bmod 4) & 19 & =4 \cdot 4+3 \\
19 & \equiv 4(\bmod 5) & 19+3 \cdot 5+4
\end{array}
$$

$$
r x 1 \quad \therefore=-6, \cdots-000: 0 \text { sk. } a_{r+1} \equiv \text { ormods }
$$

st $a_{1} \ldots a_{n} \equiv 0(\bmod 3)$ at $a_{1} \ldots a_{n+1}=100 \ldots a_{r}+a_{m}$

ion $3 \cdot 1301 /$ जिe s: $a_{1} \ldots a_{n+1} \equiv 10(\bmod 3)$ sc $\left.a_{1} \ldots a_{n+1} \equiv 2 \bmod 3\right)$ sk $a_{1} . . a_{n}=2(\bmod 3) x$ on ndon

p: 3 ilas 0 en áx susk $a_{1} a_{n} \equiv 2(\bmod z=$

$$
a_{1} a_{n+1} \equiv 21(\bmod =1=0(m o d z
$$

co non ax sk $a_{1} a_{n}=0(\bmod 3) x \quad a_{n+1} \equiv 2(\bmod 3)$

$$
a_{1} \ldots a_{n+1} \equiv a_{n+1}(\operatorname{rod} 3) \equiv 2(\operatorname{rot} 3) \quad 3113+2
$$

3 :Sin 0 in a sic $a_{1} \ldots a_{n}=1(\bmod 3)$ or
S $0, \ldots a_{n} \leq 2(\bmod 3) \operatorname{ma} a_{1} \ldots a_{n+1} \equiv 12(\bmod 3) \equiv 0(\bmod b)$

Sk =nn invek ink nnomo
se yex $2<p$ רing $m=2 p^{\alpha}$ is $m=p^{\alpha}$ oke (14) (14)

 $x-1$ be $x^{2}-1=(x-1)(x+1)=0$ onpord $\not Z_{m}$ - os
 $p^{\alpha}-($ and onk $x-1, x+1$ bk, $(k, m) \neq 1$ eto $k p$ $\therefore x+1=p k$ NNTS $p|x-1 \quad \vdots p| x+1$ pd $p n+1=x=p k-1 \quad \& \quad x-1=p n$
 . $x= \pm 1 \quad \Delta=C O K$ o) C e ank phn ik pi
 "№.
 . $(x-1)(x+1)=2 p^{\alpha} k$-e $n^{\prime} \|$, م"ो

 $x-1=0, A_{m}-a 20 n k x, x-1=m n \quad j k, 2 p^{\alpha}=m$

$-e p \quad n \in N \quad(0,00$ non ple $k \in \mathbb{Z}$ blean) (i) 15)

$$
\varphi(n) \leq k
$$

 OC, , $03 . \varphi(p)=p-1 \geq \sqrt{p}$

sk $\varphi\left(p^{\alpha}\right)=p^{\alpha-1}(p-1) \geq \sqrt{p^{\alpha}}$

$$
\varphi\left(p^{\alpha+1}\right)=p^{\alpha}(p-1)=p^{\alpha-1} p(p-1) \geq p^{\alpha-1}(p-1) \sqrt{p} \geq \sqrt{p^{\alpha}} \sqrt{p}=\sqrt{\beta^{2}}
$$

for,$\varphi\left(p^{\alpha}\right) \geq \sqrt{p^{\alpha}} \quad \alpha \in N$ bd $3 \leq p$ bl $\quad 3 n \rightarrow 0<F$
 $\varphi\left(3^{\alpha}\right) \geq \sqrt{3^{\alpha}} \quad \varphi\left(2^{\alpha}\right) \geq \sqrt{2^{\alpha}} \quad$ plk $\ln k N \quad \varphi(n) \geq \sqrt{n}$ apAN
 $\varphi(3 k)=\varphi(3) \varphi(k)=2 \varphi(k) \geq 2 \sqrt{k} \geq \sqrt{3 k}$, $k \quad 3 k($ or 2 onnc $k-\lambda Q$ N
ennent su $k=p^{\alpha}$ - Cond nond pionsk 200 onk k-ook

