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II. Subitizing

Koehler in 1940s concluded that birds have two basic numerical abilities:

1. a visuo-spatial sense, enables them to assess the number of items presented simultaneously in a group

2. assessment the number of events that occur successively, or spread out in time. 
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	Pigeons were trained, for instance, to approach a strip of cardboard on which there were two sets of grain that differed in number. A bird had to choose the set containing a particular amount (e.g., 4 grains) and was allowed to eat this set as a reward. (See Figure 1) To prevent it eating the other set (of say 3 grains), Koehler shooed the bird away if it reached toward the incorrect group. 


The experimenter hid behind a screen, out of sight of the bird. The punishment of shooing a bird away was delivered in a standardized fashion by a mechanical device. 

Other studies looked at birds’ ability to "act on number", i.e. to respond sequentially until a specific number of items had been obtained or events had been completed, e.g  to eat only a given number of seeds from a much larger number they saw. If they were required to take exactly 4 seeds their behavior was scored as correct if they walked away after eating the fourth food item, but they were automatically shooed away if they tried to eat a fifth item. The accuracy of their performance was tested on trials in which this mild punishment was withheld. 

Koehler's explanation: animals learn what he called "unnamed numbers", so that four items might be represented by a series of inner marks or tags. He also noted that different species showed remarkable similarities in the limits of their ability to discriminate numerosity. Mostly the accuracy of their performance broke down when the number of items or events they had to respond to was between 5 and 6, or 6 and 7.

Two classes of models for nonlinguistic numerical representational systems have received empirical support: 1) object file models and 2) analog magnitude models.

1) In the object file model, an infant or monkey forms a representation with one symbol for each individual in the set and compares representations by computing one-to-one correspondences between sets. Such representations are limited to the number of individuals that can be held in short-term memory at any one time, which is 3 or 4. It could be homogeneous (e.g. | for 1; || for 2; ||| for 3; ||| for 4) or abstract, like letters in Hebrew alphabet. These representations contain no symbols that function as numerals, and there is no counting process. 


2) In analog magnitude models, number is represented by a continuous quantity, akin to a number line. Representations are compared by the same sorts of operations that compare lengths, durations, volumes, and other representations of continuous quantities. This representation is not precise. It seems to be used for larger numerosities, but it is needed for smaller ones to be homogeneous over numbers.  

The next series of experiments with monkeys can be put either in the numerosity or subitizing category. They are similar to experiments with birds described in the previous section, but the authors think in terms of individual numbers rather than comparison between numerosities.  Brannon and Terrace (1998) showed that monkeys can discriminate exemplars of the numerosities 1 to 4 when nonnumerical cues are controlled (they touched stimuli in the correct order).
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Fig. 1. (A) Exemplars of the seven different types of stimulus sets: equal size (elements were of the same size and shape); equal surface area (cumulative area of elements was equal); random size (element size varied randomly across stimuli); clip art (identical nongeometric elements selected from clip art software); clip art mixed (clip art elements of variable shape); random size and shape (elements within a stimulus were varied randomly in size and shape); and random size, shape, and color (same as random size and shape, but with background and foreground colors varied between stimuli). All types were used with equal frequency in both four-item training and four-item testing.
An important question about the numerical ability of animals is whether they represent ordinal relations among numerosities or, instead, represent each numerosity as a nominal category. To study this monkeys were taught to discriminate numerosities 5 to 9.  
The size and the form of the elements within each stimulus was also varied to eliminate size or surface area as a non-numerical cue (Fig. B). 
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	(B) Examples of stimulus sets used in the pairwise numerosity test. The smaller numerosity had a larger cumulative surface area than the larger numerosity on 50% of all trials, and elements within each stimulus were identical in size, shape, and color.



Results for two monkeys Rosencrantz and Macduff :

[image: image5.wmf]
(A) Percentage of correctly completed trials during the first session for each of 35 training stimulus sets in blocks of five sessions. Performance was above chance on the training sets and improved across blocks 

(B) Percentage of correctly completed trials on the 150 test sets. Performance exceeded chance levels There was no decrement in performance from the last five training blocks to the five transfer sessions. The percentage of correctly completed trials varied across stimulus types (equal size, 60%; equal surface area, 57%; random size, 36%; clip art, 42%; clip art mixed, 42%; random size and shape, 32%; random size, shape, and color, 24%.).
Monkeys represent the ordinal relations among the numerosities 1 to 9: there was positive relation between accuracy and numerical distance like in humans. This relation has been interpreted as evidence that numerosities are  represented in an analog manner.