$n_{i}=p_{i}^{i} \operatorname{len}\left(\lim _{i \rightarrow \infty} \frac{\varphi\left(n_{i}\right)}{n_{i}}=1 \cdot 0, \quad n_{i} \in \mathbb{N}\right.$ (e, 30 e (ii)

$$
\frac{\varphi\left(n_{i}\right)}{n_{i}}=\frac{p_{i}^{\prime-}\left(p_{i} \cdot \prime\right.}{p_{i}^{c}}-\frac{p_{i-1}}{p_{i}}=1-\frac{1}{p_{i}} \longrightarrow 1
$$

$$
\begin{aligned}
& \left.\sum_{i=1}^{\infty} \frac{1}{p_{i}}=\infty \quad-C \infty \cdot \gamma 3 \cdot 1 n\right) k \cdot n,
\end{aligned}
$$

 $a \in F$ bo pe D-k kn

 p.n pl $1 \leq i \leq k$ br $g \equiv 1\left(\bmod f_{i}\right) \quad$ u

$4 k+1$ Nivis piJlels dostc eice astic (1 $p_{1}, \ldots, p l a p$ a $(-1)^{(p-1) / 2}=\left(\frac{-1}{p}\right): e \quad$ iras $\underbrace{i+1}$
\therefore plpas $p_{i} \equiv 1(4)$ pr rejera
Gall pishns p prolen paid and $N=\left(2 p_{1} \ldots p l\right)^{2}+1$
$8 k+7$ av3-d piscera forte ee alt (2

$$
N=\left(4 p_{1} p_{2} \cdots p_{2}\right)^{2}-2 \cdots \cdots \quad\left(\frac{1}{p} \rightarrow>\right)=(-1)^{\left(p^{2}-1\right) / 8} \text { ie } 1 / 5 b \text { ish) }
$$

$$
-p \equiv 1(\delta) \text { त्रांan p隹l }
$$

Nol- , wh poe fes rips sube pfe $a \in \mathbb{Z}$ kor (3 $\left(\frac{a}{p}\right)=-1$ ic ps p p'jers fiolk e.e

$$
120(4
$$

$$
p \equiv(14) \quad \text { a }(p|f 13 / \sqrt{1}| \quad(-1)-\pi
$$

 (c). $15-\mathrm{e} P$

$$
\left(\frac{113}{d 97}\right),\left(\frac{215}{761}\right),\left(\frac{514}{1093}\right),\left(\frac{401}{757}\right)
$$

po: : $p t=1+s^{2}$: $p \quad t-1 \mathrm{~s}$, pisdu
, los) $\mathbb{Z}[i]$ 《n? weat wh p-e 100 d

: 5,1$)$ pofe $b-1$ a lek) $p=a^{2}+b^{2}$ is opald
. (8 or per poss) id pil $\alpha, \beta \in \mathbb{E}$ li], $p=\alpha \cdot \beta$ ple)

- airs's avo lulc a plejil ok.

Fing fisex fit i I pidax oflat 3 dide fix (13

$$
(x \rightarrow \infty \rightarrow \sqrt{6}-138+31 x)=215 \cdot x \text { an }
$$

$$
\begin{aligned}
& \text { - } 0.05 \quad \rho^{\prime} 2 x+23 \\
& \left.a_{1} x_{1}+\ldots+a_{n} x_{n}=b \quad n\right) l,(k \quad(l \\
& \text { pijer } \mathcal{F}_{N} \text { mind } \text { i. } a_{1, \ldots,} a_{n}, b \in \mathbb{Z} \text {;ek }
\end{aligned}
$$

$$
o<m \in \mathbb{Z} \text { ro } m \text { 1店/d oind }
$$

$$
\begin{aligned}
& \left(x^{2}-13\right)\left(x^{2}-17\right)\left(x^{2}-221\right)=0(\operatorname{lnol} m)
\end{aligned}
$$

 :
(*) $f(x, y)=a x^{2}+2 b x y+c y^{2}$

－0，1 ale phas ar use fist $f^{\prime}(x, y)=\alpha x^{2}+\beta y^{2}$

 ofses p＇sk－p？

2以ア $\frac{2}{3}$ 200j入 ale pen（6

$$
0 \leqslant a_{i}<5 \quad, \sum_{i=0}^{\infty} a_{i} 5^{i},
$$

$$
x^{p}=1
$$

$\alpha \equiv 1(\bmod (p): v)^{3} \quad \alpha \in \widehat{\mathbb{Z}}_{p} \quad \exists \quad p \neq 2$ re（ 9

$$
-\hat{\mathbb{E}}_{p-p} a_{\infty} \text { e' } \alpha-\gamma u
$$

we er $\alpha-\delta$ sse $\alpha=\sum_{n=0}^{\infty} a_{0} p^{n}$ pr ip $C^{\prime \prime}$