Monkeys spontaneously represent the numerosity of novel visual stimuli and extrapolate an ordinal rule to novel numerosities.  

[image: image6.wmf]
Effect of numerical distance on accuracy in the pairwise test. A numerical distance of 1 includes all pairs of adjacent numerosities (1 versus 2, 2 versus 3, and so forth.), whereas a numerical distance of 8 includes only the pair 1 versus 9. The dashed lines represent the best-fit linear models.

The process is unknown. Two possibilities:

1. use of a counting algorithm to judge the  relative magnitude of large numerosities. 

2. use a one-to-one correspondence matching algorithm whereby  the elements of each stimulus were compared.

Counting Criteria (Gelman, R. & Gallistel, C. R. (1978))

1. The one-to-one principle 

Each item in a set (or event in a sequence) is given a unique tag, code or label so that there is a one-to-one correspondence between items and tags. No item or tag may be omitted, nor conversely used more than once. In pacemaker-accumulator models of counting, the code or tag is equivalent to the current value of pulses in the accumulator or in working memory. In the neuronal filtering model, the tag corresponds to the particular numerosity detector that has been activated.

2. The stable-order principle 

The tags or labels must always be applied in the same order (e.g. 1, 2, 3, 4 and not 3, 2, 1, 4). This principle underlies the idea of ordinality – that the label "3" stands for a numerosity greater than the quantity called "2" and less than the amount called "4". In counting models this ordering of tags is achieved by the progressive accumulation of pulses, or the increasing thresholds that must be crossed for different numerosity detectors to be activated.

3. The cardinal principle 

The label that is applied to the final item represents the absolute quantity of the set.

Two other principles generally apply but are not fundamental to the process of counting. These are:

4. The abstraction principle (see number sense below) 

Any types of items may be counted (e.g. birds in a flock or windows in a building).

5. The order-irrelevance principle 

The order in which the items themselves are tagged is irrelevant. (If we want to count the number of flowers in a bunch, it does not matter which one we label "1", which we label "2", etc.) 

Two different general kinds of counting behavior may be distinguished:

1) Responsive counting - the number of some externally given set of items or events is counted at a perceptual level and translated into a corresponding numeric-symbolic motor response. In humans - the production of a numeric word or a written numeral, e.g. “the 3 black sheep that jumped the fence”.

      
1.1) counting external items;

1.2) counting one’s own responses.
2) Constructive counting - a perceived symbolic stimulus conveys a particular numerosity that has to be converted into an equivalent number of discrete motor responses. E.g. the instruction “3” printed by a door-bell next to a friend’s name being converted into three button-pushes. Constructive counting includes counting one’s own responses.
Studies of counting external items

Animals can in some sense "count": crow story.

For at least two hundred years, people have speculated about whether animals can in some sense "count", or make choices based on number. This possibility was first raised in a popular anecdote about crows. The story goes that whenever a hunter tried to approach a crow and shoot it, the bird kept its distance. So the man enlisted the help of others in a ruse that was designed to trick the bird into deciding it was safe to return to its nest. A group of hunters entered a hiding place in sight of the bird, then after a while all but one left again, leaving the last person concealed. When there were up to 5 people in the group, the crow stayed out of harm’s way until the remaining hunter had also given up and left. The bird was fooled into returning prematurely, and met its demise, only when there was a total of 6 hunters. No doubt this story is apocryphal, but it points to two ideas. The first is that birds can accurately keep track of the number of things (such as hunters in a group) up to some limit (in this example 5 but not 6); the second is that being able to do so might have survival value, and so be of evolutionary significance.
Pepperberg’s African Grey parrot Alex responds to the verbal question "How many?", spoken by his trainer, in 2-6 range; tell the number of objects in a subset within a heterogeneous array, e.g. when asked "How many cork?" he could answer "2" when shown a random mixture of 2 corks and 3 keys. And conjunction of properties: "How many green trucks?"

Later his range extended to include "one".

Research question: Alex counts or subitizes?

More likely counts since perceptual distracters disturb subitizing. And mistakes in larger numbers were not much greater than with small numbers. We note that it took many years to teach Alex so it is difficult to make such experiments.

A chimpanzee (without training) given to choose between two pairs of trays, one with 3 and 4 pieces of chocolate and the other with 5 and 1 pieces choused 3+4 in 70% of experiments. (Rumbaugh, et al., 1987)
Counting one’s own responses (Mechner, and Guevrekian, 1962) 

Hungry rats were put into closed boxes with two levers. To receive a small amount of food a rat had to press lever A at least a certain number of times (4 or 8 or 12 or 16 for different rats) and then to press lever B. The rat can press more than the correct number of times, but if it switches to lever B too early it receives a penalty (e.g. the process should be started again). On experiments of this sort, rats were shown to respond appropriately to numbers as high as 24 (Platt & Johnson 1971). While they don’t reliably execute the precise number of required presses, they do get the approximate number correct, and their behavior exhibits a predictable pattern. First, they tend to overshoot the target, pressing a few more times than necessary rather than incurring the penalty. Second, and more importantly, their range of variation widens as the target number of presses increases (see figure below).
To check that it is not time that rats measure experiments were conducted with rats of different level of food deprivation. More hungry the rats were quicker they pressed but the numbers of presses pattern was unchanged.

Results (from Meck&Church, 1983):

Number 4 rats: 3 – 12%; 4 – 26%; 5 – 27%; 6 – 18%; 7 – 10%; 8 – 5%.

Number 8 rats: 6 – 3%; 7 – 10%; 8 – 20%; 9 – 23%; 10 – 18%; 11 – 10%; 12 – 5%; 13 – 3%.

Number 12 rats: 10 – 3%; 11 – 6%; 12 – 14%; 13 – 16%; 14 – 15%; 15 – 14%; 16 – 9%; 17 – 6%;18 – 5%;19 – 4%;20 – 3%.

Number 16 rats: 14 – 3%; 15 – 5%; 16 – 10%; 17 – 14%; 18 – 15%; 19 – 14%; 20 – 10%; 21 – 9%;22 – 6%;23 – 4%;24 – 3%.
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Here is an analysis of this data in terms of mean response, standard deviation (SD)
 and coefficient of variation (CV)
 
[image: image8.png]
 (b) The mean (left axis, filled circles) and standard deviation (right axis, filled squares) of the distributions in A, and the coefficient of variation (CV), which is the ratio of the standard deviation to the mean (triangles, lower panel). Note the constancy of the CV.
Weber Law

In 1834, the German physiologist E.H.Weber discovered that two relatively heavy weights must differ by a greater amount than two relatively light weights for one weight to be perceived as heavier than the other. In other words, heavier weights are harder to discriminate. The ‘Just Noticeable Difference’ (JND or ΔI) — the minimum amount by which stimulus magnitude must be changed in order to produce a noticeable variation in sensory experience — is a constant fraction of the level of stimulus intensity. So, Weber’s Law, which has wide generality across different sensory magnitudes and modalities, is expressed as:

∆I/I = const.

I is the actual value of the stimulus (i.e. hertz, decibels, etc.)
. This law of noticeable difference can be applied to several modalities or sensory properties such as loudness, length, brightness, weight, and mass.
 In 1860, G.T. Fechner proposed an extension based on Weber’s Law: as the stimulus intensity increases, it takes greater and greater changes in intensity to change the perceived magnitude by some constant amount. So, the perceived magnitude (S) is a logarithmic function of stimulus intensity (I) multiplied by a modality and dimension specific constant (k). This relationship is expressed in Fechner’s Law: 

S = k · log(I).

Explanation.

We compare two perceived magnitudes S1 and S2. These magnitudes reflect stimuli of intensity I1 and I2: S1=f(I1), S2=f(I2). We need a function such that the difference ∆S=S2-S1 will depend on the ratio I2/I1. The simplest function of this kind is logarithm:
∆S=S2-S1=k( log(I2)-log(I1) )=k log(I2/I1)
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x-axis shows changes that should be made to obtain equal difference in perceived change for different values of stimulus.

These fundamental laws are usually valid for general sensory phenomena and can account for many properties of sensory neurons. The action potential rate (in slowly adapting receptors) is generally a function of the logarithm of the stimulus intensity. Although the response characteristics of receptor cells can explain the logarithmic compression of sensory experiences (Fechner’s Law), it is not yet clear why cognitive magnitudes (such as numerical quantity) obey the same law. (Adapted from Nieder, 2005)  
Standard deviation is associated with the sensitivity of a preceptor, so in our case ∆I can be associated with SD.

Meck and Church (1983) taught rats to press the left lever when they heard two consequent tones or saw two consequent flashes, when the number of either tones or flashes was four the rats pressed the right lever. When these rats were presented with two tones and two flashes they pressed the right lever, that is they added tones and flashes!

Experiments involving constructive counting 
Xia, Siemann and Delius (2000) aimed at finding out whether pigeons would be able to produce specific numbers of pecks in response to given symbols
. Six symbols (A, N, T, 4, U, and 5, some of them rotated) were presented on one of the pecking keys (the "symbol" key) in a conditioning chamber
. Each symbol was associated with a certain required number of pecks. A second key (the "enter" key) had to be pecked to indicate that the response requirement on the first key had been fulfilled. The work began with 9 pigeons on numerosities 1-4. Teaching took about 20000 sessions. Two most dumb pigeons were dropped from further teaching of 5-6 numerosities. Six of the birds learned about 5 and four about 6 (if a bird fails to reach 75% success on a given numerosity after 30000 sessions it was dropped from the experiment. In experiment itself different symbols were shown randomly.  
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 If this second key was pecked before the response requirement on the first key was completed, or if too many pecks had been delivered on the first key a timeout followed (during which the houselight was turned off). Pigeons only received food reward for the exact production of the required number of pecks on the first key and a final single peck on the second key. 

 These seemingly symbolic abilities of animals put in a new light the distinction between notions of numerosity and number. “It is numerosity, not number, that is discriminative in nature… A development beyond the perceptual led to the symbolization of the numerosity by number. It should be realized that what is written as a natural number is a conceptualization referring to the natural class of events or things previously denoted as numerosity. A distinction between number and numerosity is therefore mandatory. Numerosity is a natural fact. It has to do with received or inferred manyness. Numbers, however, as abstractions, while they may represent numerosity, can and also do differ in an important respect from numerosity. Numbers have an independent existence as say marks on paper [stress added A.K.] from events with numerosity.” Nelson&Bartley (1961,pp. 179-180). So the question is whether the pigeons, which recognize “marks on paper” have a number concept or just innate ability to distinguish numerosities?

Counting experiments with infants

Wynn, K. (1998), Trends in Cognitive Science 2(8),296-303.
Until recently, the consensus was that the capacity to represent the positive integers was also the product of culture, dependent on the uniquely human capacity for language. New studies are undermining that consensus.
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Five month old infants looked much longer on the impossible results. Another experiment checked whether the infants actually count or just compare. Instead of showing two dolls, three dolls appeared. The infants look significantly longer on when 3 dolls appeared. However, infants do not expect constancy in the shape or color of an object. For instance, if they are showed a green truck and then after it is covered by screen and the screen is dropped a red ball appears. This situation does not surprise babies. 

Four days old babies were given to suck a nipple connected to a pressure transducer and a computer. Each sucking led to a loudspeaker to say a three syllables nonsense words. In the beginning that increased the rate of sucking but quickly babies were bored, than the computer began producing two syllables words and babies interest increased again. Duration of words and the rate of speech were highly variable. (Bijeljac-Babic, et al., 1991)
V. Number sense and concept

Three laws of number sense Dehaene, S. (1997) The number sense. New York, Oxford University Press, p.60:

1) an object cannot simultaneously occupy several separate locations;

2)  two objects cannot occupy the same location;

3) physical object cannot disappear abruptly nor can it suddenly surface at a previously empty location: its trajectory has to be continuous.

Non-verbal counting in adults. (Whalen, et al. 1999)  They repeatedly presented numbers between 7 and 25 and asked to press a button as fast as they could until they felt they had made the indicated number of button presses. The resulting distributions of numbers of button presses closely resembled the animal data: the modal number of presses increased in proportion to the target number, and so did the standard deviations of the distributions.
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(c) The mean (left axis, upper panel) and standard deviation (right axis, upper panel) and the CV (lower panel) of the distributions

of number of presses obtained by Whalen et al. in experiments with humans using non-verbal counting to make the number of presses specified by a numeral. As with the animal data, the human data show scalar variability. The widths of the distributions of numbers of key

presses increase in proportion to the mean number of presses for a given target number, thus the CV is constant.

Evidence that the subjects did not count subvocally during the experiment:

1. They made one button press every 125 ms – more than twice as fast as estimates of the rate of subvocal counting. 

2. There was no step at or after 10 in the function relating inter-press interval to the number of button presses. Such a step would be expected if responses were paired with verbal counts, because counting verbally (out loud or subvocally) requires the articulation of two syllables per count when the count exceeds 10, but only one syllable per count below 10 (7 and 12 being the only exceptions to this). 

3. Similar results are obtained even when subjects repeat the phrase ‘Mary had a little lamb’ as they make their presses. 

The key phenomenon in non-verbal counting is scalar variability. This means that the non-verbal representatives of number are ‘noisy’ mental magnitudes (real numbers). The signals encoding these magnitudes vary from trial to trial, with the width of the signal distribution increasing in proportion to its mean. That is, the reading of a mental magnitude in memory is a noisy process, and the noise is proportional to magnitude being read: the greater the magnitude, the noisier its representation.
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Cartoon of the accumulator model and the bidirectional mapping hypothesis. This hypothesis is used to explain the results of Whalen et al.’s experiment. (a) The non-verbal counting process increments the accumulator by one ‘cup’ for each item counted. The accumulation at the end of a count is read into memory. Magnitudes read from memory to serve as the targets in subsequent counting trials exhibit scalar variability, represented here by the sloshing in the beaker, which introduces noise into readings of the beaker (recalled magnitudes). (b) Adult humans have learned decision criteria (rulings on the beaker), which enable them to map from a magnitude to a numeral and from a numeral to a corresponding magnitude (bi-directional mapping hypothesis). Whalen et al. argue that the magnitude representation of numerosity and the non-verbal counting process that generates the magnitudes make the formally identical verbal counting process intelligible to the very young child and gives the number words their meanings. 
Meck&Church (1983) showed that numerosity (countable quantity) is represented by magnitudes indistinguishable from those that represent duration (uncountable quantity), with the same constant ratio between the standard deviation and the mode in the distributions of remembered magnitudes. Although the counting mechanism just described generates magnitudes (real numbers), it does so by a discrete incrementing process, which defines a next magnitude, just as ordinary counting defines a next integer. By contrast, the timing mechanism does not define next magnitudes. As the duration of a timed interval increases, the timing mechanism generates bigger magnitudes to represent that duration, but it does not pick out a magnitude that is the next magnitude.

the counting case, the accumulator is filled one cupful after the next.

the timing case, the accumulator is filled by a hose, the flow from which is terminated at the end of an arbitrary interval. 

The distinction between the integers and the reals: integers are discretely ordered and countably infinite, like the levels you get when you fill an (infinitely tall) cup one cupful at a time. The reals are continuously ordered and uncountably infinite, like the levels you get when you fill the cup with a hose that is ‘on’ for different, random amounts of time.

The maxim “number is a property of sets of discrete physical objects” is deeply embedded in child’s brains.

Examples. 

1. If we show a 3-4 year old 2 red apples and 3 yellow bananas and ask him how many colors or kinds of fruit there are. A child cannot help counting objects.

2. If we ask how many forks there are on the picture?, the answer will be 6.
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Outstanding questions and conclusions

1. Numerosities of 1,2,3 (and maybe 4) are apprehended by a noncounting process (subitizing)

2. It seems that small numerosities are represented similarly in humans and animals:

“Children's understanding of number is similar to adults' and rats' “ (Huntley-Fenner,2001)

Small numerosities are represented discretely while larger numerosities are represented non-precisely. The question is how these two types  are arithmetically processed in a similar manner?

3. If even the smallest numerosities are represented by magnitudes with scalar variability, then why do the integers seem to be the foundation of numerical thinking?

If humans represent numerosities in terms of magnitudes, why do they have so much trouble learning the mathematical conception of rational numbers (mastering fractions)?

Twentieth-century mathematicians have commonly assumed that mathematics rests on what is intuitively given through verbal counting, a view epitomized in Kronecker’s often quoted remark that, ‘God made the integers, all else is the work of man’. Arithmetic reasoning is found in nonverbal animals, where it operates with real numbers (magnitudes). It may be that evolution provided the real numbers and that getting from integers back to the real numbers has been the work of man.  

Some evidence for objective existence of numbers
Autistic savants (Snyder&Mitchell,1999)
 Examples include multiplying, factoring, dividing and identifying primes of six (and more) digits in a matter of seconds as well as specifying a number of objects (more than 100) at a glance. For example, one savant could give the cube root of a six digit number in 5 s and he could double 8 388 628 up to 24 times to obtain 140 737488 355 328 in several seconds. Joseph, the inspiration for the film Rain Man about an autistic savant, could spontaneously answer `what number times what number gives 1234 567 890 by stating `nine times 137174 210'. Autistic twins were observed who could exchange prime numbers in excess of eight digits, possibly even 20 digits and who could `see' the number of many objects at a glance. Snyder&Mitchell suggest that autistic savants have privileged access to low levels of (“raw”) information which is not available to normal individuals.  
Ramanujan

1729=103+93=123+13
Ramanujan formulae for pi:
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which produces eight more decimal places with each term. Incidentally, the large integers are in an arithmetic progression 1103+26390n Other formula
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Another formula: 
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 with precision of 8 digits.

Is the brain a computer? Some counter arguments:

1. It is easier for us to estimate than to make exact calculations, it is difficult to make along sequence of elementary logical steps rather than to use intuition. The opposite is true for a computer.

2. Mind is more similar to analog machine than to a digital computer: comparisons are  difficult for humans (takes relatively long time of half a second), there is a proximity effect. Digital computer has two possibilities for number representation: unary and then time for comparisons is a function of smallest of the numbers or binary and than it depends on the appearance of the first  non-similar bit: it takes less time to compare 8 and 7 than 8 and 11 (8 and 7 have different number of digits): 7=1112; 8=10002; 11=10112.  

We compare as if we weigh up numbers. It seems that our brain represents numbers as continuous quantitative representation. Instead of representing magnitudes with numbers we use magnitudes to represent numbers.

Numbers cannot be represented by unique system of axioms: whatever axioms are chosen there are other objects that satisfy them. So our numbers sense is not based on axioms. 
To summarize, mathematical ability seems to result from the integration of two non-numerical neural circuits in the brain: one, which controls linguistic representations of exact numerical values, and the other, which control visuo-spatial representations of approximate quantities (Butterworth, 1999, Dehaene, et al 1999). It seems that the second circuit is not special for humans. Similarly, animals have abilities to distinguish patterns, learning rules (Fountain, et al 1999). What distinguishes humans is the ability to work with language mediated precise data and complicated abstractions. On the other hand, savants’ abilities with numbers (as well as some great mathematicians abilities to “see” very abstract structures) suggest that some mathematical structures have some kind of objective existence. Some of the autistic savants hade very limited language abilities so the necessary role of language to access “mathematical realm” is put to question. 
The following diagram represents various stages of mathematical development:
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� � EMBED Equation.2  ���

� Coefficient of variation is defined as the relative measure of dispersion it relates the mean and standard deviation by expressing the SD deviation as a % of mean. The benefit of standard deviation is a absolute measure which explains the dispersion in the same unit as original data: CV=SD/Mean.

� Example. If we can distinguish a Just-Noticeable Difference in sound intensity between 100 hand bells and 110 hand bells, we may argue that we may be able to distinguish the difference between 10 and 11 hand bells, or between 300 and 330 hand bells: a 10% difference in each case. In this example const=0.1 (or 10%).

� To increase pigeons’ motivation they worked with hungry birds: throughout the experiment they were maintained deprived of food at 85% of their free-feeding body weight.

� These symbols were selected because their surface areas and form complexities were more similar than those of the corresponding arabic numerals.
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